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Prostate cancer is a major health issue in western countries and is the second leading
cause of cancer death in American men. Prostate cancer depends on the androgen
receptor (AR), a transcriptional factor critical for prostate cancer growth and progression.
Castration by surgery or medical treatment reduces androgen levels, resulting in prostatic
atrophy and prostate cancer regression. Thus, metastatic prostate cancers are initially
managed with androgen deprivation therapy. Unfortunately, prostate cancers rapidly
relapse after castration therapy and progress to a disease stage called castration-resistant
prostate cancer (CRPC). Currently, clinical treatment for CRPCs is focused on
suppressing AR activity with antagonists like Enzalutamide or by reducing androgen
production with Abiraterone. In clinical practice, these treatments fail to yield a curative
benefit in CRPC patients in part due to AR gene mutations or splicing variations, resulting
in AR reactivation. It is conceivable that eliminating the AR protein in prostate cancer cells
is a promising solution to provide a potential curative outcome. Multiple strategies have
emerged, and several potent agents that reduce AR protein levels were reported to
eliminate xenograft tumor growth in preclinical models via distinct mechanisms, including
proteasome-mediated degradation, heat-shock protein inhibition, AR splicing
suppression, blockage of AR nuclear localization, AR N-terminal suppression. A few
small chemical compounds are undergoing clinical trials combined with existing AR
antagonists. AR protein elimination by enhanced protein or mRNA degradation is a
realistic solution for avoiding AR reactivation during androgen deprivation therapy in
prostate cancers.
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INTRODUCTION

Prostate cancer is the second most common type of cancer diagnosed in men worldwide and the
second leading cause of male cancer-related deaths in the U.S. (1). The American Cancer Society
estimates about 268,490 new cases of prostate cancer and about 34,500 deaths from prostate cancer
in the U.S. this year (1). According to the American Cancer Society data (cancer.org), patients with
local or regional stage prostate cancer have nearly a 100% 5-year survival rate; however, the survival
rate is only 30% for men diagnosed with distal metastasis.
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Currently, localized prostate cancer is primarily treated with
surgical removal of the gland or radiation therapy if a patient’s
condition is not permissive for surgery. Distal metastasis occurs
in high-risk patients, including locally advanced (positive
surgical margin) or high-grade (Gleason sum score ≥ 8)
tumors, which is the sole cause of death from prostate cancer
(2). This short review work will discuss the current treatment
options and recent development of anti-androgen receptor (AR)
therapeutic approaches for metastatic prostate cancer (Table 1
and Figure 1).
ANDROGEN DEPRIVATION AND ANTI-
ANDROGEN THERAPIES IN THE CLINIC

Metastatic prostate cancers are initially treated with androgen
deprivation therapy (ADT) because prostate tissue (benign or
malignant) expresses androgen receptor (AR) protein that is
critical for prostate cancer development and progression (3, 4).
Castration by surgery or medical treatment reduces androgen
hormones, resulting in prostatic atrophy and cancer regression
(5). This approach was developed eighty years ago in 1941 (3, 4).
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Since then, prostate cancer treatment has been mainly focused on
reducing androgen levels and blocking androgen-induced AR
activation (5). However, prostate cancers often relapse and
progress to a stage termed as castration-resistant prostate
cancers (CRPC) (67, 68), and the majority of these CRPCs still
depend on the AR signaling for growth and progression (the AR
addictiveness) (69, 70).

The mechanisms for CRPC progression include AR gene
mutation, amplification, transcriptional splicing, and crosstalks
with cellular signal pathways, plus de novo androgen synthesis by
the malignant prostate cells (5). Therefore, clinical therapies use
anti-androgens (Flutamide, Bicalutamide, Enzalutamide,
Apalutamide, and Darolutamide) to competitively suppress
androgen-induced AR activation or CYP17A1 inhibitor
(Abiraterone) to reduce androgen production in prostate
cancer tissues (5). So far in the clinic, these therapies provided
certain clinical benefits of survival extension in CRPC patients
(71). However, with the widespread use of Enzalutamide and
Abiraterone, a subset of CRPC patients developed
neuroendocrine progression, termed as anti-AR treatment-
induced NEPC (t-NEPC) (72, 73), accounting for more than
25-30% mortality of CRPC fatality (74). There were multiple
TABLE 1 | Summary of AR-targeted therapeutic agents for prostate cancers.

