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Abstract: Alzheimer’s disease (AD) is characterized by working memory (WM) failures that can
be assessed at early stages through administering clinical tests. Ecological neuroimaging, such as
Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS), may be employed
during these tests to support AD early diagnosis within clinical settings. Multimodal EEG-fNIRS
could measure brain activity along with neurovascular coupling (NC) and detect their modifications
associated with AD. Data analysis procedures based on signal complexity are suitable to estimate
electrical and hemodynamic brain activity or their mutual information (NC) during non-structured
experimental paradigms. In this study, sample entropy of whole-head EEG and frontal/prefrontal cortex
fNIRS was evaluated to assess brain activity in early AD and healthy controls (HC) during WM tasks
(i.e., Rey–Osterrieth complex figure and Raven’s progressive matrices). Moreover, conditional entropy
between EEG and fNIRS was evaluated as indicative of NC. The findings demonstrated the capability of
complexity analysis of multimodal EEG-fNIRS to detect WM decline in AD. Furthermore, a multivariate
data-driven analysis, performed on these entropy metrics and based on the General Linear Model,
allowed classifying AD and HC with an AUC up to 0.88. EEG-fNIRS may represent a powerful tool
for the clinical evaluation of WM decline in early AD.

Keywords: Alzheimer’s disease (AD); Electroencephalography (EEG); functional Near-Infrared
Spectroscopy (fNIRS); multimodal neuroimaging; neurovascular coupling (NC); complexity analysis;
sample entropy; conditional entropy; Rey–Osterrieth complex figure; Raven’s progressive matrices

1. Introduction

Alzheimer’s disease (AD) is a form of dementia associated with memory failures that slowly
decline into noticeable cognitive impairments [1]. AD is usually characterized by extracellular beta
amyloid deposits [2], tau protein anomalies [3], neuronal loss [4], and neurovascular dysfunction [5,6].
However, since the physio-pathological mechanisms that produce AD symptoms are still not completely
known [7], AD diagnosis is majorly performed through clinical tests that investigate the memory
failures related to the dementia. Tests able to assess working memory (WM) impairments are often
employed in clinical settings. For instance, the Rey–Osterrieth complex figure (ROCF) [8] is used to
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assess visuospatial functions and visuographic memory [9–11], and the standard Raven progressive
matrices (RPM) [12] are widely used to assess visuospatial ability and abstract reasoning [13].

Indeed, the performance in a single test is not generally considered indicative of AD, and a large
battery of tests is administered. In this perspective, neuroimaging could be employed during these
tests in order to have a physiological correlate that could support AD diagnosis [6,14,15]. The main
issue of this application is to maintain the ecological feature of the tests. In fact, a free interaction
between the doctor and the patient is often required, and a neuroimaging technique such as functional
magnetic resonance imaging (fMRI) is not suited to this aim. Conversely, neuroimaging techniques that
provide less physical constrains such as Electroencephalography (EEG) and functional Near Infrared
spectroscopy (fNIRS) are particularly suited.

EEG is a neuroimaging technique that is able to estimate the brain electrical activity measuring
the electrical potential differences due to macroscopic currents within neuronal aggregates [16].
This technique is widely used in research and clinical settings to monitor brain function and to detect
anomalies [17]. fNIRS is a non-invasive optical methodology that exploits the low absorption features
of biological tissue in the near infrared spectral range to detect variations of the main absorbing
chromophores in NIR, namely oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin, in response
to neuronal activity in the brain cortex [18]. This technique is portable, relatively cheap, lightweight,
and resilient to motion artifacts [19], thus being suitable for ecological measurements during the
administration of clinical tests. These two scalp-located techniques could be used concurrently,
providing a multimodal neuroimaging tool that is able to measure the electrical and associated
hemodynamic brain activity [20]. Multimodal EEG-fNIRS has been already utilized to assess cortical
connectivity alterations associated with AD [21] and to perform a data-driven identification of AD,
obtaining superior performances with respect to those obtained with standalone systems [22]. Notably,
probing both the electrical and hemodynamic brain activity, it is possible to have information about
the functional hyperemia in response to brain activity (i.e., neurovascular coupling, NC), which is
known to be dysregulated in AD [23,24]. In fact, Hock et al. [25] found a reduced oxygenation
and cerebral blood flow in AD in response to verbal fluency tasks produced by an impaired NC.
This dysregulation is produced by depositions of amyloid-peptide in neuropil and vessels that could
impair the hemodynamic regulation mechanism performed by neurons, glia, and vascular cells [26–28].

