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Abstract

Primary effusion lymphoma (PEL) is an aggressive B-cell malignancy without effective treat-

ment, and caused by the infection of Kaposi’s sarcoma-associated herpesvirus (KSHV),

predominantly in its latent form. Previously we showed that the SUMO2-interacting motif

within the viral latency-associated nuclear antigen (LANASIM) is essential for establishment

and maintenance of KSHV latency. Here, we developed a luciferase based live-cell reporter

system to screen inhibitors selectively targeting the interaction between LANASIM and

SUMO2. Cambogin, a bioactive natural product isolated from the Garcinia genus (a tradi-

tional herbal medicine used for cancer treatment), was obtained from the reporter system

screening to efficiently inhibit the association of SUMO2 with LANASIM, in turn reducing the

viral episome DNA copy number for establishment and maintenance of KSHV latent infec-

tion at a low concentration (nM). Importantly, Cambogin treatments not only specifically

inhibited proliferation of KSHV-latently infected cells in vitro, but also induced regression of

PEL tumors in a xenograft mouse model. This study has identified Cambogin as a novel

therapeutic agent for treating PEL as well as eliminating persistent infection of oncogenic

herpesvirus.
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Author summary

Primary effusion lymphoma is a common AIDS-associated malignancy caused by infec-

tion with Kaposi’s sarcoma-associated herpesvirus (KSHV), and is currently absence of

efficient and specific treatment. Natural product from herbal medicines is a major source

of drug discovery for the treatment of a variety of diseases. In this study, the authors dem-

onstrated that Cambogin, a polycyclic polyprenylated acylphloroglucinols (PPAPs) iso-

lated from the branches of Garcinia esculenta (a tropical evergreen tree and traditional

cancer treatment across Southern Asia), is a potent and effective inhibitor of KSHV-

latently infected cells at a low concentration (nM) in vitro and in vivo, through targeting

viral LANASIM-SUMO2 interaction.

Introduction

Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-

8), is an oncogenic γ-herpesvirus that discovered by Chang and Moore over two decades ago

[1]. It has been etiologically linked to several cancers in humans, such as Kaposi’s sarcoma

(KS), primary effusion lymphoma (PEL), and certain types of multicentric Castleman’s disease

(MCD) [2]. KSHV typically causes malignancies in individuals that are immunocompromised

due to many factors including HIV infection or immunosuppressive drug therapies used for

organ transplantation.

PEL is a B-cell lymphoma that develops in the pleural space and other body cavities, also

referred to as body cavity lymphoma [3]. All PEL tumors are latently infected with KSHV, and

up to 70% of PEL cases are co-infected with Epstein-Barr virus (EBV, highly homologous to

KSHV). Although highly active antiretroviral therapies have dramatically reduced the inci-

dence of PEL in HIV-infected patients, PEL remains the common AIDS-associated malig-

nancy in both developed and developing countries. There is currently no efficient and specific

treatment for PEL, the tumor is often resistant to conventional cytotoxic chemotherapy and

most patients die within months [4–6]. Hence, new therapies for PEL are urgently needed.

Similar to the other herpesviruses, KSHV infection also exhibits a biphasic life cycle of

latent and lytic replication, and can establish a life-long persistence in the host cell after pri-

mary infection [7]. The majority of KSHV exists in a latent form in tumor cells, while a small

population undergoes spontaneous lytic replication. Upon reactivation from latency, most

viral genes are expressed in an orderly fashion, leading to production of infectious virions.

Since viral reactivation also results in host cell destruction in vitro, lytic induction of latent

KSHV is considered to be a potential therapeutic option for treatment of KSHV-associated

malignancies [8,9]. Many antiviral drugs, such as ganciclovir, valproic acid, bortezomib, pros-

tratin, anthracycline and celecoxib, are based on the target of lytic replication [10–15]. How-

ever, despite the therapeutic potential of these compounds, their effectiveness and side effects

in PEL treatment has yet to be further evaluated in vivo. Therefore, more effective therapeutic

candidates for KSHV need to be identified.

The latency-associated nuclear antigen (LANA), a potent multifunctional protein encoded

by open reading frame (ORF) 73, is critical for establishment and maintenance of KSHV latent

infection [16]. LANA is highly expressed and readily detected in all infected cells [17], which is

not only essential for establishing and maintaining successful latency [18], but also contributes

to angiogenesis and cell proliferation through regulation of viral and cellular gene expression

[19–22]. Because the SUMO2-interacting motif (SIM) within LANA plays a critical role in

maintenance of the KSHV episome during cell passage and lytic gene silencing [23], the
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development of therapeutic strategies against KSHV-related cancer by using LANASIM as a tar-

get is of great interest.

For decades, natural products from herbal medicines have remained a major source of drug

discovery for the treatment of a variety of diseases. In this study, we developed a luciferase

based live-cell reporter system to quantitatively measure the intermolecular interaction of

LANASIM with SUMO2. This system was used to screen natural product inhibitors isolated

from different herbal medicines. Cambogin, a polycyclic polyprenylated acylphloroglucinols

(PPAPs) isolated from the branches of Garcinia esculenta (a tropical evergreen tree and tradi-

tional cancer treatment across Southern Asia), was identified as a potent and effective inhibitor

of KSHV latent and primary infection at a low concentration (nM), as it blocked LANASIM-

SUMO2 interaction. Moreover, Cambogin is an effective inhibitor of PEL cell growth in vitro
and in vivo.

Results

Identification of natural product inhibitors of the interaction between

LANASIM and SUMO2

Previous studies showed that the SIM motif of LANA plays a critical role in the maintenance

of the KSHV episome during cell passage and lytic gene silencing [23]. To explore drugs that

may act against KSHV and related cancer cells through targeting LANASIM, we developed a

luciferase based live-cell reporter assay (containing two subunits of SmBiT and LgBiT) to

quantitatively measure the interaction of LANASIM with SUMO2 via NanoLuc Binary Tech-

nology (Fig 1A). A total eight pairs of wild-type (WT) LANA, its SIM-deleted mutant (ΔSIM),

and SUMO2 fused with either SmBiT or LgBiT on different terminals were individually con-

structed and tested in HEK293 cells for specific interaction of LANA with SUMO2 via the SIM

domain (Fig 1A). The results showed that the combination of WT-SmBiT and LgBiT-SUMO2

presented the highest luminescence activity and showed the largest difference (~3.2 fold)

between the WT and SIM-deleted mutant (ΔSIM-SmBiT) (Fig 1A, lane 6), making it suitable

for inhibitor screening.

