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Abstract

Animal walking results from a complex interplay of central pattern generating networks

(CPGs), local sensory signals expressing position, velocity and forces generated in the legs,

and coordinating signals between neighboring legs. In particular, the CPGs control the activ-

ity of motoneuron (MN) pools which drive the muscles of the individual legs and are thereby

responsible for the generation of rhythmic leg movements. The rhythmic activity of the

CPGs as well as their connectivity can be modified by the aforementioned sensory signals.

However, the precise nature of the interaction between the CPGs and these sensory signals

has remained generally largely unknown. Experimental methods aiming at finding out

details of these interactions often apply cholinergic agonists such as pilocarpine in order to

induce rhythmic activity in the CPGs. Using this general approach, we removed the influ-

ence of sensory signals and investigated the putative connections between CPGs control-

ling the upward/downward movement in the different legs of the stick insect. The

experimental data, i.e. the measured MN activities, underwent connectivity analysis using

Dynamic Causal Modelling (DCM). This method can uncover the underlying coupling struc-

ture and strength between pairs of segmental CPGs. For the analysis we set up different

coupling schemes (models) for DCM and compared them using Bayesian Model Selection

(BMS). Models with contralateral connections in each segment and ipsilateral connections

on both sides, as well as the coupling from the meta- to the ipsilateral prothoracic ganglion

were preferred by BMS to all other types of models tested. Moreover, the intrasegmental

coupling strength in the mesothoracic ganglion was the strongest and most stable in all

three ganglia.
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Introduction

As shown in various experiments on vertebrates and invertebrates, during animal walking cen-

tral pattern generating networks (CPGs) are responsible for the generation of periodic muscle

activity in a given leg [1, 2]. The movement of each leg has to be coordinated with that of the

other legs in order to produce walking. In the stick insect Carausius morosus, each leg is indi-

vidually controlled by its own CPGs located in the pro- (front legs), meso- (middle legs) and

metathoracic ganglion (hind legs) [3, 4]. Each leg consists of three main leg joints about which

leg segments execute coordinated movements during walking and climbing. The thorax-coxa

(ThC) joint is responsible for forward and backward movements, the coxa-trochanter (CTr)

joint enables the femur to move in upward and downward direction. The femur-tibia (FTi)

joint brings about flexing and stretching of the leg by moving the tibia relative to the femur.

Each of the leg joints is associated with an antagonistic muscle pair: the protractor-retractor

(ThC), the levator-depressor (CTr) and the flexor-extensor (FTi) muscle pair [5]. The rhyth-

mic (periodic) activation of the muscles originates in the corresponding CPGs [6], and sensory

signals play a significant role in coordinating the motor output between segments [7–11]. In

addition, a previous study showed that, in the absence of sensory feedback, depressor CPG

activity, which controls the activity of the slow and fast depressor trochanteris muscles (SDTr

and FDTr, respectively) is weakly coupled between all of the segments [12]. The authors dem-

onstrated that the different intrasegmental phase relationships for isolated ganglia were stabi-

lized in the case of interconnected ganglia. However, little is known about the interaction, i.e.

the strength and the nature of the couplings between the different CPG networks. In order to

understand how a stable locomotor pattern is generated in the stick insect, we need to under-

stand the contribution of the central and peripheral sensory signals, and the interactions

between them. Up to now, there has been a long and successful history of mathematically

describing and modelling central pattern generating networks by means of phase oscillators

[13]. A variety of interesting and fruitful insights have been gained from the models of weakly

coupled oscillators [14–16]. Nevertheless, so far no method has been found to estimate the

coupling strengths from experimentally derived data and not from the model itself. This means

that in the stick insect in particular, the connection strengths between the various CPGs in the

different ganglia have not yet been studied (to the best of our knowledge also not for other

insects at least not for the whole nerve cord).

There are some promising approaches concerning electroencephalography (EEG) and

magnetoencephalography (MEG) recordings, e.g. [17–19]. In this paper, we tackle the problem

of estimating the coupling architecture and strengths by using a modelling approach called

Dynamic Causal Modelling (DCM). DCM serves the purpose of assigning relative coupling

strengths to the (neuronal) connections between the levator-depressor CPGs in different

hemisegments. In contrast to other methods, e.g. phase-coupling, coherence or weakly coupled

oscillators, this approach has three major advantages. First, DCM is able to give insight into

effective, i.e. directed, connectivity while many other approaches only focus on functional, i.e.

undirected, connectivity. Second, DCM allows use of Bayesian Model Selection (BMS) to

determine the model architecture best fitting the data. And third, in contrast to other

approaches it is also applicable in the context of few experimental recordings, as long as they

are of a sufficient length (e.g longer than 3 min).

To validate the estimates on the strength of the coupling between the CPGs of the different

segments in the thoracic nerve cord of the stick insect obtained with this modeling approach, a

descriptive data analysis method was used.

This article is organized as follows: in section 1, Materials and methods, we review the

experimental methods and explain the basic properties of the Dynamic Causal Modelling
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(DCM), including Bayesian Model Selection (BMS), as well as the descriptive phase-connectiv-

ity (PC) approach, which we use for the data analysis in the present work. Section 2, Results, is

divided into three parts. First, we present the results of the DCM analysis for the meso- and

metathoracic ganglia, then, the ones for the pro- and mesothoracic ganglia. We validate these

results using the PC approach as well as additional experiments with known connectivity.