Another important issue related to the employment of neuroimaging instrumentation during
the administration of clinical tests is related to data analysis. In fact, both EEG and fNIRS canonical
data analysis requires a structured experimental paradigm, i.e., the start of the stimulation and its
duration have to be known [29,30]. However, employing these methods in ambulatory settings is
not feasible because of the need to preserve ecological features of the tests. Hence, novel statistical
methods of analysis must be used. Particularly, it is known that the brain signal variability is indicative
of its functioning. Specifically, this variability is generated from the interplay between single neurons
and their neuronal circuits that allows the brain to self-organize itself in order to maximize the brain
information capacity [31]. In turn, these findings explain the capacity of entropy of quantifying the
brain’s information processing [32–34], given the direct correspondence between the variance and the
amount of information. This approach revealed promising results in the assessment of altered state
of consciousness, brain aging, and quantification of the brain networks’ information processing [31].
The complexity of cerebral signals can be evaluated using different entropy metrics. One such metric is
the Sample Entropy (SampEn), which evaluates the non-linear predictability of a signal [35]. Moreover,
always within the complexity metrics, it is also possible to evaluate the mutual complexity between two
signals. The conditional entropy (CondEn) quantifies the amount of information needed to describe
the outcome of a variable from the value of another variable [36]. Complexity evaluation is widely
employed in neuroimaging to assess physiology and pathology [31]. In AD patients, it was utilized to
analyze EEG signals acquired during resting state [37,38] and to investigate cortical activation during
the execution of cognitive tasks employing fNIRS [39,40].
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In the present study, the capability of complexity analysis to detect WM impairments in early
AD with respect to healthy controls (HC) was investigated. SampEn from whole-head EEG and
frontal/prefrontal cortex fNIRS signals concurrently acquired during two WM tasks was evaluated.
Moreover, in order to have information about NC dysregulation in AD during the execution of WM
tasks, CondEn between EEG and fNIRS was also computed. In detail, whole-head EEG power envelopes
in five frequency bands (theta [θ], alpha [α], beta [β], delta [δ], and gamma [γ]) and frontal changes of
O2Hb and HHb were considered, resulting in 3 EEG SampEn metrics, 2 fNIRS SampEn metrics and
10 NC CondEn metrics. The coupling between electrical and hemodynamic brain activity was evaluated
convolving the EEG signal with the canonical hemodynamic response. Finally, a cross-validated
multivariate data-driven (i.e., Machine Learning) analysis based on a General Linear Model [41–43]
employing all the evaluated complexity metrics as input was performed to classify AD and HC. Notably,
the multivariate approach proposed provided a single dependent variable (i.e., label of the disease) and
multiple independent features (i.e., complexity metrics). This framework was built to demonstrate the
robustness of the findings and to provide an approach useful in clinical settings to support AD diagnosis.

2. Materials and Methods

2.1. Participants

Thirty-five participants were enrolled in the study. The study sample was composed of 17 AD
patients (mean age: 67.6 years; standard deviation (SD): 9.3 years; 9 females) and 18 HC (mean age:
69.2 years; SD: 9.1 years; 9 females). All the AD patients enrolled had a diagnosis of mild probable
Alzheimer’s disease, as defined by the Diagnostic and Statistical Manual of Mental Disorders, 5th edition
(DSM-5). The exclusion criteria were moderate to severe cognitive impairment (Mini Mental State
Examination, MMSE < 25/30) [44], vascular dementia, behavioral or psychiatric disorders, brain lesions,
history of stroke, and traumatic brain injury. The research was approved by the Research Ethics Board
of the University G. D’Annunzio of Chieti-Pescara, Italy (approval number: 1479, date of approval:
03/05/2017), and it was performed in accordance to the principles of the Declaration of Helsinki.
Informed consent was signed by all the participants before the experiment, and they could withdraw
from it at any time.

2.2. Experimental Design

ROCF and RPM were administered by the doctor, as they are usually performed in clinical practice,
preserving the free interaction and the ecological features of the tests. ROCF is composed of two
phases: in the first phase, the patient is requested to reproduce a complex two-dimensional image
(copying) whereas, in the second phase, the subject must draw the image again from memory (recall).
The two phases are separated by a period of 10 min. During this period, an RPM test was administered.
RPM consisted of filling empty spaces, choosing among four alternatives following a logical hunch.
It is composed of five sets of items that follow different logic rules and become progressively more
difficult during the set. Between ROCF phases and RPM, 1 min of rest was provided in order to
remove eventual confounding cross-effects between the tests. The experimental paradigm is described
in Figure 1.
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2.3. Electroencephalograpy Instrumentation

A high-density, 128 channel, full-head EEG instrumentation (Electrical Geodesic Inc, Eugene, OR,
USA, EEG System Net 300, Figure 2a) was employed in the study to collect brain electrical activity.
The impedance between scalp and electrodes was checked before each recording and values below
50 kΩ were considered acceptable. It is worth underlining that although a skin/sensor impedance
below 5 kΩ is generally necessary for reliable EEG recordings, the HydroCel Geodesics Sensor Net
succeed in measuring high-quality signals with impedances up to 50–100 kΩ thanks to the high-input
impedance amplifiers [45]. The sample frequency was set at 250 Hz.
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Figure 2. (a) Electroencephalography (EEG)-fNIRS (functional Near Infrared Spectroscopy) probes
placed onto an indicative participant head. The fNIRS optodes were in contact with the scalp exploiting
the space among the electrodes of the EEG cap. (b) EEG-fNIRS probes projected onto a template head.
The high-density EEG layout was in agreement with the 10/20 system, and the fNIRS probes were
positioned with reference to the EEG electrodes.