To identify inhibitors of the interaction of LANASIM and SUMO2, HEK293 cells were co-

transfected with LANA WT-SmBiT and LgBiT-SUMO2, and then individually treated with 73

active compounds of natural products isolated from the Chinese traditional herbal medicines

(which have been highly screened from thousands of compounds against cancer and deposited

at SUTCM, supplemental S1 Table) at 50 μg/ml (a low-cytotoxicity concentration, and approx-

imately 100 nmol/L(nM) based on molecular weight of selected single-molecule compound)

concentration for 12 h, followed by luminescence assay. The results showed that 44.6% (25/56)

of compound extracts presented dramatically inhibitory activities on the interaction of LANA-
SIM and SUMO2 to some extent (Fig 1B). To further discover the specific inhibitors, 17 com-

pounds from Garcinia plant that are well-characterized as single molecule compounds were

used to test (Fig 1B, No.1 to 17). Interestingly, the compounds with similar core structures of

type-B PPAPs (No. 1 to 3, and 6 to 8) or Xanthones (No. 5, 11, and 16) consistently presented

higher inhibitory activities on the interaction of LANASIM and SUMO2, while both PPAP

compound No.4 (Oblongifolin L) and Xanthones compound No.12 (Heptahydroxy F.) with a

methyl or hydroxyl substituent totally abolished their inhibitory activities (Fig 1B, bottom pan-

els) when compared to No. 3 (Garcimultiflorones H) and No. 11 (Volkensiflavone), respec-

tively. These indicate that the core skeleton structure of both PPAP and Xanthones

compounds present inhibitory activities in the interaction of LANASIM and SUMO2, and the

activity varies due to the type and number of substituents on the specific position of core skele-

ton structure. Strikingly, among these inhibitors, No. 2 (Cambogin) and No. 3
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Fig 1. Identification of small molecules that block the intracellular interaction of viral SIM and SUMO2. (A)

Establishment of a live-cell system for quantitatively measuring the intracellular interaction of viral SIM and SUMO2

using NanoLuc Binary Technology. HEK293 cells were individually transfected with different combinations of wild-

type (WT) LANA [or its SIM-deleted (ΔSIM) mutant] and SUMO2 fusion with large or small fragments of BiT (LgBiT

or SmBiT) for 48 h, incubated with Nano-GloR reagent, and luminescence was measured. Among the eight

combinations, the luciferase activity of the WT LANA-SmBiT and LgBiT-SUMO2 combination (arrow) exhibited the

highest level in three-independent experiments. The effect was dramatically abolished by deletion of the SIM motif.

Left panels, the schematic for establishing the live-cell system to quantitatively measure the intracellular interaction of

viral SIM and SUMO2. Bottom panels, the immunoblotting analysis of cell lysate from combination No. 6 transfection

along with vector alone as a control. (B) Representative screening of 73 compounds from Chinese herbal medicines.

HEK293 cells co-transfected with WT LANA-SmBiT and LgBiT-SUMO2 were untreated or treated with each

compound for 12 h. The SIM-deleted mutant (ΔSIM) untreated or treated with compound No. 2 or No. 3 were used as

a parallel control. Bottom panels, the chemical structures of representative compounds of PPAPs and Xanthones. Core

skeleton of type-B PPAPs is highlighted. The details of each compound see supplementary S1 Table.

https://doi.org/10.1371/journal.ppat.1008174.g001
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(Garcimultiflorone H) consistently presented higher inhibitory activities on the interaction of

WT LANASIM and SUMO2, but not in its SIM-deleted mutant group (Fig 1B).

Cambogin blocked the association of LANASIM with SUMO2

To further confirm whether both Cambogin and Garcimultiflorone H block the interaction of

LANA and SUMO2 through binding to the SIM region, co-immunoprecipitation experiments

were performed in HEK293 cells co-expressing myc-tagged LANA and FLAG-tagged SUMO2

in the presence of Cambogin or Garcimultiflorone H. Along with untreated or DMSO as con-

trols, the results showed that Cambogin, but not Garcimultiflorone H, dramatically reduced

the association of LANA with SUMO2-modified substrate [SUMO2(n)-sb] with high molecu-

lar weight (>100 kDa), but no effect on the association of KAP1 with LANA or SUMO2 (Fig

2A). To confirm this effect, the high purity (>98.4%) of Cambogin was verified by UPLC chro-

matogram (Fig 2B). In the PEL cells, the interaction of endogenous LANA with SUMO2(n)-sb

efficiently inhibited by Cambogin in a dose-dependent manner was also observed (Fig 2C).

The similar results from in vitro GST-LANA pull-down assays using His-SUMO2 further con-

firmed that Cambogin directly blocked the interaction of LANA with SUMO2 (Fig 2D, com-

pare lanes 2, 3 with 4, 5). To address the difference between Cambogin and Garcimultiflorone

H, molecular docking analysis were carried out and revealed that Cambogin instead of Garci-

multiflorone H mainly binds to the Gln-258 and Thr-261 residues within the active center of

LANASIM through hydrogen bonding, in addition to forming hydrophobic interactions with

Pro-260, Ala-306 and Lys-317 (Fig 2E and 2F). The result that site mutation of both Gln-258

and Thre-261 (QTA) leads to dramatically loss of Cambogin inhibitory effect on the interac-

tion of LANA with SUMO2 (Fig 2D, compare lane 5 with 6), indicating that the subtle struc-

ture of compound is a key for blocking the interaction of LANA with SUMO2.

Cambogin preferentially targeted KSHV-infected cells at a low

concentration

Given that Cambogin can have cytotoxicity in both medullobalstoma and breast adenocarci-

noma cells at about 50-fold higher concentration by alteration of mitochondrial morphology

and dynamics [24,25]. To determine the cytotoxic effects of Cambogin on KSHV-infected can-

cer cells, we treated BJAB and iSLK cells with or without KSHV infection in the presence of

different dosages (0, 0.1, 1, 10, and 100 μM) of Cambogin, along with Garcimultiflorone H,

Oblongifolin L, and Heptahydroxy Flavononylflavone as controls for 24 h. The results showed

that Cambogin but not Garcimultiflorone H, Oblongifolin L, or Heptahydroxy F exhibited

preferential cytotoxicity in KSHV-infected cells in a dose-dependent manner (supplementary

S1 Fig). The half cytotoxicity value (CC50) of Cambogin in KSHV-infected cells was dramati-

cally lower than in KSHV-uninfected cells (BJAB/K-BJAB is 2.38 vs 0.68; iSLK/K-iSLK is 9.42

vs 0.6, supplementary S1 Fig). Furthermore, cytotoxicity was tested in different PEL cell lines,

including BCBL1, BC3, and BCP1 cells (which are singly infected by KSHV), and BC1 cells

(which are dually infected by KSHV and EBV). As there is no appropriate control for PEL

cells, we included BJAB and DG75 (KSHV- and EBV-negative B lymphoma cell lines) cells as

references. The results from cell viability assays showed that the KSHV-infected B cells pre-

sented consistently higher sensitivity (CC50 is 14.5~35.8 μM in KSHV+, vs 44.5~49.5 μM in

KSHV-) than the KSHV-uninfected cells (Fig 3A and 3B). In addition, we also observed that

the average dosage of no cytotoxicity (90% cell survival, CC10) of Cambogin in the most of

KSHV-infected cells is at least higher than 1.5 μM (Fig 3A).