Therapeutic Target Agent Or Approach Mechasnism Of Action Current Stage Reference

Testicular androgens surgical castration testis removal in clinic use (3)
GnRH antagonist reducing testersterone production in clinic use (4)
GnRH agonist reducing testersterone production in clinic use (4)

Adrenal or cancer androgens Abiraterone CYP17A1 inhibition in clinic use (5)
all androgens Flutamide blocking androgen-AR binding in clinic use (5)

Bicalutamide blocking androgen-AR binding in clinic use (5)
Enzalutamide blocking androgen-AR binding in clinic use (5)
Apalutamide blocking androgen-AR binding in clinic use (5)
Darolutamide blocking androgen-AR binding in clinic use (5)

AR mRNA antisense oligonucleotides mRNA-based protein translation and mRNA stability pre-clinical (6–14)
small interfering RNA mRNA silencing pre-clinical (15–23)

Full length AR protein ARCC-4/ARV-110 PROTAC-mediated AR degradation phase-1 clinical trial NCT03888612
ARD series PROTAC-mediated AR degradation pre-clinical (24–31)
TD-802 PROTAC-mediated AR degradation pre-clinical (32)
A031 PROTAC-mediated AR degradation pre-clinical (33)
MTX-23 PROTAC-mediated AR degradation pre-clinical (34)
A9/A16 PROTAC-mediated AR degradation cell culture model (35, 36)
SNIPER-51 PROTAC-mediated AR degradation cell culture model (37)

Full-length/variant AR protein UT-34 AR NTD binding and degradation pre-clinical (38)
Ailanthone co-chaperone p23 binding and AR degradation pre-clinical (39)
HG122 proteasome-based AR degradation pre-clinical (40)
CUDC-101 AR degradation due to unknown mechanism pre-clinical (41)
ASC-J9 AR degradation due to unknown mechanism pre-clinical (42–47)

AR splicing variants Niclosamide AR-V7 degradation phase-1 clinical trial NCT03123978
Niclosamide AR-V7 degradation phase-1 clinical trial NCT02807805
Thailanstatins suppressing splicing event for AR-V7 pre-clinical (48–50)
Rutaecarpine AR-v7 degradation via GPR78/SIAH2 pathway pre-clinical (51)
Indisulam Suppressing AR-V7 splicing factor RBM39 pre-clinical (52)
Nobiletin AR-V7 degradation via blocking USP14/USP22 pre-clinical (53)

AR NTD inhibitor EPI series/EPI-7386 suppressing AR NTD TAU-5 activity phase-1/2 clinical trial NCT05075577
EPI series/EPI-7387 suppressing AR NTD TAU-5 activity phase-1 clinical trial NCT04421222
QW07 suppressing AR NTD activity pre-clinical (54)

AR nuclear translocation EPPI/CPPI blocking AR nuclear translocation pre-clinical (55–57)
IMPPE blocking AR translocation and inducing AR degradation pre-clinical (58)
JJ-450 blocking AR translocation and transactivation pre-clinical (59–62)

AR DND-hinge antagonist VPC-14228/14449 blocking AR dimerization and DNA binding pre-clinical (63–66)
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mechanisms involved in NEPC progression, including
attenuated control of transcriptional factors, metabolic
alterations, aberrant activation of cellular kinases, long
noncoding RNAs, transcriptional splicing, and epigenetic
modifications (75–87). It is postulated that extensive stress of
AR inhibition under the long-term ADT condition forced an
epigenetic reprogramming of CRPC cells into neuroendocrinal
trans-differentiation (88–93). Treatment option for NEPC
patients is limited in the clinic and the salvage platinum-based
chemotherapy only provided very little survival benefit (75).
AR PROTEIN ELIMINATION APPROACHES
IN PRECLINICAL DEVELOPMENT PHASE

The AR protein is a nuclear receptor expressed in benign and
malignant prostate tissues, critical for prostate physiological
functionality and prostate cancer progression (94, 95). As a
transcriptional factor, the AR protein modulates gene
expression after being activated by androgens via binding on
its C-terminal ligand-binding domain (95). Given that hormone
therapy, including ADT and anti-androgens for the last eighty
years, has been failed to be a curable approach for metastatic
prostate cancers, eliminating the AR protein in prostate cancer
cells recently emerged as a realistic solution for a potentially
curable result.