2.4. Functional Infrared Sprectroscopy Instrumentation

A frequency-domain NIRS system (Imagent, ISS Inc., Champaign, IL, USA) was used for the optical
measurements. The system provided 32 laser diodes sources (16 emitting at 690 nm of wavelength and
16 emitting at 830 nm of wavelength) and 4 photomultiplier-tube (PMT) detectors. The sources were
time-multiplexed in order to prevent their crosstalk. The sampling rate was 10.42 Hz. Sources and
detectors were located on the frontal and prefrontal cortices through a home-made optical patch
located on top of the high-density EEG cap (Figure 2a). Notably, the optodes were placed in contact
with the scalp exploiting the space among the electrodes of the EEG cap, allowing also placing the
optical array with reference to the 10/20 system [46] (Figure 2b). The optical array allowed collecting
optical data from 16 long separation channels at source-detector distances of 35 mm and from four
short separation channels at 15 mm interoptode distance (Figure 2b). The short separation channels
are sensitive to hemoglobin concentration changes in the scalp; hence, they allow correcting the long
separation channels (which are sensitive both to extracranial and intracranial hemoglobin oscillations)
for superficial hemoglobin variations [47–49].

2.5. Electroencephalograpy Signal Pre-Processing

Firstly, EEG signals were visually inspected to reject saturated or corrupted epochs. A band-pass
filter (cut-off frequencies: 1 and 80 Hz) and a notch-filter at 50 Hz were applied (zero-lag 2nd order
Butterworth digital filters). Furthermore, a procedure relying on Independent Component Analysis
(ICA) was applied to remove cardiac, ocular, and muscular artifacts [50,51]. The pre-processed EEG
signals were decomposed in five frequency bands of interest (θ-band: 3.5–8.2 Hz, α-band: 7.4–13 Hz,
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β-band: 13–30 Hz, δ-band: 1–4 Hz, γ-band: 26–40 Hz), and the power temporal envelopes were
evaluated as the absolute values of their Hilbert transform.

2.6. Functional Near Infrared Spectroscopy Pre-Processing

The raw continuous-wave component of the fNIRS signal was converted into optical densities
(ODs) according to the equation:

OD = −ln(I(t)/Iavg) (1)

where I(t) is the signal intensity over time and Iavg is its average value. Then, motion artifacts were
removed by means of a wavelet-based procedure [52] and the ODs were band-pass filtered with a
zero-lag, 4th order Butterworth digital filter (cut-off frequencies of 0.01 Hz and 0.4 Hz). Oscillations in the
concentration of O2Hb and HHb were computed for each channel employing the modified Lambert–Beer
Law [53]: (

∆O2Hb
∆HHb

)
=

1
d

[
εO2Hb(λ1)DPF(λ1) εHHb(λ1)DPF(λ1)

εO2Hb(λ2)DPF(λ2) εHHb(λ2)DPF(λ2)

]−1

×

[
∆OD(λ1)

∆OD(λ2)

]
(2)

where d is the geometrical interoptode distance, ε is the extinction coefficient for the specific
chromophore at a given wavelength (λ), and DPF is the Differential Pathlength Factor. Particularly, an
accurate evaluation of the DPF is fundamental to reduce the crosstalk between the two haemoglobin
forms; hence, in this study, it was computed accordingly to [54,55]. The short separation channels were
utilized to remove the extracranial hemodynamic contribution in the long separation channels [48].
Particularly, short channels were employed to remove the scalp confoundings from the long separation
channels in accordance with [56]. This method relies on GLM and Principal Component Analysis
(PCA). Specifically, the first principal component of the short channels is used to define a global
scalp-hemodynamic model, which is used as a regressor of the GLM to assess its influence over the long
separation channels. Thus, it is possible to eliminate the global scalp-hemodynamic confounding from
each long separation channel signal by subtracting the global scalp-hemodynamic model multiplied
by the β-values associated to the global scalp-hemodynamic model for a specific channel [56].

2.7. Complexity Analysis

SampEn is defined as the negative natural logarithm of the conditional probability that signal
subseries of length m (pattern length) that match pointwise within a tolerance r (similarity factor)
also match at the m + 1 point. SampEn was evaluated for the global field potential (GFP) [57] of the
EEG power temporal envelopes in the five frequency bands of interest (i.e., α-band, θ-band, β-band,
δ-band, and γ-band) and for the two hemoglobin forms (i.e., O2Hb and HHb) computed from average
fNIRS signals across all the measurement channels during each experimental phase. Notably, for the
computation of the average fNIRS signal, only the long separation channels were employed.

SampEn of a time series {x1, . . . ,xN} of length N is computed employing the following set of
equations [58]:

SampEn(m, r, N) = − ln
[

Um+1(r)
Um(r)

]
(3)

Um(r) = [N−mτ]−1
N−mτ∑

i=1

Cm
i (r)

Cm
i (r) =

Bi

N− (m + 1)τ
.

Essentially, the functions Cm
i (r) are conditional probabilities calculated as a sum of the

(matches)/(total of possible vectors) among all the target vectors. The parameters of these functions are
described below:
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Bi = number of j where d
∣∣∣Xi, Xj

∣∣∣ ≤ r

Xi =
(
xi, xi+τ . . . , xi+(m−1)τ

)
Xj =

(
xj, xj+τ . . . , xj+(m−1)τ

)
i ≤ j ≤ N−mτ, j , i

where N is the total length of the time-series considered, m is the embedded dimension, r is the
tolerance factor (scalar for which two subseries with distances below its value are considered identical),
and τ is the time delay expressed in samples. In this study, the embedded dimension was m = 2 and the
similarity factor r = 0.2 × SD of the signal. These parameters are commonly employed for complexity
analysis of biological signals and they were chosen in accordance with [35]. SampEn was evaluated
using the following software: Víctor Martínez-Cagigal (2018). Sample Entropy. Mathworks.