To further confirm the non-cytotoxicity effect of Cambogin on the KSHV-infected cells at a

lower concentration (< 1.5 μM), we performed immunoblotting assays to examine the
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Fig 2. Cambogin specifically blocks the association of LANASIM with SUMO2. (A) Cambogin but not Garcimultiflorone dramatically blocked

the intracellular interaction of exogenous LANA and SUMO2. Whole cell lysates (WCL) from HEK293 cells transfected with myc-tagged LANA

and FLAG-tagged SUMO2 were individually treated with compound (100 nM final concentration), DMSO or untreated for 12 h at 24 h post-

transfection, and subjected to immunoprecipitation (IP) and immunoblotting (IB) with the indicated antibodies. The LANA-interacting SUMO2

modified substrates [SUMO2(n)-sb] is shown in line. The position (>170 kDa) of SUMO2 modified substrates [SUMO2(n)-sb] from

immunoprecipitated complex is enlarged. (B) UPLC chromatogram of Cambogin. Purity of Cambogin was shown on the right panel. (C)

Cambogin efficiently inhibited the interaction of endogenous LANA and SUMO2 in PEL cells. Whole cell lysates (WCL) from BCP1 cells were

individually treated with (100, 500 nM) Cambogin or DMSO for 48 h, and subjected to immunoprecipitation (IP) and immunoblotting (IB) with

the indicated antibodies. The untreated group was used as a control. The LANA-interacting SUMO-2 modified substrates [SUMO2(n)-sb] is shown

in line. (D) Cambogin efficiently blocked the interaction between LANA and SUMO2 in vitro. Equal protein amounts of purified His-SUMO2 were

co-incubated with GST or GST-LANA-N (WT or QTA) fusion proteins in vitro for 12 h, followed by treatment with different dosages of Cambogin

for another 6 h. Untreated and DMSO were used as control groups. Glutathione (GSH)-sepharose beads were used and results were analyzed by

immunoblotting (IB) with the indicated antibodies. An aliquot of the purified His-SUMO2 fusion proteins was also applied directly to the gel
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expression levels of PARP1 (the apoptotic marker) in the BCBL1 cells treated with 0.1, 1, and

10 μM dosage of Cambogin. The results showed that the expression of PARP1 was dramati-

cally reduced with 10 μM of Cambogin treatment, but no significantly different at 0.1 or 1 μM

concentration (Fig 3C, compare lane 5 with lanes 3 and 4). This indicates that Cambogin did

not efficiently induce PEL cell apoptosis at a low concentration (< 1 μM). To answer whether

Cambogin impairs the KSHV latent and lytic cycles at the low concentration, we also exam-

ined that the expression levels of LANA and RTA (the two key antigens individually encoded

by KSHV in latency and lytic replication) in the BCBL1 cell line. The results showed that

although Cambogin could greatly inhibit the expression of LANA with induction of RTA

expression at 10 μM of treated concentration, it was rarely enhanced by treatment with lower

than 1 μM concentration (Fig 3C, compare lane 5 with lanes 3 and 4). In contrast, although a

slightly increase of RTA expression in BCBL1 cells upon Cambogin treatment at a lower than

1 μM concentration was observed, the transcriptional activity of Rta promoter was not signifi-

cantly impaired by Cambogin in HEK293 cells (Fig 3D), indicating that the effect of Cambogin

on the expression of RTA in BCBL1 cells at a lower than 1 μM concentration is not directly

relied on the regulation at transcriptional level, and could be due to the blockade of LANA--

SUMO2 interaction and release of the lytic gene silencing.

Cambogin inhibited KSHV latent replication and primary infection

To further evaluate the specific effect of Cambogin on the passage of KSHV episome DNA, the

KSHV-latently infected cell lines BCBL-1, and K-ISLK were individually subjected to treat-

ment with Cambogin, Garcimultiflorone H, Oblongifolin L, or Heptahydroxy F at 100 nM (a

non-cytotoxicity concentration) for 12, 24, 48, and 72 h, followed by quantitative PCR for

detection of KSHV DNA. The results showed that Cambogin efficiently decreased KSHV

DNA copy number in the KSHV-infected cells after 48 h, when compared to DMSO, Garci-

multiflorone H, Oblongifolin L, or Heptahydroxy F (Fig 4A). Since LANA mainly contributes

to the maintenance of viral episome during latency, we wanted to know if Cambogin inhibits

the persistence of the viral episome during cell passage is through targeting the ability of

LANA binding with the terminal repeat (TR). To this end, we performed chromatin immuno-

precipitation assays by using myc-tagged LANA co-expressed with the TR-Puromycin plasmid

in HEK293 cells with different dosage of Cambogin treatment for 48 h, followed by colony for-

mation assays for 2 weeks. The results showed that although no significantly inhibitory effect

between Cambogin and DMSO control treatment in the ability of LANA binding to TR, the

Cambogin-treated group presented dramatically inhibition of TR maintenance in a dose-

dependent manner (Fig 4B).

To determine whether Cambogin affects KSHV primary infection, we firstly evaluated the

viability of both MM and HeLa cells treated with different dosage of Cambogin. The results

showed that the CC10 value of both MM and HeLa cells with Cambogin treatment is also

higher than 1 μM (Fig 5A). Then, both MM and HeLa cells were individually incubated with

GFP-tagged KSHV virions in the presence or absence of 0.1 μM Cambogin for different time

points, followed by immunofluorescence and quantitative PCR assays to detect the efficacy of

(Input), and the GST fusion proteins on the blot were visualized using Coomassie staining (bottom panel). (E) Molecular Docking of LANASIM

with Cambogin. The docking results show that the small molecule Cambogin received the active center of the LANASIM protein. The amino acid

sequence of the LANASIM domain is shown at the bottom panel. The two subunits (SIM1 and SIM2) of LANASIM are highlighted in orange. Right

panel, a three-dimensional view of the interactions between the LANASIM domain and Cambogin by Pymol software. The formation of hydrogen

bonds between Cambogin and residues Gln-258 and Thr-261 of LANASIM is enlarged. (F) A two-dimensional view of the interaction between

LANASIM and Cambogin shown by Discovery Studio software. The compound Cambogin also forms hydrophobic interactions with Pro-260, Ala-

306, and Lys-317 on LANASIM proteins. The donor and receptor of the hydrogen bond are highlighted. Garcimultiflorone H was used as a control.

https://doi.org/10.1371/journal.ppat.1008174.g002
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Fig 3. Cambogin presents higher cytotoxicity in PEL cells. (A) Cambogin induced relatively higher cytotoxicity in

the KSHV-infected cells. The cell viability of KSHV positive and negative B-lymphoma cell lines treatment with

different dosage of Cambogin treatment for 72 h. The concentration of Cambogin-induced 10% cell death (CC10) was

indicated. (B) The concentration of Cambogin-induced 50% cell death (CC50) was calculated from panel A. (C)

Cambogin moderately enhances the expression of RTA. BCBL1 cells were treated with DMSO or different

concentrations of Cambogin for 48 h, followed by immunoblotting assays as indicated in the figure. Untreated was

used as a control. (D) Reporter assays of the Rta promoter in the presence of Cambogin. HEK293T cells were

transfected with the Rta promoter-driven Luciferase reporter (pRta-Luc). At 24 h post-transfection, cells were treated

with DMSO or different concentrations of Cambogin for 24 h, and then harvest for reporter assays. The results were

presented by the RLU (relative luciferase unit) fold compared with the untreated group. Data are presented as means