Finally, we present the coupling architecture and strengths for the whole thoracic nerve cord,

i.e. the pro-, meso- and metathoracic ganglia hypothesized by DCM. After all, the sections 3,

Discussion, and 4, Conclusion, follow.

1 Materials and methods

Animals

Experiments were carried out on adult female Indian stick insects of the species Carausius
morosus [20]. The animals were obtained from the colony at the University of Cologne main-

tained at 22-24˚C, at approximately 60% humidity and under a 12 h light / 12 h dark cycle.

Preparation

We recorded extracellularly the rhythmic activity from C2 leg nerves (depressor MNs), which

contain the axons that innervate the slow and the fast depressor trochanteris muscles (SDTr

and FDTr respectively) [21]. We did so with the nerves in the contralateral pro-, meso- and

metathoracic ganglia using ‘hook’ electrodes [22] in an isolated and deafferented preparation.

To this end, all legs of the stick insects were removed, all lateral and connective nerves, except

the ones of interest, were cut off. Also axons of sensory neurons were destroyed to prevent sen-

sory feedback and peripheral input from being recorded. Rhythmic activity in leg motoneuron

(MN) pools was then induced by bath application of 5–7 mM of the muscarinic receptor ago-

nist pilocarpine [6]. For a detailed description of the preparation, experimental setup and

electrophysiology see [12]. Fig 1 shows sample recordings from meso-meta, pro-meso and

pro-meso-meta preparations.

Data preprocessing

The collected data were preprocessed offline using Spike2 7.09 (CED, Cambridge, UK). First,

we used the signal processing functions DC-remove, Rectify and Smooth to get rectified and

smoothed waveforms that are corrected for DC (direct current) shifts (i.e., having a mean

amplitude of zero). These data were then downsampled to 200 Hz and extracted as a time-

series.

Connectivity analysis

The data was further processed with MatLab R2011b (The MathWorks Inc., Massachusetts,

USA) and Python 2.7.14. For Dynamic Causal Modelling (DCM), we used the Statistical

Parametric Mapping toolbox (SPM12, Wellcome Trust Centre for Neuroimaging, London,

UK) implemented in MatLab. Phase-difference analysis was done using custom programmed

MatLab scripts and clustering algorithms implemented in the Python toolbox sci-kit learn

[23].

Dynamic Causal Modelling approach. We made use of Dynamic Causal Modelling

(DCM) [17] to investigate the type and strength of intra- and intersegmental coupling between

the thoracic ganglia of the levator-depressor system of the stick insect. This approach was

developed for data recorded from the human brain and is widely used in the analysis of cou-

plings in M/EEG and fMRI data [24–26], and in the analysis of local field potentials [18].

Intra- and intersegmental neuronal connectivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0220767 August 6, 2019 3 / 21

https://doi.org/10.1371/journal.pone.0220767


DCM uses neural mass models [27, 28] to describe the neuronal activity of the recorded

sources (in our case CPGs). As there is no stimulation in our experimental setup, i.e. absence of
sensory input, we selected the DCM for cross-spectral density (CSD) approach that does not

include any inputs and is suitable for modelling steady-state like data [29]. This particular

Fig 1. Sample recordings. Examplary recordings from left and right depressor nerves from A) 5 s of Meso-Meta recordings (218.72 s<
t< 783.21 s, N = 10), B) 20 s of Pro-Meso recordings (633.84 s< t< 2061.39 s, N = 13) and C) 10 s of Pro-Meso-Meta recordings (390.03 s<
t< 790.97 s, N = 3).

https://doi.org/10.1371/journal.pone.0220767.g001
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DCM approach is based on a linearization of dynamical systems, i.e. neuronal subpopulations

are coupled via their mean fields. The connectivity is determined by modeling coherence and

phase-differences of the observed electrophysiological measurements. A model is optimized

using empirical measures of cross-spectral densities. In particular, the parameter values are fit-

ted within a system of differential equations according to a predefined coupling structure (see

Statistical Methods) to model, i.e. explain, the recorded source activity:

_z ¼ ðAþ uBÞz; ð1Þ

where z is the time-varying output activity of the sources. The coupling structure is defined in

the matrix A, and possible changes in connectivity between different experimental conditions

are modelled by using B. The coupling strengths saved in A and B are then fitted in order that

z(t) has, in some well-defined sense, the smallest distance from the recorded activity, i.e. being

optimal in that sense.

The connectivity strengths obtained from DCM underwent two independent validations:

(i) by a phase-connectivity approach (see below) and (ii) through the analysis of an experimen-

tal condition with known connectivity, i.e. cut connectives between the segmental ganglia.

Phase-connectivity approach (PC). We validated the DCM connectivity results by ana-

lyzing, in the absence of sensory input, the mutual relationship of the rhythmic motor activities

in the stick insect in order to uncover possible phase-coupling between them. The analysis was

performed by means of established methods that are described elsewhere [16, 30]. Using this

approach, we gained information about the time evolution of multiple rhythms propagating

intra- or intersegmentally. The intersegmental analysis was done for the meso- and metatho-

racic ganglia first and then for the pro- and mesothoracic ganglia. We analyzed the phase of

the rectified and smoothed signal obtained from each nerve as the activity evolved in time. For

automatic and objective detection of burst onsets the preprocessed extracellular recordings

were used to construct a discrete-time analytic signal

X ¼ Xr þ iXi; ð2Þ

in the complex plane. Here, Xr is the real data vector, and Xi is the Hilbert transform of Xr [31].