CondEn is indicative of the information needed to describe the outcome of a random variable
given the value of another random variable, and it could be evaluated as follows:

H(Y|X) = −
∑
x∈X

∑
y∈Y

p(x, y)logp(y
∣∣∣x) (4)

where x and y denote the support sets of X and Y, while p (x, y) and p (y|x) are the values of their
joint and conditional probability distributions. Similar to SampEn, CondEn was evaluated on the
GFP of the EEG channels and the average of fNIRS signals across all the channels (only fNIRS long
separation channels were considered). In order to take into account the different temporal scale of the
EEG and fNIRS signals, the EEG signal was convolved with the canonical hemodynamic response [59]
and then down-sampled to the sample frequency of the fNIRS signal [60]. CondEn was evaluated by
means of the follow software package: Information Theory Toolbox (https://www.mathworks.com/

matlabcentral/fileexchange/35625-information-theory-toolbox, Mo Chen, 2020).
Importantly, given the ecological feature of the experimental paradigm, the temporal length of the

different phases across subjects was different. Since the evaluation of the complexity metrics could be
sensitive to the duration of the signal, for the evaluation of the metrics, the epochs associated to the
different experimental phases were cut at the same duration of the one which lasts less (around 4 min).

Notably, previously to evluate SampEn and CondEn, the stationarity of the EEG and fNIRS
time series was checked employing the Phillips–Perron test, and, if the signals were not stationary,
a detrending was applied. The complexity metrics were computed for further analysis only for the
stationary time series.

2.8. Statistical Inference and Multivariate Classification

The 95% confidence interval (95% C.I.) of SampEn and CondEn was evaluated by a bootstrap
procedure. Only the values within the confidence intervals were used for further statistical analysis.

Unpaired t-tests were employed to compare the complexity metrics evaluated from AD with
HC. False Discovery Rate (FDR) correction for multiple comparisons was employed. Furthermore,
a data-driven multivariate analysis based on GLM was implemented to provide a classification of
disease (AD or HC). Three linear regressions were evaluated employing separately the complexity
metrics evaluated from the unimodal and multimodal recordings (i.e., 5 EEG SampEn, 2 fNIRS SampEn,
10 NC CondEn) and the dependent variable labeled the presence of the disease (AD = 1, HC = 0). In order
to provide the generalization performances of the classifier, a leave one out cross-validation procedure
was implemented. A Receiver Operating Characteristic (ROC) curve analysis on the out-of-sample
predicted outputs was performed to provide an estimation of the sensitivity and specificity to the
disease of the complexity metrics in each experimental phase. Importantly, the classifiers were fed
employing all the features evaluated, independently from the descriptive statistic results.

https://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox
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3. Results

Table 1 reports the values of the EEG, fNIRS, and neurovascular coupling (NC) complexity metrics
(mean value ± SD) and associated 95% C.I. evaluated during the different experimental phases.

Table 1. Mean values and associated SD of the EEG, fNIRS, and NC complexity metrics and relative
95% C.I. evaluated during the different experimental phases for the AD and HC groups.

Metric AD (Mean ± SD) HC (Mean ± SD) AD (95% C.I.) HC (95% C.I.)

α-band 0.357 ± 0.059 0.318 ± 0.071 0.194–0.500 0.026–0.540
β-band 0.361 ± 0.059 0.265 ± 0.128 0.186–0.512 −0.013–0.540
θ-band 0.277 ± 0.075 0.251 ± 0.118 0.117–0.438 −0.001–0.503
δ-band 0.914 ± 0.348 0.909 ± 0.224 0.077–1.817 0.424–1.387
γ-band 0.899 ± 0.316 0.923 ± 0.282 0.059–1.644 0.030–1.776
O2Hb 0.121 ± 0.037 0.170 ± 0.035 0.032–0.219 0.081–0.249
HHb 0.129 ± 0.043 0.170 ± 0.038 0.038–0.221 0.088–0.253

ROCF O2Hb/α-band 1.306 ± 0.301 1.585 ± 0.261 0.648–1.971 0.939–2.316
(Copying) HHb/α-band 0.040 ± 0.027 0.053 ± 0.041 −0.032–0.128 −0.105–0.248

O2Hb/β-band 1.249 ± 0.325 1.687 ± 0.436 0.549–1.941 0.744–2.615
HHb/β-band 0.046 ± 0.033 0.057 ± 0.049 −0.037–0.141 −0.108–0.254
O2Hb/θ-band 3.985 ± 0.701 4.258 ± 0.787 2.314–5.879 2.349–6.494
HHb/θ-band 0.082 ± 0.040 0.085 ± 0.062 −0.019–0.197 −0.152–0.370
O2Hb/δ-band 3.952 ± 0.455 3.387 ± 0.573 1.558–5.138 1.969–5.017
HHb/δ-band 3.963 ± 0.465 3.401 ± 0.581 1.573–5.156 1.929–5.106

