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ABSTRACT: The nucleation of crystals in liquids is one of nature’s most ubiquitous
phenomena, playing an important role in areas such as climate change and the production
of drugs. As the early stages of nucleation involve exceedingly small time and length scales,
atomistic computer simulations can provide unique insights into the microscopic aspects of
crystallization. In this review, we take stock of the numerous molecular dynamics
simulations that, in the past few decades, have unraveled crucial aspects of crystal
nucleation in liquids. We put into context the theoretical framework of classical nucleation
theory and the state-of-the-art computational methods by reviewing simulations of such
processes as ice nucleation and the crystallization of molecules in solutions. We shall see
that molecular dynamics simulations have provided key insights into diverse nucleation
scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the
general applicability of classical nucleation theory has been repeatedly called into question.
We have attempted to identify the most pressing open questions in the field. We believe
that, by improving (i) existing interatomic potentials and (ii) currently available enhanced
sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing
simulations a step closer to experiments.
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1. INTRODUCTION

Crystal nucleation in liquids has countless practical consequen-
ces in science and technology, and it also affects our everyday
experience. One obvious example is the formation of ice, which
influences global phenomena such as climate change,1,2 as well as
processes happening at the nanoscale, such as intracellular
freezing.3,4 On the other hand, controlling nucleation of
molecular crystals from solutions is of great importance to
pharmaceuticals, particularly in the context of drug design and
production, as the early stages of crystallization impact the crystal
polymorph obtained.5,6 Even the multibillion-dollar oil industry
is affected by the nucleation of hydrocarbon clathrates, which can
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form inside pipelines, endangering extraction.7,8 Finally, crystal
nucleation is involved in many processes spontaneously
occurring in living beings, from the growth of the beautiful
Nautilus shells9 to the dreadful formation in our own brains of
amyloid fibrils, which are thought to be responsible for many
neurodegenerative disorders such as Alzheimer’s disease.10,11

Each of the above scenarios starts from a liquid below its
melting temperature. This supercooled liquid12 is doomed,
according to thermodynamics, to face a first-order phase
transition, leading to a crystal.13,14 Before this can happen,
however, a sufficiently large cluster of crystalline atoms (or
molecules or particles) must form within the liquid, such that the
free energy cost of creating an interface between the liquid and
the crystalline phase will be overcome by the free energy gain of
having a certain volume of crystal. This event stands at the heart
of crystal nucleation, and how this process has been, is, and will
be modeled by means of computer simulations is the subject of
this review.
The past few decades have witnessed an impressive body of

experimental work devoted to crystal nucleation. For instance,
thanks to novel techniques such as transmission electron
microscopy at very low temperatures (cryo-TEM), we are now
able to peek in real time into the early stages of crystallization.15 A
substantial effort has also been made to understand which
materials, in the form of impurities within the liquid phase, can
either promote or inhibit nucleation events,16 a common
scenario known as heterogeneous nucleation. However, our
understanding of crystal nucleation is far from being complete.
This is because the molecular (or atomistic) details of the process
are largely unknown because of the very small length scale
involved (nanometers), which is exceptionally challenging to
probe in real time even with state-of-the-art measurements.
Hence, there is a need for computer simulations, and particularly
molecular dynamics (MD) simulations, where the temporal
evolution of the liquid into the crystal is more or less faithfully
reproduced. Unfortunately, crystal nucleation is a rare event that
can occur on time scales of seconds, far beyond the reach of any
conventional MD framework. In addition, a number of
approximations within the computational models, algorithms,
and theoretical framework used have been severely questioned
for several decades. Although the rush for computational

methods able to overcome this time-scale problem is now
more competitive than ever, we are almost always forced to base
our conclusions on the ancient grounds of classical nucleation
theory (CNT), a powerful theoretical tool that nonetheless dates
back 90 years to Volmer and Weber.17

In fact, these are exciting times for the crystal nucleation
community, as demonstrated by the many reviews covering
several aspects of this diverse field.18−24 This particular review is
focused almost exclusively on MD simulations of crystal
nucleation of supercooled liquids and supersaturated solutions.
We take into account several systems, from colloidal liquids to
natural gas hydrates, highlighting long-standing issues as well as
recent advances. Although we review a substantial fraction of the
theoretical efforts in the field, mainly from the past decade, our
goal is not to discuss in detail every contribution. Instead, we try
to pinpoint the most pressing issues that still prevent us from
furthering our understanding of nucleation.
This article is structured in three parts. In the first part, we

introduce the theoretical framework of CNT (section 1.1), the
state-of-the-art experimental techniques (section 1.2), and the
MD-based simulation methods (section 1.3) that in the past few
decades have provided insight into nucleation. In section 2, we
put such computational approaches into context, describing both
achievements and open questions concerning the molecular
details of nucleation for different types of systems, namely,
colloids (section 2.1), Lennard-Jones (LJ) liquids (section 2.2),
atomic liquids (section 2.3), water (section 2.4), nucleation from
solution (section 2.5), and natural gas hydrates (section 2.6). In
the third and last part of the article (section 3), we highlight
future perspectives and open challenges in the field.