Then a Poincaré-section was used to define the onsets of the bursts and thereby the reference

phase of the rhythm. To obtain information on the phase φ of each recording, we linearly

interpolated the phase angle between each pair of onsets of each single nerve and normalized it

to lie in the interval [0, 1) (mod 2π) during one cycle. As a last step, the phase was unwrapped,

i.e. it grew monotonically, as if it were an ‘ordinary’ non periodic time signal (Fig 2A left).

When recording from the prothoracic ganglion, the signals showed activities with small ampli-

tudes, in addition to the large-amplitude bursts. Thus, we modified the analysis by adjusting

the Poincaré-section such that only the big amplitudes were marked as burst onsets (Fig 2A

right; second black circle in the top panel). The adjustment was based on the k-means cluster-

ing algorithm implemented in the sci-kit learn toolbox in Python [23, 32] for k = 2, which is

motivated by separating the bursts into two clusters referring to the small and large units

observed in the recordings. This method optimizes two centroids representing the small and

big amplitude peaks and then assigns each detected peak to the closest cluster.

To investigate the coupling between any two CPGs, we calculated their phase-difference.

The signals are considered to be coupled if their phase-difference remains constant over a lon-

ger time-period, i.e.

jjφ
1
ðtÞ � φ

2
ðtÞjj ¼ cþ ε; ð3Þ

ε being a small error (compared to c). In our analysis, we ensured this by requiring the two

Intra- and intersegmental neuronal connectivity
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criteria below to be fulfilled for the R-vector R (cf. [33]), which is defined by

R ¼
1

T

XT

j¼1

eiðφ1ðjÞ� φ2ðjÞÞ

�
�
�
�
�

�
�
�
�
�

ð4Þ

with the number of time points T and the corresponding phase-difference φ1(j) − φ2(j). It mea-

sures the similarity of the phase-differences of the coupled phases and ranges from 0 (random

phase-differences) to 1 (identical phase-differences):

1. The R-vector in a 15 s long gliding time-window should be larger than 0.8 for at least 50 s

(corresponding to 10 cycles) (Fig 2B middle bottom panel).

2. Over the whole time-interval defined in 1., there should be a clear peak in the histogram

(Fig 2B right), with an R-vector greater than 0.3. This criterion prevents drifting of the

phases over the interval where coupling exists.

Fig 2. Phase-connectivity approach. A: Top—Rectified and smoothed signal Xr (Left: meso-meta, Right: pro-meso); Middle—Discrete-time

analytic signal with Poincaré-section marked in black (normal) and red (eliminating small units) (Left: meso-meta, Right: pro-meso); Bottom—

Resulting instantaneous (unwrapped) phase φ (Left: meso-meta, Right: pro-meso). B: Left—Schematic drawing which shows which segmental

depressor activity was recorded and analyzed. Middle top—Sample recording of left and right depressor activity in the metathoracic ganglion;

Middle bottom—Time evolution of the R-vector length of left-right metathoracic phase-differences over the time span of a recording, intervals

in which coupling occurs are marked with grey boxes; Right—Phase-histogram shown for the coupled interval� [50, 140] (see text for details).

https://doi.org/10.1371/journal.pone.0220767.g002
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Both thresholds for the R-vector lengths were adjusted manually in such a way that the pro-

gram was able to correctly assign clearly coupled or clearly uncoupled intervals to the correct

group.

After phase-coupled intervals were identified, we defined the strength of the coupling to be

the likelihood of coupling over the whole recording, i.e. the sum of all interval lengths in which

coupling occurred, divided by the total length of the corresponding recording. Recordings

with no coupling were taken into account with 0 s of coupling.

Statistical methods

The coupling architecture best fitting the data in the DCM approach is determined by Bayesian

Model Selection (BMS) [34]. This method yields two measures: (a) the relative logarithmic

model evidence and (b) the model posterior probability. The logarithmic model evidence, log

Bji, of a model j is displayed relative to the least probable model i

log Bji ¼ log pðyjm ¼ jÞ � log pðyjm ¼ iÞ; ð5Þ

with the probability p(y|m = j) describing the likelihood of the observed data being generated

by model j. Given equal priors p(m = i) = p(m = j) (for the different models) the posterior

probability of the i-th model p(m = i|y) is

pðm ¼ ijyÞ ¼
1

1þ expð� logðBijÞÞ
: ð6Þ

Finding the best coupling structure via BMS enables us to investigate intra- and intersegmental

coupling strengths in the preferred model architecture. For the meso-meta and pro-meso net-

works, we tested for 7 different network architectures by stepwise reducing the number of con-

nections from fully connected to fully unconnected (see Fig 3A). In the case of pro-meso-meta

connectivity we based our models on the results of the meso-meta and pro-meso analyses and

added possible, physiologically as well as theoretically motivated, pro-meta connections to the

coupling structure (see Results and Fig 3B).

Significant differences in connectivity strengths were in both approaches (DCM and PC)

determined by means of t-tests. In the DCM approach we assumed left-right symmetry and

thus assigned both directions of a connection between two CPGs to the same connection (e.g.

connection strengths from the left mesothoracic to the right mesothoracic and from the right

mesothoracic to the left mesothoracic ganglion were averaged). This does not apply to the PC

approach, since no directionality of the connections can be obtained there.