±SD of three independent experiments. n.s., no significant.

https://doi.org/10.1371/journal.ppat.1008174.g003
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viral entry, infection efficiency and episome copy number, respectively. The results showed

that Cambogin did not impair the viral entry, but effectively inhibited the efficiency of KSHV

primary infection, and reduced episome DNA copy number, when compared to DMSO or

Garcimultiforones H as parallel controls (Fig 5B, 5C and 5D, supplementary S2 Fig). In

Fig 4. Cambogin blocks maintenance of KSHV episome DNA. (A) Equal amounts (0.2 million per ml) of KSHV-

infected (BCBL-1, and K-iSLK) cells were individually treated with 100 nM Cambogin, Garcimultiflorone H,

Oblongifolin L, Heptahydroxy Flavononylflavone, or DMSO as a control for the indicated time, and then harvested

and subjected to quantitative PCR analysis to determine DNA copy number of the KSHV episome. The episome copy

number relative to the untreated group was calculated and indicated in the figure. Asterisk indicates a significant

difference (p<0.01). (B) Cambogin did not affect the TR-binding ability of LANA but inhibited the capacity of LANA-

mediated TR maintenance. HEK293 cells co-transfected TR-puromycin plasmid with myc-tagged LANA or vector

alone were equally divided and treated with different dosage of Cambogin or DMSO. At 48 h post-transfection, cells

were subjected to ChIP assays with normal mouse IgG or mouse anti-myc (9E10) antibodies followed by real-time

quantitative PCR with TR primer (bottom panels). For colony formation assays of LANA-mediated TR maintenance,

three thousands transfected cells at 48 h post-transfection were seed and selected with 2 μg/ml puromycin cells for 2

weeks (Top panels). The average of colonies quantified from duplicate experiments is shown. The expression of

exogenous LANA is presented by immunoblotting (IB) assay on the left panel.

https://doi.org/10.1371/journal.ppat.1008174.g004
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contrast, no significant effect on HCMV primary infection and virion production were

observed (Supplementary S3 Fig), indicating that Cambogin specifically blocked KSHV pri-

mary infection.

Cambogin inhibited the proliferation of diverse PEL and KSHV-

transformed cell lines in vitro
To further determine the inhibitory effect of Cambogin on KSHV-infected cells, we tested the

role of Cambogin on the proliferation of different PEL lines, including BCBL1, BC3, BCP1,

Fig 5. Cambogin inhibits KSHV de no infection in vitro. (A) The cell viability of HeLa and MM cell lines with different dosage of

Cambogin treatment for 48 h. The concentration of Cambogin-induced 10% cell death (CC10) was indicated. (B) Cambogin does not

impair viral entry. Equal amount of HeLa or MM cells incubated with GFP-tagged KSHV virions (MOI = 2) in the presence or absence

of 100 nM Cambogin and Garcimultiflorone H (DMSO as a control), were subjected to viral entry analysis by quantitative PCR.

Asterisk indicates p<0.05. n.s., no significant. (C) Cambogin inhibits KSHV de no infection. Equal amounts of MM cells with KSHV

infection and compounds treatment as described in panel B for 12, 24, 48, and 72 h, were subjected to immunofluorescence analysis of

GFP (green) and nuclei staining by DAPI (blue) to detect the infection efficiency of KSHV. The relative percentages were quantified by

flow cytometry analysis and shown at the bottom panels. Asterisk indicates p<0.05. Similar experiments duplicated in HeLa cells see

supplemental S2 Fig. (D) Cambogin reduces viral episome DNA copy during KSHV primary infection. HeLa and MM cells with

KSHV infection and compounds treatment for 24 and 72 h from panel C, were subjected to quantitative PCR analysis for relative

KSHV episome DNA copy number. ��p< 0.01.

https://doi.org/10.1371/journal.ppat.1008174.g005
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and BC1 cells, within 1μM concentration. Consistently with our speculation, at 0.5 μM,

Cambogin effectively inhibited the proliferation of all KSHV-positive PEL cells but not KSHV-

negative BJAB cell lines, when compared to the DMSO control (Fig 6). Unexpectedly, Garci-

multiflorone H also inhibited the proliferation of all PEL cell lines to some extent (Fig 6), albeit

it could not efficiently block the interaction of LANA and SUMO2 when compared with Cam-

bogin (Fig 2A). In contrast, the DNA copies of the KSHV genome in BCBL1 cells treated with

Cambogin instead of Garcimultiflorone H for 5 and 7 days were significantly lower (5.1-fold

and 8.2-fold, respectively) than cells treated with DMSO control in a time-dependent manner

(Fig 6, bottom panels). These data further support the notion that Cambogin inhibits the pro-

liferation of KSHV-latently infected cells by disrupting the maintenance of episome DNA.

To further confirm whether Cambogin effectively inhibits colony formation in KSHV-

transformed cells in vitro, the KSHV-uninfected and infected cells, iSLK and K-iSLK, were

individually treated with or without Cambogin, and then subjected to colony formation assays.

Using Garcimultiflorone H and DMSO as parallel controls, the results showed that Cambogin

markedly blocked the colony formation of K-iSLK cells but not iSLK cells (Fig 7A). Similar

results were observed in the MM and KMM (MM cells with KSHV infection) murine endothe-

lial cells treated with Cambogin, albeit Cambogin also exhibited an inhibitory effect on MM

cells to lesser extent (supplementary S4 Fig). Different from the iSLK and K-iSLK cell lines,

Garcimultiflorone H inhibited the colony formation of both MM and KMM cells, although it

was less effective than Cambogin (Supplementary S4 Fig).

Cambogin induced regression of PEL tumor growth in vivo
To examine the efficacy of Cambogin for the treatment of PEL in vivo, a xenograft mouse

model was created by engrafting BCBL1-Luc cells into NOD/SCID mice. At day 35 post-

engraftment, live bioluminescence imaging was performed to detect tumor signals within each

mouse (Fig 7B). The mice exhibiting a similar intensity of tumor signals were randomly sepa-

rated into groups treated with different-dosages (2.5 and 25 mg/kg) of Cambogin, or PBS/

DMSO. After treatment with PBS/DMSO, or Cambogin via intraperitoneally administration,

mice began gaining weight as early as 1 week due to PEL development, while those treated

with Cambogin maintained a relatively reduced weight (Fig 7C). Consistently, mice treated

with Cambogin had a dose-dependent weaker detectable signal at week 4 post-treatment (Fig

7B and 7D), indicating that Cambogin inhibited PEL growth.

Next, we examined whether Cambogin could continuously control regression of PEL

tumors after drug withdrawal. At week 8 post-treatment, 4 mice (No. 2, 3, 4, and 7) in the PBS/

DMSO group, 1 mouse (No. 5) in the 2.5 mg/kg Cambogin group, and 1 mouse (No. 5) in the

25 mg/kg Cambogin group died of PEL (Fig 7E). Bioluminescence imaging at week 8 post-

treatment showed that the remaining 3 mice in the PBS/DMSO group had strong luminescent

signals. In contrast, the luminescent signals in all mice treated with Cambogin were dramati-

cally reduced. In particular, those with a higher treatment dose were reduced to almost unde-

tectable levels, indicating that Cambogin effectively induced regression of most of the tumors.