O2Hb/γ-band 3.866 ± 0.441 3.324 ± 0.569 1.464–5.053 1.975–5.880
HHb/γ-band 3.939 ± 0.470 3.381 ± 0.577 1.574–5.143 1.954–5.020

α-band 0.394 ± 0.033 0.382 ± 0.048 0.320–0.468 0.279–0.485
β-band 0.378 ± 0.044 0.386 ± 0.054 0.237–0.497 0.242–0.512
θ-band 0.338 ± 0.085 0.371 ± 0.060 0.150–0.527 0.204–0.517
δ-band 1.796 ± 0.322 1.897 ± 0.152 1.081–2.513 1.484–2.259
γ-band 1.758 ± 0.288 1.789 ± 0.342 1.099–2.412 0.784–2.660

RPM O2Hb 0.171 ± 0.049 0.209 ± 0.040 0.066–0.277 0.102–0.332
HHb 0.180 ± 0.047 0.211 ± 0.046 0.079–0.282 0.096–0.341

O2Hb/α-band 3.454 ± 0.728 3.928 ± 0.241 1.872–5.036 3.339–4.599
HHb/α-band 2.501 ± 1.082 3.148 ± 0.605 0.107–4.860 1.827–4.456
O2Hb/β-band 3.351 ± 0.656 4.025 ± 0.449 1.916–4.786 3.041–4.996
HHb/β-band 2.438 ± 1.039 3.191 ± 0.711 0.204–4.689 1.703–4.714
O2Hb/θ-band 3.357 ± 0.705 3.939 ± 0.324 1.847–4.891 3.184–4.787
HHb/θ-band 2.433 ± 1.055 3.181 ± 0.653 0.132–4.735 1.792–4.577
O2Hb/δ-band 3.344 ± 1.455 3.906 ± 0.575 0.771–6.401 0.488–5.547
HHb/δ-band 4.691 ± 1.416 4.654 ± 0.645 1.623–6.716 1.264–6.057

O2Hb/γ-band 3.951 ± 1.264 3.996 ± 0.777 0.924–5.429 0.833–5.518
HHb/γ-band 5.068 ± 1.351 5.554 ± 0.591 2.077–7.055 2.061–7.281

α-band 1.675 ± 0.418 1.800 ± 0.295 0.625–2.735 1.160–2.437
β-band 1.467 ± 0.578 1.731 ± 0.344 0.007–2.936 0.651–2.661
θ-band 1.679 ± 0.219 1.562 ± 0.442 1.133–2.221 0.604–2.520
δ-band 1.956 ± 0.174 1.877 ± 0.233 0.580–3.003 1.180–2.484
γ-band 1.775 ± 0.262 1.580 ± 0.545 1.100–2.452 0.340–2.761

ROCF O2Hb 0.114 ± 0.036 0.138 ± 0.039 0.033–0.193 0.039–0.252
(Recall) HHb 0.112 ± 0.037 0.146 ± 0.049 0.032–0.192 0.040–0.251

O2Hb/α-band 0.662 ± 0.260 1.299 ± 0.402 0.075–1.256 0.302–2.463
HHb/α-band 0.312 ± 0.226 0.528 ± 0.222 −0.430–1.208 −0.015–1.163
O2Hb/β-band 0.665 ± 0.258 1.298 ± 0.410 0.087–1.249 0.293–2.453
HHb/β-band 0.310 ± 0.222 0.531 ± 0.225 −0.456–1.250 −0.013–1.155
O2Hb/θ-band 0.660 ± 0.256 1.295 ± 0.406 0.081–1.234 0.278–2.452
HHb/θ-band 0.312 ± 0.227 0.792 ± 0.130 −0.438–1.236 0.467–1.161
O2Hb/δ-band 2.488 ± 0.541 3.456 ± 0.522 1.258–3.708 2.345–4.582
HHb/δ-band 1.682 ± 0.876 2.276 ±0.659 −0.277–3.693 0.834–3.707

O2Hb/γ-band 2.737 ± 0.654 3.987 ± 0.787 1.299–4.184 2.287–5.689
HHb/γ-band 1.819 ± 0.816 2.486 ± 0.737 −0.466–4.098 0.898–4.103

Table 2 reports the results of the t-test between AD and HC regarding the EEG, fNIRS, and NC
complexity metrics evaluated during the different experimental phases.
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Table 2. t-test results of the complexity metrics evaluated during the different experimental phases
(* p < 0.05, False Discovery Rate (FDR) corrected).

Metric T-Stat D.f. p-Value Effect Size (D-Cohen)

α-band 1.697 31 0.0997 0.590
β-band 2.743 33 0.010 0.940
θ-band 0.766 33 0.449 0.256
δ-band 0.056 33 0.956 0.019
γ-band −0.304 32 0.763 −0.104
O2Hb −4.082 32 3 × 10−4 * −1.4025
HHb −3.026 33 0.0047 * −1.0102

ROCF O2Hb/α-band −2.891 31 0.007 * −0.980
(Copying) HHb/α-band −1.040 31 0.306 −0.358

O2Hb/β-band −3.380 32 0.002 * −1.129
HHb/β-band −0.698 33 0.490 −0.240
O2Hb/θ-band −1.059 32 0.297 −0.364
HHb/θ-band −0.162 32 0.872 −0.056
O2Hb/δ-band 3.156 32 0.004 * 1.085
HHb/δ-band 3.085 32 0.004 * 1.060