Antisense Oligonucleotide Technology
Antisense oligonucleotides (ASOs) are synthetic complementary
single-stranded deoxyribonucleotides used to target messenger
RNA (mRNA) of targeted genes, resulting in RNase H
endonuclease-dependent mRNA cleavage or blockage of protein
Frontiers in Oncology | www.frontiersin.org 3
translation (6). Dr. Klocker’s group reported the first study using
the ASO technology against the AR gene in 2000, which showed a
suppressive effect on prostate cancer LNCaP cell growth (7). A
follow-up study by the same group showed the in vivo effectiveness
of suppressing LNCaP-derived xenograft tumors in nudemice (8).
These initial results were supported by the studies from other
groups (9, 10). Possibly due to the suppressive nature of ASOs on
target gene expression, the AR protein was not eliminated from
cancer cells. Also, the results only showed a moderate suppressive
effect on tumor growth because of the difficulty in tissue delivery of
the ASOmolecules. However, these AR-targeted ASOs showed an
enhanced effect when combined with other gene targets (EZH2 or
Clusterin) for Enzalutamide-resistant CRPC models (11–14). A
recent report achieved a successful in vivo delivery of AR-specific
ASO using lipid-based nanotechnology. A profound suppressive
effectwas achieved in theprostate cancer xenograftmodel, together
with a significant reduction of the AR protein levels in xenograft
tumor tissues (96).

Small Interfering RNA Technology
Since the introduction of small interfering RNA (siRNA)
technology in 2001 (97, 98), knocking down gene expression in
living organisms became possible. To overcome the clinical
obstacle of anti-AR treatment resistance, we hypothesized that
eliminating AR protein from prostate cancer cells might
completely shut down AR signaling, leading to cell death or
growth arrest. Knocking down AR gene expression in prostate
cancer cells resulted in profound apoptotic cell death in multiple
prostate cancer cell lines, androgen-responsive or castration-
resistant (15). Nanoparticle-based prostate cancer-specific
delivery approach and adenoviral approach to systemically
deliver the AR siRNA expression particles documented a rapid
FIGURE 1 | Graphic scheme of AR-targeted agents. Androgens are bonded with steroid-binding globulins (SBG) in the bloodstream for systemic circulation.
Androgen testosterone (T) is converted to potent form dihydrotestosterone (DHT) in the cytoplasm by 5a-reductase. The AR protein bonds with HSP90 chaperones
and resides in the cytoplasmic compartment before androgen binding. Androgen binding alters AR conformation and promotes its translocation into the nuclear
compartment, where it interacts with chromatin DNA to regulate gene expression. AR gene mRNA is aberrantly spliced in advanced prostate cancers to generate
variant proteins like AR-V7, which is constantly active without androgen binding. Current clinical therapies for metastatic prostate cancers (yellow background box)
include castration, GnRH agonist and antagonist, Abiraterone, and AR antagonists. Several AR-targeted treatments under development (blue background box)
include AR PROTAC and non-specific degraders, AR-V7 degraders, AR-NTD inhibitor, AR-DBD blocker, AR nuclear translocation blockers, AR splicing inhibitors.
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xenograft tumor regression and eradication owing to robust cell
death in vivo (16, 17). These findings were overwhelmingly
supported by reports from other groups using divergent
approaches to knock down AR gene expression (18–23). These
results confirmed that eliminating AR protein (full length or
truncated) will overcome treatment resistance in advanced
prostate cancers.

PROTAC Technology
PROTAC stands for proteolysis targeting chimera. It uses a small
bifunctional molecule with two binding moieties connected by a
linker to bring together a targeted protein and cellular proteolytic
machinery, ubiquitin E3 ligase-mediated proteasome
degradation system (99, 100). This technology selectively
removes specific proteins like the AR protein for a therapeutic
purpose (101, 102). Several descent review articles summarized
the technique description and the usage of various E3 ligases
(103–106). We will only discuss the PROTAC molecules
designed for the AR protein.