2 Results

In this study, we report results obtained with a method commonly used to analyze M/EEG

data. We applied DCM to analyze the coupling strengths of pharmacologically induced rhyth-

mic MN activity of the stick insect. Coupling between the motor systems of the CTr-joints of

several segments, such as meso-meta, pro-meso was investigated; first, mathematical models

that reproduce characteristic properties of the recorded depressor MN activity have been cre-

ated with DCM which were then validated by means of the phase relations of the bursting

activities (PC approach) and by an experimental condition with known connectivity, i.e. cut

connectives between segments. After this validation, DCM was used to predict the coupling

structure of the whole stick insect walking system involving all three (pro-, meso-, meta-) tho-

racic segments.

Intra- and intersegmental neuronal connectivity
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Fig 3. Model space for BMS. A: Model architectures tested with DCM for meso-meta and pro-meso recordings. B: Model architectures tested

with DCM for pro-meso-meta recordings.

https://doi.org/10.1371/journal.pone.0220767.g003
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Meso-meta thoracic ganglia

In the first part of the experiments, the activity of the contralateral C2 nerves of the meso- and

metathoracic ganglia was recorded. Data from both sides in the meso- and metathoracic gan-

glion were collected in 10 animals.

We used these bilaterally recorded data for the DCM analysis. First, we tested a number of

possible predefined coupling structures. The models tested consisted of fully connected ganglia

(1), circularly connected ganglia (2), cross connected ganglia with (3) and without intraseg-

mental connections (5), intrasegmentally unconnected (4), intersegmentally unconnected gan-

glia (6) and fully unconnected ganglia (7) (Fig 3A). All models were tested with excitatory and

inhibitory connections. Here, we show the results with excitatory coupling, only, since in both

cases (excitatory and inhibitory), the same winning model structure emerged but the best fit-

ting model with excitatory connections had a higher probability according to the Bayesian

Model Selection (BMS) procedure. BMS also showed that model (2) with the circular coupling

structure best fitted the recorded data (Fig 4A), since log-evidence and model posterior proba-

bility were highest.

We used this coupling structure as the basis for the estimation of the coupling strengths.

As a first step of validation of DCM, we applied the DCM approach to biased intervals of

the recorded data, i.e. to intervals that were pre-identified as phase-coupled in the PC analysis.

We did this, since we were interested in the coupling strengths during coupled rather than

uncoupled epochs.

The DCM analysis of the biased (phase synchronized) intervals yielded the coupling

strengths depicted in Fig 4B. For a better comparison of the results we normalized the maximal

coupling strength obtained from DCM to 1 (a.u.). We found the strongest coupling in the

meso-meso and meta-meta connectivity, while the meso-meta connectivity was significantly

weaker (tested with a two-sample t-test compared to meso-meso: p = 0.001, and compared to

meta-meta: p = 0.044)(Fig 4B).

The results of the phase-coupling (PC) approach are presented in Fig 4C. In agreement

with the DCM results, the likelihood was highest for the intrasegmental couplings, i.e. the

coupling between both sides of the mesothoracic ganglion (meso-meso) and the coupling

between both sides of the metathoracic ganglion (meta-meta). A two-sample t-test showed

that the likelihood of intersegmental coupling (meso-meta) was significantly lower

(p = 0.0396) than the intrasegmental couplings, while comparison of the intrasegmental cou-

plings of meso-meso and meta-meta types showed no significant difference (p = 0.2224)

between them.

We performed a second validation to test whether DCM, which was developed for human

brain data, can reasonably be applied to extracellular nerve recordings from animals. We,

therefore, conducted an additional experiment where the connectives between the meso- and

metathoracic ganglia were cut during the recordings. This surgical manipulation completely

destroyed the connectivity between the two segments. We originally set up DCM to calculate

coupling strengths of the fully connected system (A-matrix). Changes from this (cut connec-

tives) were taken into account in the B-matrix (cf. Eq (1)). We did not provide any prior infor-

mation on which connections should be changed by DCM. The model showed a strong

decrease of the connection strength, 90% on the left side and 95% on the right side, between

the meso- and metathoracic ganglion (Fig 5). The connection between both segments was not

completely removed by DCM. This is due to the fact that DCM is constructed to use a minimal

connection strength whenever it is assumed to be present. In addition to the intersegmental

decrease, there was a strong increase in the intrasegmental coupling in the mesothoracic gan-

glion (by factors of 2-20) and a decrease in connectivity in the metathoracic ganglion (by a

Intra- and intersegmental neuronal connectivity
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factor of 2). This is in agreement with [12] where the authors could demonstrate that the meso-

thoracic ganglion showed intrasegmental phase-coupling even in the isolated state, while the

connection of the metathoracic ganglion to the mesothoracic ganglion had to be present in

order to detect robust in-phase coupling in the metathoracic ganglion.

Fig 4. Connectivity meso-meta. A: BMS results for meso-meta DCM (left) and winning model structure (right). B: Boxplot showing the

connectivity strengths for the DCM approach. The connectivity strengths were calculated for intervals that were pre-identified as phase-coupled

by the PC approach. C: Boxplot showing the connectivity strengths for the PC approach. Meso-Meso denotes coupling between both sides of the

mesothoracic and meta-meta the one between both sides of the metathoracic ganglion. Meso-Meta represents the intersegmental coupling

between the meso- and the metathoracic ganglia. � denotes statistical significant differences.

https://doi.org/10.1371/journal.pone.0220767.g004

Intra- and intersegmental neuronal connectivity
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Pro-meso thoracic ganglia

To investigate the coupling between the pro- and the mesothoracic ganglia we recorded the

activity of the C2 nerve on both sides of both ganglia in 5 animals, on both sides of the meso-

thoracic ganglion and on one side of the prothoracic ganglion in 3 animals and on both sides

of the prothoracic and on one side of the mesothoracic ganglion in 5 animals.