O2Hb/γ-band 3.079 32 0.004 * 1.058
HHb/γ-band 3.067 32 0.004 * 1.054

α-band 0.812 31 0.423 0.292
β-band −0.415 33 0.681 −0.155
θ-band −1.271 32 0.214 −0.465
δ-band −1.175 33 0.250 −0.432
γ-band −0.261 32 0.796 −0.095

RPM O2Hb −2.498 33 0.018 −0.847
HHb −1.956 33 0.059 −0.662

O2Hb/α-band −2.614 31 0.014 −0.909
HHb/α-band −2.232 31 0.033 −0.757
O2Hb/β-band −3.597 33 0.001 * −1.221
HHb/β-band −2.537 33 0.016 −0.861
O2Hb/θ-band −3.151 32 0.004 −1.093
HHb/θ-band −2.566 32 0.015 −0.871
O2Hb/δ-band 1.172 31 0.250 0.409
HHb/δ-band 0.104 33 0.918 0.035

O2Hb/γ-band −0.126 31 0.901 −0.044
HHb/γ-band −1.386 32 0.175 −0.481

α-band −0.849 32 0.405 −0.367
β-band −1.381 29 0.182 −0.610
θ-band 0.706 30 0.488 0.306
δ-band 0.790 31 0.439 0.363
γ-band 0.951 31 0.352 0.412

ROCF O2Hb −1.787 30 0.084 0.633
(Recall) HHb −2.204 31 0.035 −0.771

O2Hb/α-band −4.961 31 3.088 × 10−5 * −1.817
HHb/α-band −2.560 30 0.016 −0.965
O2Hb/β-band −4.859 28 4.080 × 10−5 * −1.779
HHb/β-band −2.618 27 0.014 −0.987
O2Hb/θ-band −4.923 30 3.420 × 10−5 * −1.803
HHb/θ-band −7.233 29 8.862 × 10−8 * −2.717
O2Hb/δ-band −5.021 30 2.396 × 10−5 * −1.827
HHb/δ-band −2.160 30 0.039 −0.786

O2Hb/γ-band −4.672 31 6.313 × 10−5 * −1.700
HHb/γ-band −2.124 30 0.042 −0.773

Figure 3 reports the results of the machine learning approach related to ROCF (copying). Figure 3a
reports the ROC curve associated to the leave-one-out cross-validated GLM-based classification
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performed using as input the different complexity metrics evaluated, whereas Figure 3b reports the
β-weights associated to each regressor. Concerning the SampEn of the EEG signal, an Area Under the
Curve (AUC) of 0.65 was obtained. Choosing a threshold of 0.64 on the output of the GLM machine
learning framework, a sensitivity of 0.88 and a specificity of 0.47 were achieved. Regarding the fNIRS
complexity metrics, the procedure delivered an AUC of 0.70, and setting a threshold of 0.53 on the
cross-validated output, a sensitivity of 0.65 and a specificity of 0.74 were achieved. With respect to the
multimodal EEG-fNIRS metrics, an AUC of 0.77 was delivered, and choosing a threshold of 0.42 of the
cross-validated output, a sensitivity of 0.76 and a specificity of 0.68 were reached.
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Figure 3. Classification results related to Rey–Osterrieth complex figure (ROCF) (copying). (a) Receiver
Operating Characteristic (ROC) curve obtained employing the cross-validated classification performed
using all the complexity metrics evaluated; (b) General Linear Model (GLM) β-weights associated to
each regressor.

Figure 4 reports the results of the data-driven procedure applied to RPM. Figure 4a reports the
ROC curve associated to the leave-one-out cross-validated output of the machine learning framework,
whereas Figure 4b shows the β-weights associated to each regressor. Using the SampEn EEG metrics,
an AUC of 0.48 was obtained. Employing the fNIRS complexity metrics, an AUC of 0.67 was delivered,
and selecting a threshold of 0.54 on output of the multivariate analysis, a sensitivity of 0.65 and a
specificity of 0.74 were obtained. The ROC curve associated to the CondEn EEG-fNIRS exhibited an
AUC of 0.69, and using a threshold of 0.42, a sensitivity of 0.71 and a specificity of 0.58 were reached.

Figure 5 shows the results of the machine learning framework associated to the ROCF (recall).
Figure 5a reports the ROC curve associated to the leave-one-out cross-validated classification and
Figure 5b represents the β-weights relative to each regressor. Concerning the EEG results, an AUC of
0.55 was delivered, and setting a threshold of 0.66 on the cross-validated output, a sensitivity of 0.75
and a specificity of 0.44 were reached. Regarding the fNIRS SampEn, an AUC of 0.60 was obtained,
and using a threshold of 0.45 on the output, a sensitivity of 0.60 and a specificity of 0.66 were delivered.
Employing the CondEn EEG-fNIRS complexity metrics, the data-driven procedure delivered an AUC
of 0.88, and setting a threshold of 0.56 on the output, a sensitivity of 0.85 and a specificity of 0.89
were reached.
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cross-validated classification performed using all the complexity metrics evaluated; (b) GLM β-weights
associated to each regressor.