The first AR-targeted PROTAC approach was reported in
2004, which used a synthetic peptide targeting the E3 ligase fused
to either an artificial FKBP12 ligand or dihydrotestosterone
(DHT) (24). After several optimizations, a potent AR-specific
PROTAC molecule ARCC-4 was developed with a nanomole
concentration efficiency (25). Its further modified version, ARV-
110, is being tested in clinical trials in metastatic prostate cancer
patients (26). The first trial is a phase-1b open-label clinical trial
(NCT05177042) to assess the combination of ARV-110 and
Abiraterone in patients with metastatic prostate cancer with
PSA progression after Abiraterone treatment. It is estimated to
finish at the end of April of 2023. The second one is a phase-1/2
open-label single-agent dose escalation and cohort expansion
trial to assess the safety and tolerability of ARV-110
(NCT03888612). It will be finished at the end of February 2023.

The AR degrader (ARD) series of PROTAC molecules (ARD-
61, -69, -266, -2128, -2585) were reported from Dr. Wang’s group
at theUniversity ofMichigan (27–31). Their latestmolecule,ARD-
2585, is a potent (DC50 < 0.1 nM) oral agent and has at least 10-fold
more potent than ARV-110 (27). Thesemolecules differ in distinct
E3 ligase binding domains, AR antagonists, and variable lengths of
the linkers. Unfortunately, both ARV-110 and ARD-2585
molecules depend on binding with the AR LBD. Therefore, it is
not effective on the AR splicing variants like AR-V7.

Other AR-targeted PROTAC molecules with animal testing
data include TD-802 (DC50 = 12.5 nM) (32) and A031 (IC50 <
0.25 mM) (33) that promote degradation of the full-length AR
protein. MTX-23 was shown to promote protein degradation of
both the full-length and AR-V7 variant AR protein (DC50 = 0.37-
2 mM) (34). In addition, three PROTAC molecules, A9/A16 (35,
36) and AR SNIPER-51 compounds (37), were only tested in cell
culture models.

Other Unique Molecules for
AR Degradation
UT-34 is a small molecule that exerts potent AR degradation
activity in vitro (1-10 mM) and in vivo via ubiquitin-proteaseom
Frontiers in Oncology | www.frontiersin.org 4
pathway (38). It was optimized from its two previous versions,
UT-69 and UT-155 (107). UT-34 binds with the AR N-terminal
AF-1 domain and thus targets both the full-length and splicing
variant proteins. UT-34 has a good pharmacological profile of
oral bioavailability and suppressed xenograft tumor growth
derived from Enzalutamide-resistant prostate cancer cells at a
dose of 60 mg/kg/day (38).

Ailanthone was initially identified as an inhibitor of AR
transactivation via a high throughput screening assay and was
later found to induce protein degradation of both full-length and
splicing variant AR proteins via targeting an HSP90 co-chaperon
protein p23 (39). Ailanthone exhibited a strong anti-cancer effect
in both in vitro cell culture models (0.2-0.4 mM) and in vivo
xenograft models (2 mg/kg/day) of prostate cancer (39). It also
showed excellent drug-like properties as tested in preclinical
models (108, 109).

HG122 was identified as an inhibitor of AR activity via an
MMTV-luciferase assay-based high throughput screening (40).
HG122 suppressedAR-positiveprostate cancer cell growthwith an
IC50 of 7-9 mM, compared to AR-negative cells at 20 mM. HG122
suppressed AR transcriptional activity and promoted AR
degradation via the proteasome pathway. In animal experiments,
HG122 suppressed 22RV1 cell-derived xenograft tumor growth by
82% at a dose of 10 mg/kg/day, compared to a 60% reduction by
Enzalutamide at the exact dosing (40). However, it is unclear how
HG122 promoted AR degradation by the proteasome machinery.