We then analyzed these data with the DCM approach and tested the same model architec-

tures as for the meso-meta recordings (see Fig 3A). The BMS revealed the same result as for

the meso-meta thoracic ganglia (Fig 6A). That is why we used the same coupling structure for

the analysis of the coupling strengths in the pro-meso thoracic ganglia (cf. Fig 4A right).

Again, we used the PC approach to a priori detect biased, i.e. phase-coupled intervals. Applying

the DCM approach to these intervals, we can see that the intrasegmental meso-meso coupling

(p = 0.0084) and the intersegmental pro-meso coupling (p = 0.0092) are significantly stronger

than the intrasegmental pro-pro coupling as shown by two-sample t-tests (Fig 6B).

We observed long intervals of tonic SDTr activity during the recordings of the connected

pro- and mesothoracic ganglia, i.e. the small units in Fig 1B, which were not present during

the meso-meta recordings. This led to the detection of additional burst onsets by the previ-

ously described Poincaré section. Therefore, we now used a modified Poincaré section defined

by a k-means cluster (see Materials and methods) in order to filter out the bursts produced by

those units. This basically amounted to applying a higher amplitude threshold to the data (cf.

Fig 2A right; adjustment of Poincaré section). Statistical analysis of the PC approach of the

adjusted phase-differences using two-sample t-tests revealed no significant differences between

all couplings (pp-mm p = 0.29, pm-mm p = 0.541, pm-pp p = 0.437) (Fig 6C).

Fig 5. Second validation of DCM. Significant differences in connectivity from meso-meta thoracic connected segments (trial 1) to unconnected

segments (trial 2). Left: Changes of connectivity strength, with trial 1 normalized to 100% coupling strength, absolute values of coupling strengths

can be found on top of each bar; Right: Changes of connectivity compared to trial 1, red lines mark an increase in connectivity, blue lines a

decrease in connectivity and black lines no reliable connectivity change (above 70%).

https://doi.org/10.1371/journal.pone.0220767.g005

Intra- and intersegmental neuronal connectivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0220767 August 6, 2019 11 / 21

https://doi.org/10.1371/journal.pone.0220767.g005
https://doi.org/10.1371/journal.pone.0220767


Summary of DCM validation

We used the above as validation of the DCM results. For this, we compared the relation of cou-

pling strengths obtained from the PC approach, which represent the ratio of phase-coupled

intervals to total recording time, with the ones received by DCM analysis of biased intervals, as

Fig 6. Connectivity pro-meso. A: BMS results for pro-meso DCM (left) and winning model structure (right). B: Boxplot showing the

connectivity strengths for the DCM approach. The connectivity strengths were calculated for intervals that were pre-identified as phase-coupled

by the PC approach. C: Boxplot showing the connectivity strengths for the PC approach. Pro-Pro denotes coupling between both sides of the

prothoracic and meso-meso the one between the both sides of the mesothoracic ganglion. Pro-Meso represents the intersegmental coupling

between the pro- and the mesothoracic ganglia. � denotes statistical significant differences.

https://doi.org/10.1371/journal.pone.0220767.g006
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determined by the PC approach, in meso-meta and pro-meso recordings. In meso- and meta-

thoracic recordings both approaches showed similar relations between analyzed ganglia, i.e.

significantly stronger meso-meso and meta-meta compared to meso-meta connectivity (cf. Fig

4B and 4C). In pro- and mesothoracic recordings we found a significantly decreased coupling

strength in the pro-pro connection compared to all other connections using the DCM

approach. This relation was not found by the PC approach, which might be due to a lowered

signal-to-noise ratio (cf. Fig 1) in this experimental setup (see Discussion). Additionally, we

validated the DCM approach by introducing an experimental condition with prior knowledge

on the connectivity, i.e. we cut the connectives between the meso- and metathoracic ganglia

and thus effectively removed this connection. DCM was capable of portraying this condition

by modulating the coupling strengths, i.e. by drastically reducing the connectivity strength of

the experimentally removed connections.

Pro-meso-meta thoracic ganglia

For the analysis of coupling between the pro-, meso- and metathoracic ganglia, we recorded

the activity of the C2 nerve on both sides of all three ganglia in 3 animals. As the prior valida-

tion steps have shown a good agreement of the results of an established connectivity measure

(PC approach) with the novel DCM approach, we applied DCM to these data to predict the

overall network architecture and its coupling strengths of the thoracic nerve cord of the stick

insect without a priori defining a proxy for phase-coupled intervals. We used a gliding window

of 50 s duration to select five intervals for each animal instead. The models tested with BMS

consisted of a union of the previously discussed networks (1), with added cross connections

(2), as well as bi- (3) and unidirectional lateral connections (4) between pro- and metathoracic

ganglia (Fig 3B). Model 4 became the winning model (Fig 7A). Thus, the BMS suggests that

the full network consists of the union of the subnetworks and a lateral feedback from meta- to

prothoracic ganglia (Fig 7B). An a posteriori t-test on the coupling strengths revealed no sig-

nificant difference between the nine connections (all p’s> 0.05). A further t-test on the meso-

meso coupling strengths in meso-meta and pro-meso-meta recordings revealed a significantly

reduced connectivity in the latter recordings (p = 0.0044).