Comparing the performances of the three data-driven procedures implemented during the different
experimental phases, the multimodal EEG-fNIRS NC metrics delivered a statistically significant higher
AUC with respect to unimodal EEG and fNIRS during the ROCF (recall) (CondEn EEG-fNIRS vs.
SampEn EEG: z-stat = 1.977; p = 0.048; CondEn EEG-fNIRS vs. SampEn fNIRS: z-stat = 2.955; p = 0.003).

4. Discussion

The aim of this study was to assess the feasibility of employing ecological and multimodal
EEG-fNIRS neuroimaging during clinical tests that investigate WM abilities (i.e., ROCF and RPM).
To preserve the ecological features of these cognitive tests and to maintain a free interaction between
the doctor and patients, brain activity was estimated employing a complexity metrics, which does
not require a structured paradigm. Specifically, in this study, SampEn was employed to estimate the
electrical and hemodynamic brain activity. Moreover, since synchronous EEG and fNIRS measurements
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allow evaluating the NC, the mutual information between the two signals was estimated through the
CondEn. Notably, CondEn measures the quantity of entropy a variable has remaining once the value of
a second variable is known. Hence, it evaluated the remaining of entropy of the hemodynamic signal
when the electrical signal was known, thus describing their interaction, and, consequently, the NC,
which is known to be dysregulated in AD. It is worth noting that the dependence of the hemodynamic
signal from the electrical signal could have been evaluated employing different metrics with respect to
CondEn (e.g., covariance and cross-correlation). However, complexity metrics such as CondEn and
SampEn are able to estimate the predictability of the signals, which could be indicative of altered brain
activations [31]. Indeed, complexity metrics are able to quantify the amount of information of brain
signals, which could be more suggestive of pathologies with respect to the simple variability.

The results showed statistically significant differences in both electrical and hemodynamic brain
activities between the two groups (i.e., AD and HC). Specifically, the descriptive statistics employed
highlighted differences during all the experimental phases between AD and HC for almost all the
global EEG, fNIRS, and NC metrics. During ROCF (Copying), the SampEn of the two hemoglobin
forms and CondEn of the NC metrics associated to δ- and γ-bands were higher in AD with respect to
HC. Concerning RPM, only O2Hb/β-band appeared to be lower in AD with respect to HC after FDR
correction. Regarding ROCF (copying), almost all NC metrics were significantly higher in HC with
respect to AD. In previous study, it was demonstrated that lower values of complexity are associated
to brain activations; hence, it is licit to suppose that HC exhibited a lower brain activation with respect
to AD during the execution of WM tasks. These results are in line with previous studies that employed
complexity metrics to evaluate hemodynamic brain activity in AD [39,40], depicting a lower brain
activation in HC. Concerning the EEG results, it was demonstrated that AD patients exhibit a lower
SampEn of EEG signal with respect to HC during the resting state [37]; moreover, as reported by
De Bock et al., the ratio of Tsallis entropy evaluated over frontal and occipital/temporal cortices during
WM tasks is indicative of AD [61]. However, the approach of the present study and the one proposed
by De Bock are quite different; thus, it is difficult to perform a comparison. Nonetheless, it supports
the hypothesis that the complexity of EEG signal during WM tasks could be indicative of the cognitive
decline in AD. Moreover, it was demonstrated that a θ-band activity is associated to WM tasks [62],
confirming the strong effect on this frequency band found in this study. Regarding NC results, it was
demonstrated that the remaining entropy of the hemodynamic signal, when the EEG signal is known,
is higher in HC with respect to AD. To the best of our knowledge, studies evaluating NC employing
synchronous EEG-fNIRS in AD are missing; however, some studies using EEG-fMRI are available.
Specifically, a previous work investigated the correlations between EEG and the fMRI blood oxygen
level dependent (BOLD) effect on healthy participants during WM tasks [63]. They demonstrated
that EEG-BOLD signal correlations changes across the different brain regions and EEG frequency
bands, and the load analysis showed that θ-, β-, and γ-bands had exclusively positive load effects,
confirming the involvement of these bands in this kind of task, as reported in this study.

In order to demonstrate the robustness of the findings, a data-driven machine learning approach
based on GLM was implemented. The output of the classification was defined in accordance with the
diagnosis received by the patients (HC = 0; AD = 1). The results confirmed that EEG, fNIRS, and NC
complexity metrics could discriminate the two populations during the execution of almost all the
experimental phases. Specifically, EEG metrics seemed to have lower abilities to discriminate HC and
AD with respect to the other metrics. It is worth underlining that NC metrics exhibited a statistically
higher capability of classifying the disease during the ROCF (recall) with respect to both fNIRS and
EEG. Moreover, although not significantly, NC metrics exhibited always higher performances in
classifying the two groups with respect to the unimodal recordings, demonstrating the importance
of employing a simultaneous EEG-fNIRS system in clinical settings. Importantly, an ROC curve
shows the variation of the sensitivity and specificity of a test as a function of the variable of interest.
Hence, by setting a threshold of this variable, it is possible to obtain different values of sensitivity and
specificity. Generally, the threshold is chosen in accordance with the aim of the application (e.g., a great
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specificity is needed, and a low specificity is acceptable). The values reported in this study were chosen
in order to obtain a good compromise between sensitivity and specificity, but it could be possible to
consider different values.