AR Splicing Variant V7-Specific Degraders
and Inhibitors
The full-length AR protein has four distinct domains, N-terminal
(NTD), DNA-binding (DBD), hinge region, and C-terminal
ligand-binding (LBD). In prostate cancers, the transcriptional
splicing variants of the AR gene have been linked to castration-
resistance of prostate cancer after ADT and anti-AR therapy with
Enzalutamide and Abiraterone (110–112). Because these AR
variant proteins lack the AR C-terminal LBD region due to
gene splicing truncated or deleted, they are not responding to
current anti-AR drugs that target the LBD. Therefore, those
PROTAC molecules using the LBD ligands are not working on
these splicing variant AR proteins (113–115). These variant
proteins represent a massive obstacle to clinical management
in advanced prostate cancers.

Niclosamide is an FDA-approved oral anti-helminthic drug
used to treat parasitic infections. In an AR-V7-driven luciferase-
based high-throughput screening assay, Niclosamide was
identified as an effective inhibitor of AR-V7 activity. A
mechanistic study showed that it enhanced the AR-V7 protein
degradation via the ubiquitin-proteasome pathway in prostate
cancer cells at 0.5-1.0 mM without affecting the full-length
AR protein (116). Combinational treatment with Enzalutamide
and Niclosamide suppressed CRPC xenograft tumor growth in
mice at a dose of 25 mg/kg/day (117). Although the first clinical
trial (NCT02532114) with a single dose of Niclosamide was
failed in reaching the effective serum concentration (118), a
recent phase-Ib trial with reformulated Niclosamide plus
Abiraterone achieved the proposed clinical benefit (119),
March 2022 | Volume 12 | Article 865350
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representing a new hope for AR-V7 positive CRPC patients
(NCT03123978/NCT02807805).

CUDC-101 is a small molecule of inhibitor formultiple targets,
including histone deacetylase (HDAC), epidermal growth factor
receptor (EGFR) and HER2/Neu. It was recently found to inhibit
the transcriptional activities of the full-length AR and AR-v7
protein (0.3 mM for 24 h) via a HDAC-related mechanism in
prostate cancer 22RV1 cells (41). It also suppressed 22RV1 cell-
derived xenograft tumor growth in nude mice at a dose of 50 mg/
kg/day for 14 days (41). However, severe side effects will be
expected in a clinical test due to its action on multiple targets.

ASC-J9 is a curcumin analog (dimethyl-curcumin) with
multiple protein targets (120–125), including the AR proteins
(42–44). ASC-J9 induced protein degradation of the full-length
AR and AR-V7 proteins via the ubiquitin-proteasome pathway in
prostate cancer cells (44) and suppressed xenograft tumor growth
derived from CRPC cells (42, 45). It overcame Enzalutamide
resistance in preclinical CRPC xenograft models (46) and
sensitized prostate cancers to radiation therapy in animal
models (47). However, ASC-J9 was only tested in clinical trials
for skin acne care (NCT01289574 and NCT00525499).

Thailanstatins are bacteria-derived natural products with
potent inhibitory activity toward pre-mRNA splicing events
(48). Since AR-V7 is mainly generated by pre-mRNA splicing
(49), Thailanstatin D (TST-D) was tested in AR-V7 positive
prostate cancer cells for cytotoxicity. TST-D was shown to reduce
AR-V7 mRNA and protein levels (at 5 nM concentration) by
disrupting the U2AF65/SAP155 splicing complex that is critical
for the AR-V7 pre-mRNA expression and suppressed CRPC cell-
derived xenograft tumor growth (50% inhibition at 0.3 mg/kg/
day after four days) (50). It is postulated that combinational
treatment of TST-D with Enzalutamide or Abiraterone might
achieve a more profound anti-tumor effect in CRPC models.

Rutaecarpine is a cardiovascular protective alkaloid extracted
from the Chinese medicine Evodia rutaecarpa (126). It was
identified as a potent AR-V7 inhibitor in an AR-V7-driven
luciferase screening assay (51). A mechanistic study revealed that
Rutaecarpine promoted AR-V7 degradation by enhancing AR-V7
interaction with GPR78 and ubiquitin E3 ligase SIAH2. Its DC50

for AR-V7 degradation was about 20 mM and completely blocked
22RV1cell-derivedxenograft tumorgrowth innudemice at 40mg/
kg/2day (51). Since it also did not affect the full-length AR protein,
it is needed to test its synergistic effect with AR antagonists like
Enzalutamide and Abiraterone in vivo.