These results demonstrated that Cambogin may be an effective drug for inhibiting PEL pro-

gression and inducing the regression of PEL.

Discussion

PEL, as a KSHV-associated malignant B lymphoma, is highly resistant to conventional chemo-

therapies [26], and currently there are no efficient and specific treatments. To determine the

specific cytotoxicity of compounds against PEL cells, many studies have focused on the screen-

ing of small molecule compounds by targeting cellular signaling pathways within KSHV
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latency or inducing reactivation of the lytic cycle [8–15]. However, the effectiveness of these

compounds requires further evaluation in addition to consideration of their side effects.

Therefore, identification of more effective therapeutic candidates against KSHV is urgently

needed. Based on previous data showing that LANASIM is essential for the establishment and

maintenance of KSHV latency, a live-cell based reporter system was developed to screen inhib-

itors selectively targeting the interaction between LANASIM and SUMO2. Through this study,

a small molecule compound named Cambogin was identified. Cambogin exhibited an efficient

inhibitory effect on cell growth in PEL in vitro and in vivo through specifically reducing DNA

copy number of the viral episome in the establishment and maintenance of KSHV latent infec-

tion. Therefore, Cambogin may be a promising candidate for the further development of a

therapeutic strategy for PEL. To our knowledge, this is the first report to identify a small mole-

cule inhibitor that disrupts KSHV latent infection by directly targeting a viral nuclear antigen

important to the maintenance of the viral episome DNA. However, although we did observe

that Cambogin efficiently reduces the persistence of LANA-mediated TR and viral episome,

whether the recruitment of the Origin Recognition Complex (ORC) and the Mini Chromo-

some Maintenance (MCM) complex to the viral TR region is affected by Cambogin treatment

need to be further investigation.

Increasingly, natural products have indispensably contributed to the discovery and devel-

opment of effective drugs for the treatment of human malignancies. Emerging evidence has

Fig 6. Cambogin dramatically inhibits the proliferation of KSHV-infected cells. Equal amounts of KSHV-positive

PEL and KSHV negative BJAB cells were untreated or individually treated with 500 nM Cambogin or

Garcimultiflorone H for the indicated time, and then subjected to quantitation of total live cell amount. DMSO was

used as a control. The KSHV episome copy number relative to the untreated group at day 5 and 7 in BCBL1 cells was

measured and is shown. ��p< 0.01; n.s., no significant.

https://doi.org/10.1371/journal.ppat.1008174.g006
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Fig 7. Cambogin significantly inhibits KSHV-latently infected cell growth in vitro and in vivo. (A) Cambogin selectively reduced the

colony formation in KSHV-latently infected cells in vitro. Equal amounts of iSLK and KSHV-latently infected iSLK-K cells were

individually inoculated and treated with or without Cambogin and Garcimultiflorone H and subjected to colony formation assays as

indicated. The cells were fixed 12 days later and stained with crystal violet to determine colony number. A representative well with colony

formation is shown. Right panel, the relative amount of colony formation was calculated from three independent experiments. Double

asterisks indicate p<0.01. (B) Cambogin inhibited tumor progression in a xenograft mouse model of primary effusion lymphoma. The

tumor burden of NOD/SCID mice was analyzed by luminescence assay at week 5 and then following treatment with PBS/DMSO, or

Cambogin every other day for 3 weeks. Top panel, schematic of NOD/SCID mice intraperitoneally engrafted with ten million BCBL1-Luc

cells for 35 days, and then untreated or treated with same amount of Cambogin every other day for 20 days. (C) Weights of NOD/SCID

mice intraperitoneally engrafted with 107 BCBL-Luc cells for 5 weeks and then treated with Cambogin, every other day, for 3 weeks, were

monitored every week. (D) Luminescent signals were quantified and expressed in region-of-interest (ROI) signal intensity [total radiant

efficiency(p/s)/(μW/cm2)] in panel B. (E) Total percentage of mouse survival in each group is shown in panel B.

https://doi.org/10.1371/journal.ppat.1008174.g007
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shown that PEL is particularly susceptible to treatment with some natural products. For exam-

ple, both capsaicin and apigenin are major bioflavonoids present in several vegetables that are

consumed daily and have anti-inflammatory and anticancer properties via the interruption of

multiple cancer-related pathways including PI3K/AKT and STAT3. In PEL cells, capsaicin not

only decreased the expression of the latent and lytic KSHV protein, but also up-regulated the

surface expression of HLA-DR for detection by the immune system [27]. In contrast, apigenin

was shown to activate p53 and reduce ROS production [28]. Epigallocatechin-3-gallate

(EGCG), as a major constituent of green tea, has also been shown to suppress KSHV replica-

tion and induce apoptosis and autophagy in PEL cells [29]. Triptolide, a diterpenoid triepoxide

purified from the roots of the Chinese herb Tripterygium wilfordii, was shown to decrease

LANA expression and the viral titer of PEL cells [30]. In addition, Fumagillin, extracted from

Aspergillus fumigatus and a potent natural angiogenesis inhibitor, also induced KSHV reacti-

vation and inhibited PEL cell growth [31,32]. Thus, a novel inhibitor specifically targeting

KSHV-associated tumor cells would provide an effective strategy for the treatment of PEL. To

identify the natural product inhibitors specifically blocking the interaction of LANASIM and

SUMO2, we also screened the 73 Chinese herbal compound voucher specimens and further

narrowed down those small molecules with well-known structures. Interestingly, we found

that Cambogin, a bioactive natural product isolated from the Garcinia genus (a traditional

herbal medicine used for cancer treatment), efficiently inhibited the association of SUMO2

with LANASIM at an nM-level concentration, and specifically suppressed the growth of KSHV-

infected cells, but not the uninfected cells. Although some previous studies have shown that

Combogin induced caspases-independent apoptosis in breast cancer cells [24,33], and is pref-

erentially cytotoxic to cells expressing PDGFR [25], it exerts non-cytotoxicity to B-lymphoma

cells, including KSHV-infected PEL cells, at a low concentration of less than 1 μM. More

importantly, Cambogin markedly inhibits the in vitro proliferation of different types of

KSHV-infected cells (PEL, KMM, K-iSLK), instead of the KSHV-uninfected cells (BJAB, MM,

iSLK). These results show the specific anti-tumor activity and favorable therapeutic index of

Cambogin in the KSHV-infected cancers. The xenograft mouse model experiment results fur-

ther demonstrate that Cambogin is a preferential drug for the inhibition of PEL tumor regres-

sion. However, it was also observed that Cambogin did not effectively induce regression of

PEL with a large tumor size, although the overall survival of tumor xenograft mice was

extended. This result indicates that Cambogin exerts greater inhibitory effect in the early stage

than in the late stage of PEL development. In addition, it is worthy to mention that Cambogin

is administered intraperitoneally for inhibiting the PEL growth in vivo in this study, how well

Cambogin does when administered orally remains unclearly and needs to be further

investigation.