Importantly, the EEG, fNIRS, and NC features were used as input of three different classifiers in
order to test the capability of the single unimodal approach (i.e., EEG and fNIRS) and of the multimodal
technique (i.e., NC evaluated as CondEn) to discriminate the presence of the disease. It was not
possible to employ all the features together (i.e., 5 EEG SampEn, 2 fNIRS SampEn, 10 NC CondEn =

17 features) because the number of the features is equal to the subjects of the AD class, thus possibly
introducing an overfitting effect to the classification.

A linear model allows evaluating the contribution of the single features to the estimation of
the output. Concerning EEG metrics, the highest GLM β-value is associated to SampEn of the
β-band for ROCF (copying), whereas SampEn of the α-band is the regressor that most contributes
to the classification of the pathology during RPM and ROCF (recall). Concerning fNIRS complexity
metrics, SampEn of HHb was the regressor with the highest contribution during ROCF (copying)
and ROCF (recall), whereas O2Hb majorly contributed to the estimation of the pathology during
RPM. Regarding the NC metrics, HHb/δ-band exhibited the highest β-value during ROCF (copying),
O2Hb/γ-band showed the highest value during RPM, and O2Hb/α-band majorly contributed to the
discrimination of the two groups during ROCF (recall).

These results are in line with previous works performed on HC. In fact, a strong negative
correlation of the α-band with BOLD acquired over parietal and frontal cortex was found [64],
whereas a positive relation was revealed at rest between BOLD and the θ-band of Local Field Potentials
in parahippocampal areas [65]. Thus, the amplitude and the sign of the β-weights associated to
the α-band and θ-band could simply reflect a global neurovascular uncoupling accompanying the
disease that become more evident for those frequency bands and hemoglobin forms where the original
physiological interaction is predominant. Moreover, an increase in δ-band power during mental tasks
has been already observed in the literature, and it is associated with functional cortical deafferentation
or inhibition of the sensory afferences that obstruct the internal concentration [66].

These findings suggest a possible relevance of neuroimaging tools, such as multimodal EEG-fNIRS,
in clinical practice to support early AD diagnosis. These technologies could be easily employed in
the outpatient environment since they are relatively cheap, portable, and easy to use; hence, they do
not require specialized operators. Furthermore, employing a complexity analysis allows preserving
the ecological feature of the tests and the free doctor–patients interaction. In addition, the results of
this study are relative to a global whole head EEG and frontal/prefrontal fNIRS metrics. It should be
stressed that employing an average index of complexity is useful in clinical applications where a perfect
co-registration between the neuroimaging sensors and the anatomical structures of the patients is not
feasible. Particularly, in order to perform a correct co-registration, it is necessary to obtain a structural
MRI of the patients, making this approach expensive and quite unfeasible in routine clinical practice.

One limitation of this study was to employ a whole-head EEG system and an fNIRS device that
covers only the frontal and prefrontal cortices. This limitation is due to the limited number of optodes
of the fNIRS system available that did not allow covering the whole scalp. Hence, it was preferred to
cover the frontal and prefrontal cortex, since these areas are involved in WM tasks [67].

However, further studies should be performed, increasing the population sample size, which might
improve the multivariate complexity-based classification outcome. Notably, the classification was
conducted employing a leave-one-out cross-validation procedure (i.e., removing one subject at a
time and testing the classifier on that specific subject), thus intrinsically evaluating the out-of-sample
performance of the classifier, making the results obtained generalizable. However, increasing the
sample size may allow further improvement of the performance by decreasing a possible in-sample
overfitting effect of the classifier. Furthermore, enrolling more participants could allow employing all
the complexity metrics evaluated in this study as input of the proposed GLM-based classifier without
incurring in overfitting issues.
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Moreover, it could be worth employing more advanced classification procedures (e.g., Deep
Learning [68]), which were not usable in this work given the small sample size and the possible
over-fitting effect. Finally, it could be interesting to further investigate the importance of the relationship
and interaction between the physician and the patients, for instance implementing hyperscanning
procedures [69].

Indeed, this study did not provide an alternative tool for early AD diagnosis, but it could pave
the way to the introduction of synchronous EEG-fNIRS technologies to support clinical procedures
aimed at investigating cognitive decline associated to dementia.

5. Conclusions

In this study, the capability of multimodal EEG-fNIRS together with complexity analysis
(i.e., SampEn and CondEn) to classify early AD and HC during tests that assess WM abilities (ROCF and
RPM) was investigated. The global SampEn of five EEG bands (i.e., α-band, β-band, θ-band, δ-band,
andγ-band) and two hemoglobin fNIRS signals (i.e., O2Hb and HHb), as well as the CondEn between the
five EEG bands and the two fNIRS hemoglobin signals (i.e., O2Hb/α, HHb/α, O2Hb/β, HHb/β, O2Hb/θ,
HHb/θ, O2Hb/δ, HHb/δ, O2Hb/γ, and HHb/γ, depicting the NC) demonstrated the effectiveness of the
approach to discriminate AD and HC during the execution of WM tasks. A multivariate analysis of the
complexity metrics evaluated based on the general linear model provided a good classification of the
disease. These results, although preliminary, seem to confirm the hypothesis that AD may produce a
dysregulation of brain electrical activity and neurovascular coupling that may be exploited in clinical
practice to support early AD diagnosis.
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