Indisulam belongs to a new class of compound sulfonamide
with potential antineoplastic activity (127) via selectively
degrading oncogenic proteins like pre-mRNA splicing factor
RBM39 (52). Because pre-mRNA splicing is critical for AR-V7
expression, Indisulam was shown to suppress AR-V7 expression
via RBM39-dependent mechanism. Indisulam treatment blocked
Enzalutamide-induced AR-V7 expression in VCaP cells (10 mM
concentration) and suppressed VCaP cell-derived xenograft
tumor growth in nude mice at a dose of 25 mk/kg/day (52).

Nobiletin is a plant flavonoid extracted from citrus peels and
possesses broad anti-cancer activity (128, 129). A recent study
showed that Nobiletin moderately reduced AR-V7 protein level
in 22RV-1 cells at 20 mM concentration and synergistically
Frontiers in Oncology | www.frontiersin.org 5
suppressed (at 40 mg/kg/2day) 22RV1 cell-derived xenograft
tumor growth with Enzalutamide (20 mg/kg/2day) (53). The
mechanistic study revealed that Nobiletin disrupted AR-V7
interaction with two deubiquitinases, USP14 and USP22,
leading to proteasome-based AR-V7 degradation (53).
AR N-TERMINAL SPECIFIC INHIBITORS

In contrast to the CTD, the AR NTD has very few mutations
without truncation (130). For example, the cBioportal database
showed only 9 (0.145%) point-mutations identified from the
NTD regions in 6334 prostate cancer specimens. There are two
transactivation unit (TAU-1, aa100-370) and TAU-5 (aa360-
485) motifs within the AR NTD (131). The TAU-1 motif is
critical for the full-length AR activation after ligand binding,
while the TAU-5 motif functions as a constitutive active motif for
truncated AR protein (e.g., AR-V7) (132, 133). Especially, the
TAU-1/TAU-5 motifs are rarely mutated or deleted in prostate
cancer patients, making them a feasible target for prostate cancer
therapy (130).

EPI series compounds are the first class of AR NTD inhibitors.
The first compound EPI-001 was identified by screening a library
of marine sponge extracts to inhibit AR NTD transactivation
activity (134). EPI-001 binds to the TAU-5 motif and inhibits
AR NTD activity at a relatively high dose (>25 mM in cell culture
models) (135, 136). EPI compounds also suppressed tumor growth
in VCaP and LNCaP95 cell-derived xenograft models at 100-200
mg/kg/day doses (135, 137). Although the older EPI compounds
did not affect AR protein levels (the full length and AV variants),
the new analog EPI-7170 suppressed AR-V7 expression in CRPC
cells (138). EPI-002 (commercial nameRalaniten) is oneof the four
EPI-001 stereoisomers, and its pro-drug EPI-506 (Ralaniten
acetate) was failed in a phase-I clinical trial due to excessive pill
burden and poor oral bioavailability (139, 140). The newest analog,
EPI-7386, showed 20-fold higher anti-androgenic potency than
Ralaniten (141), and it is being tested in clinical trials in
combination with Enzalutamide (NCT05075577/NCT04421222).

QW07 is a small synthetic molecule identified as an AR NTD-
specific inhibitor via an AR-NTD-driven luciferase high-
throughput screening (54). QW07 suppressed the activity of
AR full-length and splicing variants at 5-8 mM in prostate cancer
cells, which is more potent than EPI-001 (54). QW07 binds with
the AR NTD directly and suppresses AR recruitment onto the
target gene promoter. In animal xenograft experiments, QW07
inhibited tumor growth derived from prostate cancer 22RV1 and
VCaP cells at a dose of 40 mg/kg/day, similar to EPI-001.
However, QW07 did not affect AR protein expression (the full
length or splicing variants).
AR NUCLEAR TRANSLOCATION
BLOCKERS

As a transcription factor, the AR proteins translocate into the
nuclear compartment after being activated by the androgens (5).
March 2022 | Volume 12 | Article 865350
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In the nuclear, AR protein interacts with the androgen response
elements in the gene promoter region to modulate gene
expression. The AR protein has one nuclear localization
sequence or signal (NLS) in each domain, the NTD region
(aa294-556), the DBD-hinge region (aa617-633), and the LBD
region (aa666-919) (142–144). In the absence of androgens, the
AR protein is exported from the nuclear compartment via its
nuclear export signal (NES, aa743-817) within the LBD region
(145). In CRPC tissue or cells that androgen levels are deficient
due to androgen deprivation therapy, the NLS in the NTD region
is responsible for AR nuclear localization (143). Blocking AR
nuclear translocation with a potent NLS inhibitor is feasible to
suppress prostate cancer development and progression by
shutting down AR-modulated gene expression.