Combination cytotoxic chemotherapy is the current standard of care for PEL [5,6], how-

ever, lack of efficacy, off-target effects, and chemotherapeutic resistance continue to limit the

utility of this approach. A combination of highly active anti-viral therapies is still being

explored [12]. In the current study, in addition to Cambogin, Garcimultiflorone H (which has

a similar molecular structure) exhibited an inhibitory effect on the association of SUMO2 with

LANASIM in the LgBIT-SUMO2/LANA-SmBIT-screening system. However, Garcimultiflor-

one H did not effectively inhibit the establishment and maintenance of KSHV latent episome

DNA. Although the inhibitory effect of Garcimultiflorone H on the proliferation of PEL cells

was lower than Cambogin, it was still much higher than the DMSO control. This indicates that

Garcimultiflorone H may be inefficiently in blocking the interaction of SUMO2 with LANA-
SIM due to the subtle difference in molecular structure compared to Cambogin. Interestingly,

Garcimultiflorone H also exhibited a similar effect as Cambogin on the inhibition of EBV-

infected B cell growth. Given the fact that most AIDS-associated PEL malignancy is associated
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with KSHV and EBV infection, the combination of Garcimultiflorone H with Cambogin

could provide another effective strategy for inhibiting the growth of PEL. However, this

requires further investigation.

Most KSHV-associated cancer cells harbor a latent infection, and the few cells that undergo

lytic replication may contribute to pathogenesis and tumorigenesis. Additionally, the cytotoxic

drugs used to treat cancers harboring viral infection often contribute to activation of the viral

lytic cycle as a side effect. Numerous studies have shown that the targeting of pathways

involved in differentiation and survival is a promising strategy for treating PEL. For example,

Nutlin-3 induced apoptosis in PEL cells through disruption of p53-MDM2 interaction [34].

Triptolide inhibits cell proliferation and PEL progression by suppressing STAT3 activity, IL-6

secretion, and LANA expression [30]. Our study revealed that Cambogin mainly disrupts the

maintenance of KSHV latent episome DNA and establishment during primary infection, with

less reactivation of the lytic cycle. This is a potential explanation for the effective regression of

PEL following Cambogin treatment in vivo. Taken together, our studies have identified Cam-

bogin as a promising candidate for the treatment of PEL patients.

Materials and methods

DNA constructions and reagents

Plasmids expressing recombinant proteins of LANA1-329-WT, LANA1-329-ΔSIM or

SUMO2(ΔGG) with LgBiT or SmBiT were generated by PCR amplicon inserted into the

vectors of pBiT1.1-C[TK/LgBiT], pBiT2.1-C[TK/SmBiT], pBiT1.1-N[TK/LgBiT] and

pBiT2.1-N[TK/SmBiT] with restriction enzymes BglII and EcoRI, respectively. Plasmids

LANA-myc, LANA1-329-WT or ΔSIM, FLAG-SUMO2, GST-LANA1-329(N) and His-

SUMO2 were described previously [23,35]. GST-LANA1-329(N) with Q258A and T261A

double mutation was constructed by PCR-direct site mutation technique. Antibodies to

PARP1 (F2, Santa cruz), KAP1 (20C1, Abcam), FLAG (M2, Sigma), His (10E2, Abmart),

SUMO2 (EPR4602, Abcam), GAPDH (60004-1-Ig, Proteintech) and Tubulin (66031–1,

Proteintech) were used according to the manufacturers specifications. Mouse monoclonal

antibodies against LANA1, RTA or myc (9E10) were stored in the lab. Protease inhibitors

phenylmethylsulfonyl-fluoride (PMSF), Leupeptin, Aprotinin, and Pepstatin A, and SENP

inhibitor N-ethyl-maleimide (NEM) were purchased from Amresco.

Seventy-three Chinese herbal compounds voucher specimens were deposited at the Engi-

neering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai Uni-

versity of Traditional Chinese Medicine. Cambogin was isolated from the twigs of Garcino

esculentat Y. H. Li, which collected in Nujiang, Yunnan Province, China, in August 2010.

Cambogin’s structure was determined using 1H-NMR and 13C-NMR spectral analysis, and the

purity of this compound was more than 98% based on HPLC analysis (Fig 2B). Ultra-high per-

formance liquid chromatography (UPLC) was performed using a Waters Acquity UPLC

(Waters, Milford, MA, USA), equipped with a Quaternion solvent delivery system, an auto-

sampler and a photodiode array detection system. Chromatography was used a Waters

ACQUITY UPLC HSS T3 (1.7 μm, 2.1�100 mm). The mobile phase consisted of acetonitrile

(A) and 0.1% formic acid (B). And the UPLC eluting conditions were as follows 0–15 min,

60%-90% (A); 15–18 min; 90%-100% (A); 18–20 min, 100–60% (A). Detection wavelength:

232nm, 278nm, 315nmm; flow rate: 0.4 mL/min; inject volume: 2 μL. Cambogin was dissolved

in absolute dimethyl sulfoxide (DMSO) at a concentration of 10 mM for in vitro experiments

(100 mM for in vivo experiments), then diluted in tissue culture medium and filtered before

use. The 0.5% DMSO in cell experiments was used as a control.
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Cell lines

KSHV and EBV-double negative BJAB and DG75 (American Type Culture Collection,

ATCC), KSHV-positive BC3, BCBL1, and BCP1, and KSHV and EBV-double positive BC1

cells were cultured in RPMI 1640 supplement with 10% fetal bovine serum (FBS, Hyclone).

iSLK (1μg/ml puromycin, 250μg/ml G418) and K-iSLK (1mg/ml hygromycin, 250μg/ml G418

and 1μg/ml puromycin, a gift from Shou-Jiang Gao at University of Pittsburgh) cells were

maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% FBS. Rat pri-

mary embryonic mesenchymal stem cells (MM) and KSHV-transformed MM cells (KMM), a

gift from Shou-Jiang Gao at University of Pittsburgh, were maintained in DMEM containing

10% FBS. Human embryonic lung fibroblasts MRC5, Hela and HEK293 cells were routinely

cultured in DMEM containing 10% FBS. All mediums were supplement with 100 U/ml peni-

cillin and 100 μg/ml streptomycin. All cell lines were incubated at 37˚C in a humidified envi-

ronmental incubator with 5% CO2.

Luciferase assay

HEK293 cells were plated at 40,000 cells per well in 24-well plate for 24 h with cell confluence

reaching 60–70%. Cells were transfected Nano BiT vectors (Promega, Cat.# 2014) with

FuGENE HD Transfection Reagent (Promega, Cat.# E2311) according to the manufacturer’s

recommendations. HEK293 were incubated at 37˚C in a 5% CO2 incubator for 6 h, and then

aspirated medium and replaced with new medium. Nano-GloR LCS Dilution Buffer need to

be equilibrated at ambient temperature and Nano-GloR Live Cell Substrate were diluent by

LCS (1:20). Aspirate medium and replace with 100μl of cell culture medium to harvest cells,

supernatants were then transferred to a new 96-well white plate, and added 25μl of Nano-GloR

Live Cell Reagent to each well, and gently mix the plate by hand and then wait 15–20 min to

ensure thermal equilibration of the entire plate at 37˚C, and measure luminescence by micro-

plate reader (Tecan). A pair of strongly interacting proteins (LgBIT-PRKAR2A/SmBIT-PR-

KACA) is used as a positive control, and the HaloTag-SmBiT and LgBIT-SUMO2 constitutes

as a negative control.