3 Discussion

General coupling structure of CPG networks

In this paper, we, for the first time, provide results on the coupling structure and the coupling

strengths for the whole thoracic nerve cord in the deafferented locomotor system of the stick

insect. Our results provide strong evidence that in all animals investigated, the inter- and intra-

segmental central couplings follow the same organizational principle. In Fig 8, we sum up the

structure and the strengths of the network connectivity from the different experimental setups.

BMS on the set of various fitted DCM models preferred an eight-shaped structure (see Fig 7B)

consisting of ipsilateral inter- and contralateral intrasegmental connections of the CPGs and

thus predicted a high probability for the existence of these connections. Importantly, the mod-

els containing cross connections, e.g. from pro-left to meso-right, models with missing inter-

or intrasegmental coupling and fully connected models were not selected by BMS. The cou-

pling structure we propose here is in accordance with previous results showing that ipsilateral

leg coordinating influences are indeed transmitted by the ipsilateral connective [35–37]. We

restricted the tested model architectures to those containing all excitatory or all inhibitory con-

nections without any mixture of both types to limit the model space for this first application of

DCM.
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The analysis of coupling strengths in the pro-meso-meta recordings showed only minor

insignificant differences (identical up to the third decimal place) between the various connec-

tions (Fig 8B). This might have several reasons. The recording of all three pairs of ganglia

might have introduced noise into the system which reduced the coupling strengths detected in

the meso-meta and pro-meso recordings. Additionally, since we used a gliding window

approach instead of biased intervals, there might also be fluctuations in coupling strengths

which were averaged out over time. Further, the meso-meso coupling, which we used as a nor-

malized reference, was significantly reduced compared to the pro-meso and meso-meta

recordings. This might reflect the stick insects flexibility in coupling and decoupling of certain

legs into the lcocomotor system to produce different movement patterns or behaviours, e.g.

searching movements.

Validation and discussion of the DCM approach

We used three steps of validation of the DCM approach. First, we evaluated the connectivity

with a well established phase-connectivity approach in addition to DCM for the meso- and

Fig 7. Network structure: BMS pro-meso-meta. A: BMS results: Log evidence (top) and posterior probability (bottom) for

pro-meso-meta recordings are highest for model (4); B: Representation of the winning network structure model (4). Triangles

denote excitatory connections.

https://doi.org/10.1371/journal.pone.0220767.g007
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metathoracic recordings. Both approaches showed similar results, i.e. significantly stronger

meso-meso and meta-meta compared to meso-meta connectivity (cf. Fig 4B and 4C). Second,

we introduced an experimental condition with prior knowledge on the connectivity, i.e. we cut

the connectives between the meso- and metathoracic ganglia and thus removed this connec-

tion. Here, we could show that the DCM approach was capable of reproducing “known” cou-

pling strengths in the system. When unspecified changes of connectivity were entered into the

model, this resulted in a drastic reduction in intersegmental connectivity strength. As we

could not remove any connection from the model without biasing DCM, it still assigned some

connectivity strength to the intersegmental connections even though they were not present in

the animal. Third, we again compared the results from the DCM and PC approaches for the

pro- and mesothoracic recodings. While we found a significantly decreased coupling strength

in the pro-pro connection as compared to all other connections in the DCM approach, this dif-

ference was not significant in the PC approach (cf. Fig 6B and 6C). Adding the prothoracic

ganglion to the network to be tested lowered the signal-to-noise ratio (cf. Fig 1), which might

have a bigger effect here, since the exact determination of burst onsets is crucial for the PC

approach.

Since the majority of validations revealed a good agreement between results, we are confi-

dent to state that even though DCM was developed for neural networks in the human brain, it

is appropriate to be used for less complex systems, i.e. insects thoracic nerve cords.

Fig 8. Summary of the coupling strengths (numbers) obtained by the DCM approach. A: Recordings involving two ganglia: pro-meso

recordings marked by a grey rectangle and meso-meta recordings with a blue rectangle, respectively. B: Recordings involving pro-, meso- and

metathoracic ganglia. All coupling strengths are normalized to the meso-meso connectivity (marked with magenta line) strength in the

corresponding meso-meta recordings (blue rectangle). Significantly smaller connectivity strengths are represented by dashed lines.

https://doi.org/10.1371/journal.pone.0220767.g008
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The application of DCM for the analysis of central intra- and intersegmental CPG interac-

tions has several advantages, but also some disadvantages. In contrast to methods like coher-

ence, cross-spectra, phase-coupling or phase-delay analyses, which give an incomplete picture

for stationary signals and cannot be interpreted in terms of directionalities [29], DCM, by

modeling the system causing the observed effects, is able to give insight into the effective con-

nectivity strengths, as well as the global coupling architecture of the studied system. Addition-

ally, DCM is able to deal with fewer experimental recordings, since it is used to estimate the

connectivity of subintervals (e.g. 50 s epochs in this article) and is therefore still capable of

reconstructing the network structure from this data. A disadvantage for the application of

DCM to weakly coupled locomotor systems, e.g. in the stick insect, is that it requires a steady

state like behavior. While DCM is still able to predict the overall network structure, it seems

not to be able to detect differences in coupling strengths between the investigated connections

if steady-state behavior is not guaranteed (see preceeding paragraph). Thus prior detection of

such steady states by other measures (e.g. PC approach) seems to be necessary for a meaningful

interpretation of the obtained connectivity strengths. In other locomotor systems with stron-

ger central coupling, e.g. cockroach, we anticipate this disadvantage to be less pronounced as

the connectivity strength is expected to be more stable over recordings and thus relies less on

the selection of epochs for estimation.