EPPI andCPPI are smallmolecules identified as inhibitors ofAR
nuclear translocation in Dr. Z Wang’s lab using a 2GFP-AR fusing
protein-basedhigh-throughput screeningapproach (55). BothEPPI
and CPPI at 25 mM inhibited AR nuclear localization in prostate
cancer cells, which was reversed when the androgen level (R1881)
was over 1.0 nM level, a physiological androgen concentration (56).
Also, CPPI at a 50 mg/kg/day dose suppressed tumor growth in
LNCaP but not PC-3 cell-derived xenograftmodels with orwithout
castration, indicating an AR-specific effect (56). Further analysis
revealed that CPPI blocked AR nuclear import and promoted AR
degradation in the nuclear compartment through MDM2-
dependent proteasome mechanism in CRPC cells (C4-2 and
LNCaP95) and xenograft tumor models, leading to sharp
retardation of tumor growth (57). No effect was observed for
CPPI or EPPI on the AR variant proteins (57).

IMPPE (SID3712502) was another small molecule identified
from the 2GFP-AR fusing protein screening assay with a robust
inhibitory effect at 2.0 mM concentration on AR nuclear
translocation and its downstream target PSA gene expression,
plus downregulation of AR gene expression at a higher
concentration of 10 mM (55). Further study found that IMPPE
inhibited both full-length and LBD-lacking AR activity at a
relatively high dose (>10 mM) and suppressed 22RV1 but not
PC-3 cell-derived xenograft tumor growth at a dose of 25 mg/kg/
day in castrated nude mice (58).

JJ-450 is an IMPPE scaffold analog with higher potency and
better physicochemical properties (59). JJ-450 at 10 mM
concentration inhibited both the transcriptional activities of the
full-length and splicing variant AR proteins in CRPC cells by
blocking AR binding to its target gene promoter without affecting
AR protein levels (59). In CRPC xenograft models derived from
22RV1 and VCaP cells, JJ-450 at 10 mg/kg/day dose suppressed
xenograft tumor growth by 60%, slightly better than Enzalutamide
(59). Especially, JJ-450was found toblock thenuclear translocation
and activity of the AR F876L mutant protein identified from
Enzalutamide-resistant CRPC patients and LNCaP cells after
long-term exposure to Enzalutamide (60–62).
AR DBDH ANTAGONISTS

The AR DBD-Hinge region has P-box and D-box motifs
responsible for dimerization and DNA binding after androgen
Frontiers in Oncology | www.frontiersin.org 6
stimulation (146). Using a virtual in-silico drug design approach
(63–65), a surface-exposed region (aa579-610) on the AR DBDH
domain was discovered as a potential target site by small-
molecule compounds, including VPC-14228 and VPC-14449
(66). These two compounds at 10 mM concentration selectively
suppressed AR (full-length and splicing variant proteins) but not
ER or GR activity by blocking AR interaction with the target gene
promoters without affecting AR nuclear translocation and
protein stability (66). In LNCaP cell-derived xenograft
experiments, VPC-1449 at 100 mg/kg/day dose suppressed
tumor growth at a similar extent as Enzalutamide (10 mg/kg/
day) (66).
CONCLUSION AND PERSPECTIVES