Small compounds screening of Chinese herbal extracts

HEK293 cells were seeded in 24-well plated at 40,000 cells per well for 24 h and then trans-

fected LANA WT-SmBiT and LgBiT-SUMO2 at ratio 1:1 with FuGENE HD transfection

reagent. At 6 h post-transfection, cells were treated with small compounds at 100nM final con-

centrations in DMSO for 48 h, and then measured by luciferase assay. DMSO was used as a

parallel control. The results were analyzed with graphpad prism 5.0 software. The lumines-

cence of live cells treated with DMSO was set as control. Compounds that showed at least 50%

inhibition to the interaction of LANA and SUMO2 were chosen.

Immunoprecipitation and immunoblotting

HEK293 cells were transfected with 1 mg/ml polyethyleneimine (PEI) at a ratio of 5μg LANA-

myc and 5μg FLAG-SUMO2: 30μl PEI. At 6 h post-transfection, cells were treated with small

molecules at 100 nM final concentrations in DMSO for 48 h. DMSO and PBS were used as

parallel controls. Cell were harvested, washed once with ice-cold PBS, and lysed in 600 μl ice-

cold RIPA buffer [150mM NaCl, 50mM Tris (pH7.6), 1% Nonidet P-40, 2 mM EDTA, 1mM

PMSF, 1g/ml aprotinin, 1g/ml leupeptin, 1 g/ml pepstatin, 2.5mM NEM] for 30 min with con-

stant vortex at 4˚C. Cell debris was removed by centrifugation at 14,500 rpm at 4˚C for 10min.

The supernatants were then transferred to a new eppendorf tube. Five percent of the

Targeting viral SIM for treating PEL

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008174 December 12, 2019 16 / 23

https://doi.org/10.1371/journal.ppat.1008174


supernatant was used as input. The rest lysates were then precleared with normal mouse IgG

(Invitrogen) and protein A/G Sepharose beads by end-over-end rotation at 4˚C for 1 h. After

preclear, beads were spun out. Supernatant was then incubated with primary antibody at 4˚C

with rotation overnight. Protein of interest complexes were captured the next day with 30μl

protein A/G Sepharose beads with rotation on 4˚C for another 4 h. Beads were spun out,

washed with ice-cold RIPA buffer for four times and re-suspended with 30μl RIPA buffer. For

immunoblotting assays, the input lysates and immunoprecipitated (IP) complexes were boiled

in 6xSDS loading buffer, proteins were fractionated by SDS-PAGE, and transferred to a

0.45-mm nitrocellulose membrane. The protein of interest in the membrane was probed with

primary antibodies at 4˚C with shake for overnight, followed by incubation with appropriate

secondary antibodies for another 1 h at room temperature. The member was scanned with an

Odyssey Infrared scanner (Li-Cor Biosciences). Densitometric analysis was performed with

the Odyssey scanning software. The membrane was stripped using stripping buffer (200 mM

Glycine, 1% SDS, pH 2.5) for re-immunoblotting.

GST pull-down assay in vitro
Overnight starter cultures (50 ml) of BL21 (DE3) transformed with plasmid expressing His-

SUMO2, GST or GST-LANA1-329 protein were used to individually inoculated 500 ml of Luria

Broth (LB) culture medium with specific antibiotic and grown at 30˚C to a density of appropri-

ately 0.6 optical density at 600nm. After 1 mM isopropylthiogalactopyranoside (IPTG) induc-

tion at 30˚C for 4 h, the bacteria were collected and sonicated in lysis buffer (20 mM Tris-HCl

pH 8.0, 100 mM NaCl, 0.5% NP40, 1 mM EDTA, 1 M DTT, 5% Sarkosyl and the protease

inhibitor cocktail). Recombinant proteins His-SUMO2 and GST-LANA1-329 were purified by

Glutathione Sepharose and Ni2+ beads, respectively. For pull-down assay, purified His-

SUMO2 proteins were individually incubated with GST or GST- LANA1-329 proteins loaded

on beads for 3 h at 4˚C in NETN binding buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl,

10 μm ZnCl2, 10% glycerol, freshly supplemented with 0.1 mM Dithiothreitol and protease

inhibitors). After washing, unbound and bound proteins were individually eluted with SDS

sample buffer and analyzed by gel electrophoresis followed by immunoblotting assays.

Interaction mode analysis of LANASIM and Cambogin

The three-dimensional structure of LANASIM domain (233–240 aa) is used as a molecular

docking protein [23], which is hydrogenated by SYBYL software, charged by Biopolymer/pre-

pare structure/Load charge, and optimized by Computer/Minimize Staged minimization.

Three-dimensional conformation, optimization and format conversion of docking com-

pounds cambogin is prepared. The coordinates of the docking center are X = -9.627, Y =

-15.684, Z = 50.539, and the radius of the docking is 20Å. The template for docking is chem-

score kinase, and the scoring function for docking is ChemPLP. Results of the conformation of

10 small molecules were retained.

Cell viability assay

Cells were seeded at a density of 0.2 million per ml, and treated with different small compound

at a series of concentration (1, 10, 100μM) for 48 h. B-lymphoma cells viability was real-time

measured by Live cell counter (Beckman) with trypan blue staining. For iSLK and K-iSLK

cells, cells viability was detected by Methyl-thiazolyltetrazolium (MTT) solution (5 mg/ml,

Sigma) as described previously [36].
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Quantitation of viral episome DNA

Total DNA was extracted by lysing buffer (10 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM

EDTA, 1% SDS) followed by proteinase K digestion. The numbers of KSHV episomal DNA

copies were calculated by quantitative PCR targeting ORF72 (sense: 5’-GTTCCACTGCC

GCCTGTA-3’, anti-sense: 5’-TATTTGGGACCTTTCAACAA TCTCTT-3’, 609bps). The

pET-28a plasmid carrying ORF72 DNA was used as a standard control. Actin (sense: 5’-CTCC

ATCCTGGCCTCGCTGT-3’; anti-sense: 5’-GCTGTCACCTTCA CCGTTCC-3’, 268 bps) was

used as an internal control. Relative gene expression levels were calculated by using the thresh-

old cycle (2_ΔΔCT) formula.