Central intersegmental CPG interactions in other locomotor systems

Central intersegmental CPG interactions have been demonstrated in the past using various

animal models. In-phase intersegmental activity of MN pools has been reported earlier for

deafferented preparations of the crayfish [38] and the stick insect [6] after pharmacological

CPG activation. In the deafferented thoracic ganglia of the locust, intersegmental depressor

MN activity also expressed similar behavior [37]. In contrast, data of [39] had suggested ipsilat-

eral coupling between ipsilateral levator and depressor MN activity in adjacent ganglia of the

locust. In the deafferented thoracic nerve cord of the hawk moth, pharmacological activation

of the depressor MN pools produced an activity pattern that resembled the tripod leg coordi-

nation pattern that emerges during walking in a large number of insect species [40]. Finally,

similar intersegmental coordination patterns were recorded in the interconnected meso- and

metathoracic ganglia of the cockroach thoracic nerve cord with the sub-esophageal ganglion

(SEG) attached to it [41, 42]. Thus, centrally-generated motor patterns in all the above men-

tioned preparations revealed intersegmental coupling of activity among CPGs.

Stabilizing effect of the mesothoracic ganglion

Our results suggest that the intrasegmental coupling of the mesothoracic ganglion is stronger

than other connections (Fig 8, cf. Figs 4B and 6B). Cutting the connectives between the meso-

and metathoracic ganglia, showed that the presence of the ipsilateral intersegmental meso-

meta connection was needed for a strong intrasegmental coupling in the metathoracic gan-

glion. Our result supports the findings by [12] where the authors showed that phase-coupling

of neural activity in the metathoracic ganglion is more stable when the meso- and metatho-

racic ganglia are interconnected. Here, we found an overall increased meso-meso connectivity

after cutting the connectives between the meso- and metathoracic ganglia, while Mantziaris

and colleagues [12] observed a slight increase in regularity in meso-meso phase distributions

in favor of in phase activity, i.e. a decrease in variability of interburst phase differences, when

both (meso- and metathoracic) ganglia were connected. This might be due to the fact, that the

DCM approach does not distinguish between in-phase and out-of phase synchronization of

the mesothoracic ganglion. Our results suggest that a higher meso-meso coupling is necessary
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to model the remaining rhythmic behavior after the loss of metathoracic inputs. In a behav-

ioral study Grabowska et al. could show that stick insects with amputated middle legs display a

malfunction of coordination with multiple stepping of front and hind legs as well as ipsilateral

legs being in swing phase simultaneously [43]. Combining these findings, we suggest that the

activity of the mesothoracic CPGs stabilizes that of the metathoracic segments, ensuring a sta-

ble rhythm in the meso- and metathoracic ganglia.

Weak coupling in the prothoracic ganglion

The intrasegmental coupling strength of the prothoracic ganglion was the weakest (Fig 8A). In

the analysis of the pro-meso-meta ganglia no significant differences between the coupling

strengths within the network could be seen, while the reference connection (meso-meso) was

significantly reduced (in average to 55%) compared to that in meso-meta recordings (Fig 8B).

Moreover, when adding the prothoracic ganglion to the network to be analyzed (pro-meso

and pro-meso-meta activity), the signal-to-noise ratio decreased, reducing the aforementioned

stabilizing effect of the mesothoracic ganglion. These results might hint at the special role the

front legs have. It has been shown that the front legs can perform additional steps or searching

movements independently of other legs [43, 44]. Our results suggest that this might be

achieved by a weaker lateral intrasegmental coupling between the prothoracic CPGs and a

weaker ipsilateral intersegmental coupling between pro- and mesothoracic CPGs. In the deaf-

ferented stick insect preparation, restricted CPG activation in the prothoracic ganglion had

indeed no intersegmental effect on the mesothoracic networks [11]. In contrast to this, a recent

study by Knebel et al. has reported a strong in phase coupling of pro- and mesothoracic ganglia

after restricted activation, i.e. using a split bath preparation, of the prothoracic ganglia in the

locust [37]. Furthermore, it has been shown in cockroaches that intrasegmental, i.e. meso-

meso activity has a strong anti-phase relationship in the absence of sensory feedback [41]. This

is a requirement for producing the tripod coordination pattern, which is preferred by these

animals. This behavior is further enhanced by sensory feedback from a single stepping front

leg, suggesting an additional stabilizing effect by the prothoracic ganglia. These findings sug-

gest a stronger coupling between pro- and mesothoracic ganglia and less flexibility in front leg

movements in locusts and cockroaches.