The AR protein is critical for prostate cancer progression by
transcriptionally modulating gene expression after activation by
androgens via binding on its LBD. Metastatic prostate cancers
are initially treated with androgen deprivation or castration
therapies (surgical or medical) based on the findings reported
about 80-years ago. However, this androgen removal approach is
not curative for prostate cancers, and the diseases often relapse
and progress to the CRPC stage. Since most of these CRPCs are
still AR addictive, current clinical therapies mainly focus on
blocking androgen to bind with the AR LBD (AR antagonists) or
reducing androgen production (CYP17a1 inhibitors) in non-
testis tissues, including prostate cancer tissues. However,
treatment resistance eventually develops in part due to AR
gene mutation and mRNA splicing events (e.g., AR-V7) in
virtually all CRPC patients. Furthermore, after long-term
treatment with AR antagonists, up to 20% of CRPC patients
will develop an even more aggressive subtype, neuroendocrinal
prostate cancer (NEPC). Therefore, the androgen removal and
blockage approach are non-curative and leads to a more
aggressive disease.

To overcome this obstacle of treatment resistance, research
has shifted from androgens to the AR protein in the last 20 years
(Figure 1). The initial approach was the antisense
oligonucleotides (ASO) targeting the AR mRNA to reduce AR
protein production in prostate cancer cells. Due to the inhibitory
nature of the ASO approach on protein production, tumor
growth was only suppressed but not eradicated in xenograft
models. In contrast, our group used the siRNA approach that
efficiently eliminated the AR protein from prostate cancer cells.
Nanoparticle-loaded AR siRNA resulted in xenograft tumor
regression and eradication owing to robust cell death after
AR protein removal in prostate cancer cells. Unfortunately,
this AR siRNA project was stalled due to a failure in the
patent application.

Targeting AR protein stability has emerged in recent years as
the hotspot in developing new therapeutics for advanced prostate
cancers, and several small molecules were reported to reduce AR
protein stability. The curcumin analog ASC-J9, Ailanthone,
HG122, and CUDC-101 induced AR protein degradation in
prostate cancer cells. However, the AR or prostate cancer
tissue specificity is not established with these small molecules.
March 2022 | Volume 12 | Article 865350
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The PROTAC technique for AR-specific degradation showed a
promising result. The AR PROTAC ARV-110 is tested as a
combinational treatment with Abiraterone in a clinical trial.
However, these AR CTD-targeting PROTACs utilized AR LBD
ligands, and therefore, they are inactive on AR CTD splicing
variants, a critical mechanism for treatment resistance in CRPC
patients. Interestingly, some other agents specifically targeted the
AR-V7 variant for degradation, including Niclosamide, CUDC-
101, Thailanstatins, Rutaecarpine, Indisulam, and Nobiletin.
Combining AR antagonists, PROTAC molecules, and AR-V7
inhibitors might provide synergistic effects in the clinic.

Targeting AR NTD is another approach to bypass AR CTD
splicing defects. The first generation of AR NTD inhibitor EPI
compounds was failed in clinical trials due to excessive bill
burden. The second generation of EPI compound with 20-fold
higher potency is being tested as a combinational treatment with
Enzalutamide in a clinical trial. UT-34 targets the ARNTD and is
also waiting for a clinical test.

ARnuclear translocation is an important event for its activity as
a transcription factor. Two novel compounds, IMPPE and JJ-450,
were recently developed to block AR nuclear translocation. These
two compounds showed a very permissive result in animalmodels.
In addition, an AR DBD blocking agent VPC-14449 was reported
to suppress AR interaction with its target gene promoter in the
nuclear compartment and was found to suppress tumor growth in
mice. These compounds are all needed for clinical testing.

AR activity is only temporally suppressed during prostate
cancer treatment by androgen deprivation and AR antagonists.
Due to these treatment stresses, prostate cancer cells used other
cellular signal pathways and/or splicing variants for AR
reactivation, resulting in treatment resistance. Therefore,
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complete removal of the AR protein from prostate cancer cells
will eliminate all events of AR reactivation after ADT and anti-
AR therapy. Especially in the early phase of treatment, most
prostate cancer cells are still AR-dependent. Simultaneously
removal of the AR protein and androgens will result in robust
cell death, leading to a possible curative result or long-term
disease-free survival. In addition, early reduction of the AR
protein in the androgen-responsive phase of prostate cancer
will reduce the likelihood of transcriptional reprogramming (88,
93, 147). Also, tissue-specific delivery of the AR protein
degradation agents will restrict potential side effects.
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