Chromatin immunoprecipitation

The chromatin immunoprecipitation (ChIP) experiments were performed as previously

described [23]. Briefly, cells (3×108) were cross-linked with formaldehyde in growth medium

at 37˚C for 10 min, and then at 4˚C for 50 min. Formaldehyde was quenched by adding gly-

cine. Fixed cells were washed with PBS, and sonicated to an average fragment size of 300–500

bp. Solubilized chromatin extracts were clarified by centrifugation, diluted and pre-incubated

with protein A-Agarose (Invitrogen Life Technologies) with normal mouse sera. Aliquots

(600 μl) were incubated with 20 μg of anti-myc (9E10) antibody for overnight at 4˚C. Immune

complexes were separated into bound and unbound complexes with protein A-agarose and

cross-links were reversed by treatment at 65˚C overnight. After treatment with RNase A and

proteinase K, samples were extracted once with phenol/chloroform, and the DNA was precipi-

tated. Precipitated DNA was pelleted, washed once with 70% ethanol, dried, and resuspended

in distill water. The DNA was analyzed by PCR using TR primer. Relative enrichment of DNA

binding was shown as a percentage of input.

KSHV virion purification and primary infection

The K-iSLK cells were subjected to induction for KSHV reactivation by Doxycyclin (1ug/ml)

and sodium butyrate (1mM). After induction, the supernatant of culture medium was col-

lected and filtered through 0.45 mm filter, and viral particles were spun down at 25,000 rpm

for 2 h at 4˚C. The concentrated virus was collected and used for primary infection. Hela cells

(1.5x10^5 per well in 24-well plate) infected by centrifugation at 1,500 rpm at 25˚C for 1 h,

and then returned to 37˚C for 1 h with 2% FBS culture medium. After washing with PBS for

three times, compounds was added at a concentration 100nM. Infection efficiency was mea-

sured by flow cytometer and immunofluorescence assay.

Viral entry assay

MM and Hela cells (1x104 per well in 96-well plate) that incubated with GFP-tagged KSHV

virion particles (MOI = 5) generated from K-iSLK cells for 2 h on ice, were washed twice with

PBS to remove unbound virus, and then returned to 37˚C for 1 h with 6% FBS culture medium

with 100nM compounds. The cells were digested with 0.05% trypsin-EDTA at 37˚C for 5 min

to remove non-internalized virus, and washed twice with PBS and lysed immediately for

KSHV DNA extraction and quantitative PCR analysis by using ORF73 as target.

HCMV primary infection

Bacterial artificial chromosome (BAC) pAD-GFP carried the green fluorescent protein (GFP)-

tagged genome of the HCMV AD169 strain was used to produce wild-type virus ADwt as

described previously[37]. Human embryonic lung fibroblast MRC5 cells were seeded at a
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density of 8,000 cells per well in 96-well plates and allowed to attach overnight. Cells were

infected with wild-type HCMV at a multiplicity of infection (MOI) of 0.3 or 3 in DMEM con-

taining 10% FBS for 2 h, (at this point, collected cell supernatant and virus titer was used as

input), and then replace the normal medium (500μl) and add DMSO and Cambogin (0.5 and

1μM). MRC5 cells were examined under a phase-contrast microscope at 4 day or 8 day post-

infection (dpi) for their infection efficiency. Dying cells were detached from the culture plate

and fragmented, while surviving cells remained attached and maintained a fibroblast-like mor-

phology. At the indicated time points, collected supernatant was used to analysis for HCMV

infection efficiency by TCID50 in human fibroblast cells.

Cell proliferation and colony formation assay

Equal amount of cells were seed and treated with 100nM Cambogin or Garcim.H. Cells growth

rate was real-time measured by live cell counter (Beckman) with trypan blue staining. Experi-

ments were performed in triplicate. For colony formation, equal amount of cells were dis-

persed to 10-cm plate and then treated with 100nM Cambogin or Garcim. H (Every three days

change medium and add new compounds). After 2 weeks, cell culture supernatants were dis-

carded and fixed with 4% (v/v) formaldehyde, and then stained with 0.1% crystal violet. Col-

ony formation in each dish was scanned by Li-Cor Odyseesy and counted by Image J.

Experiments were performed in triplicate.

Animal experiments

For the tumor formation experiment, 30 female NOD/SCID mice (Beijing Vital River Labora-

tory Animal Technology Co., China) at 5 weeks old were each intraperitoneally injected with

107 BCBL1 cells expressing luciferase (BCBL1-Luc). At week 5 post-inoculation, mice were

intraperitoneally injected with D-luciferin at 150 mg/kg body weight and imaged with an IVIS

Spectrum in vivo imaging system (PerkinElmer). The region-of-interest (ROI) signals based

on the (p/s)/(microwatts/square centimeter) formula were analyzed with Living Image soft-

ware (PerkinElmer). In our preliminary experiments, we found that the toxicity of Cambogin

was negligible at 25 mg/kg in vivo. For the tumor regression experiment, 17 NOD/SCID mice

with similar size were randomly split into 4 groups, and individually treated with PBS, DMSO,

2.5 mg/kg and 25 mg/kg every other day for 3 weeks, and all groups were weighed once a

week. At week 9 post -inoculation (namely, week 4 post-treatment), live imaging was

performed.

Ethics statement

All animal studies were conducted in accordance with China guide for the Care and Use of

Laboratory Animals. All experiments were approved and overseen by the institutional animal

care and use committee at Fudan University under Protocol ID 196086.

Statistical analysis

The statistical analysis was performed by using SPSS software. The experimental and control

groups were assessed by student’s t-test for single comparisons. P values less than 0.05 were

considered to indicate statistically significant differences.

Supporting information

S1 Table. Information of Chinese herbal compounds.

(PDF)
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S1 Fig. Cambogin induced relatively higher cytotoxicity in the KSHV-infected cells. The

cell viability of KSHV-infected and uninfected BJAB and iSLK cells treated with different dos-

age of compounds for 24 h as indicated in figure. The concentration of Cambogin-induced

50% cell death (CC50) was calculated and shown.

(TIF)

S2 Fig. Cambogin reduces viral episomal DNA copy in HeLa cells with KSHV de no infec-

tion. Equal amounts of Hela cells incubated with GFP-tagged KSHV virions (MOI = 2) were

untreated or treated with 100 nM Cambogin and Garcimultiflorone H (DMSO as a control)

for 12, 24, 48, and 72 h, followed by immunofluorescence analysis to detect the infection effi-

ciency of KSHV.

(TIF)

S3 Fig. Cambogin did not impair the primary infection of HCMV. Equal amounts of MRC5

cells incubated with GFP-tagged HCMV (MOI = 0.3 or 3) were subjected to similar treatment

and analysis at day 4 or 8 post-infection as described in Fig 5D. The virion particles of TCID50

from supernatants of cells with MOI = 0.3 are shown at the bottom panel. �p> 0.05.

(TIF)

S4 Fig. Cambogin selectively reduced the colony formation in KSHV-latently infected MM

cells in vitro. Equal amounts of MM and KSHV-latently infected KMM cells were individually

inoculated and treated with or without Cambogin and Garcimultiflorone H and subjected to

colony formation assays as indicated. The cells were fixed 10 days later and stained with crystal

violet to determine colony number. A representative well with colony formation is shown. Bot-
tom panels, the relative amount of colony formation was calculated from three independent

experiments. ��p< 0.01.

(TIF)
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