Coupling from meta- to prothoracic ganglion

The model by Daun-Gruhn & Tóth hypothesizes that the existence of a connection from the

hind to the front leg is necessary to establish coordinated locomotor patterns in the three ipsilat-

eral legs [45]. The recordings from all three ganglia enabled us to gain insights into the coupling

structure involving the pro- and metathoracic ganglia. Our DCM results support the hypothesis

of Daun-Gruhn & Tóth by revealing an ipsilateral feedback from the meta- to the prothoracic

ganglia without any contralateral connection. Knebel et al. (2017) could show a clear coupling

of pro- and metathoracic ganglia in the case of restricted activation of prothoracic as well as

restricted activation of metathoracic ganglia [37]. In contrast to the results presented here, this

finding suggests the presence of a bidirectional coupling of both ganglia in locusts.

Furthermore, we found no significant differences in coupling strengths in the case of simul-

taneous recordings from all three ganglia, while it had previously been shown that depressor

activity in all segments seems to be weakly phase coupled in locusts [37].

Comparison with a connectivity model of leg coordination in the cockroach

David and colleagues (2016) reported CPG coupling strength in the meso- and metathoracic

ganglia of the cockroach by calculating the transition latencies and phase relations between

Intra- and intersegmental neuronal connectivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0220767 August 6, 2019 17 / 21

https://doi.org/10.1371/journal.pone.0220767


bursts of activity [42]. In contrast to the results presented here for the stick insect, ipsilateral

connections in the cockroach system were found to be stronger than the contralateral ones,

while diagonal coupling interactions were also present in the resulting connectivity scheme

reported. Moreover the meso- to metathoracic, descending coupling was weaker than the

ascending. Such an asymmetry was not systematically observed in our results. In addition, as

reported in [42], intrasegmental metathoracic coupling was stronger than coupling between the

mesothoracic hemisegments, whereas the opposite is demonstrated here for the stick insect.

The reasons for these discrepancies between the cockroach and the stick insect systems are

not well understood. Importantly, the subesophageal ganglion (SOG) and the abdominal gan-

glia in the aforementioned study were left attached to the thoracic ganglia. Thus, descending

or ascending signals, or both, might affect CPG coordination and coupling strength. Our

experiments were performed in the absence of SOG input and we should therefore exercise

care when comparing our results to those of David et al. [42].

In a recent modelling study, Szczecinski et al. [46] demonstrated that interleg coordination

patterns in D. melanogaster result from the interplay between static stability of the animal and

robustness of the coordination pattern. The authors found that at a large variety of walking

speeds (hence coordination patterns), only the ipsilateral phase differences change, whereas

contralateral phase differences remain at about 1/2. Their simulation results support this find-

ing. Taking this result into consideration, a stronger ipsilateral coupling can be expected in

cockroaches, since they usually exhibit tripod coordination pattern during walking. By con-

trast, the slow walking stick insects may require weaker ipsilateral coupling that could be

affected more strongly by afferent sensory signals. To our knowledge, there is no similar study

concerning static stability in other insects. However, it may be that ipsilateral phase relation-

ships are critical for intersegmental leg coordination in other insects as well. It would be inter-

esting to know whether the differences in intra- and intersegmental coupling between stick

insects and cockroaches are related to the variable static stability of the two animals in relation

to their inherent walking speed.

4 Conclusions

In this paper, we have shown for the first time that well-established methods for analyzing M/

EEG data can be adapted for the analysis of pilocarpine-induced fictive locomotor patterns of

the stick insect Carausius morosus to estimate coupling architecture and strengths from real

data. Applying the DCM approach, we could predict a high probability for the existence of

ipsilateral inter- and lateral intrasegmental connections of the CPGs. A connection from the

meta- to the prothoracic ganglion was also hypothesized. We could further discern changes in

the connectivity of the thoracic ganglia of the stick insect in different experimental conditions.

DCM detected the absence of coupling between the meso- and metathoracic ganglia after the

connectives had been cut. Using DCM, we have established that the intrasegmental mesotho-

racic connectivity is the strongest from all others in all three thoracic ganglia. Moreover, this

coupling has a stabilizing effect on intrasegmental metathoracic activity. Connectivity involv-

ing prothoracic ganglia, by contrast, is either weak or depends on the specific network topol-

ogy to be analyzed. This could account for the fact that the prothoracic ganglia have to allow

decoupling of the front legs from the rest of the locomotor system to enable search movements

of the front legs independently of the middle and the hind leg movements.

Acknowledgments

We thank Anke Borgmann for useful discussions on the analysis. This study was funded by the

University of Cologne Emerging Groups Initiative (CONNECT) within the framework of the

Intra- and intersegmental neuronal connectivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0220767 August 6, 2019 18 / 21

https://doi.org/10.1371/journal.pone.0220767


Institutional Strategy of the University of Cologne and the German Excellence Initiative. SD

gratefully acknowledges additional support from the German Research Foundation, Germany

(DA1953/5-2). CM was an associate member of the RTG1960 “Neural Circuit Analysis on the

Cellular and Subcellular Level” funded by the DFG.

Author Contributions

Conceptualization: Nils Rosjat.

Data curation: Charalampos Mantziaris.

Formal analysis: Nils Rosjat.

Funding acquisition: Silvia Daun.

Investigation: Nils Rosjat.

Methodology: Silvia Daun, Nils Rosjat.

Resources: Ansgar Büschges.
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influences among central pattern generating networks in the walking system of the stick insect. Journal

of Neurophysiology. 2017; 118(4):2296–2310. https://doi.org/10.1152/jn.00321.2017 PMID: 28724783
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