1.1. Theoretical Framework

1.1.1. Classical Nucleation Theory. Almost every com-
puter simulation of crystal nucleation in liquids invokes some
elements25 of classical nucleation theory (CNT). This theory has
been discussed in great detail elsewhere,26−28 and we describe it
here for the sake of completeness and also to introduce various
terms used throughout the review. Nonetheless, readers familiar
with CNT can skip to section 1.2.
CNT was formulated 90 years ago through the contributions

of Volmer and Weber,17 Farkas,29,30 Becker and Döring,31 and

Figure 1. Sketch of the free energy difference, ΔG , as a function of the crystalline nucleus size n. A free energy barrier for nucleation, Δ *G , must be
overcome to proceed from the (metastable) supercooled liquid state to the thermodynamically stable crystalline phase through homogeneous
nucleation (purple). Heterogeneous nucleation (green) can be characterized by a lower free energy barrier,Δ *G ,het, and a smaller critical nucleus size,
nhet* , whereas in the case of spinodal decomposition (orange), the supercooled liquid is unstable with respect to the crystalline phase, and the
transformation to the crystal proceeds in a barrierless fashion. The three snapshots depict a crystalline cluster nucleating within the supercooled liquid
phase (homogeneous nucleation) or as a result of the presence of a foreign impurity (heterogeneous nucleation), as well as the simultaneous occurrence
of multiple crystalline clusters in the unstable liquid. This scenario is often labeled as spinodal decomposition, although the existence of a genuine
spinodal decomposition from the supercooled liquid to the crystalline phase has been debated (see text).
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Zeldovich,32 on the basis of the pioneering ideas of none other
than Gibbs himself.33 CNT was created to describe the
condensation of supersaturated vapors into the liquid phase,
but most of the concepts can also be applied to the crystallization
of supercooled liquids and supersaturated solutions. According
to CNT, clusters of crystalline atoms (or particles or molecules)
of any size are treated as macroscopic objects, that is,
homogeneous chunks of crystalline phase separated from the
surrounding liquid by a vanishingly thin interface. This
apparently trivial assumption is known as the capillarity
approximation, which encompasses most of the strengths and
weaknesses of the theory. According to the capillarity
approximation, the interplay between the interfacial free energy,
γ , and the difference in free energy between the liquid and the
crystal, μΔ , fully describes the thermodynamics of crystal
nucleation. In three dimensions,34 the free energy of formation,
ΔG , for a spherical crystalline nucleus of radius r can thus be
written as the sum of a surface term and a volume term

π γ π μΔ = − Δ


  

G r r4
4
3

2

surface term

3

volume term (1)

This function, sketched in Figure 1, displays a maximum
corresponding to the so-called critical nucleus size n*

πρ γ
μ

* =
Δ

n
32

3

3

3
(2)

where ρ is the number density of the crystalline phase. The
critical nucleus size represents the number of atoms that must be
included in the crystalline cluster for the free energy difference,

μΔ , to match the free energy cost due to the formation of the
solid−liquid interface. Clusters of crystalline atoms occur within
the supercooled liquid by spontaneous, infrequent fluctuations,
which eventually lead the system to overcome the free energy
barrier for nucleation

π γ
μ

Δ * =
Δ

G
16

3

3

2
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triggering the actual crystal growth (see Figure 1).
The kinetics of crystal nucleation is typically addressed by

assuming that no correlation exists between successive events
increasing or decreasing the number of constituents of the
crystalline nucleus. In other words, the time evolution of the
nucleus size is presumed to be a Markov process, in which atoms
in the liquid either order themselves one by one in a crystalline
fashion or dissolve one by one into the liquid phase. In addition,
we state that every crystalline nucleus lucky enough to overcome
the critical size n* quickly grows to macroscopic dimensions on a
time scale much smaller than the long time required for that
fortunate fluctuation to come about. If these conditions are
met,35 the nucleation rate, that is, the probability per unit time
per unit volume of forming a critical nucleus does not depend on
time, leading to the following formulation of the so-called steady-
state nucleation rate

= −
Δ *⎛

⎝⎜
⎞
⎠⎟

G
k T

exp0
B (4)

where kB is the Boltzmann constant and 0 is a prefactor that we
discuss later. The steady-state nucleation rate is the central

quantity in the description of crystallization kinetics, as much as
the notion of critical nucleus size captures most of the
thermodynamics of nucleation.
All quantities specified up to now depend on pressure and

most notably temperature. In most cases, the interfacial free
energy, γ , is assumed to be linearly dependent on temperature,
whereas the free energy difference between the liquid and
solid phases, μΔ , is proportional to the supercooling,
Δ = −T T T (or the supersaturation). Several approxima-
tions exist to treat the temperature dependence of γS

36 and
μΔ ,37 which can vary substantially for different supercooled

liquids.38 In any case, it follows from eq 3 that the free energy
barrier for nucleation, Δ *G decreases with supercooling. In
other words, the farther one is from the melting temperatureT ,
the larger the thermodynamic driving force for nucleation is.
Interestingly, in the case of supercooled liquids, kinetics goes

the other way, as the dynamics of the liquid slow down with
supercooling, thus hindering the occurrence of nucleation events.
In fact, although a conclusive expression for the prefactor the
latter is still lacking,39,40 0 it is usually written within CNT as27

ρ=0 kin (5)

where ρ is the number of possible nucleation sites per unit
volume, is the Zeldovich factor27,41 (accounting for the fact
that several postcritical clusters might still shrink without
growing into the crystalline phase), and kin is a kinetic
prefactor.39 The latter should represent the attachment rate, that
is, the frequency with which the particles in the liquid phase reach
the cluster rearranging themselves in a crystalline fashion.
However, in a dense supercooled liquid, kin also quantifies the
ease with which the system explores configurational space,
effectively regulating the amplitude of the fluctuations possibly
leading to the formation of a crystalline nucleus. In short, we can
safely say that kin involves the atomic or molecular mobility of
the liquid phase, more often than not quantified in terms of the
self-diffusion coefficient ,27 which obviously decreases with
supercooling. Thus, for a supercooled liquid, the competing
trends of Δ *G and kin lead, in the case of diffusion-limited
nucleation,42 to a maximum in the nucleation rate, as depicted in
Figure 2. The same arguments apply when dealing with processes
such as the solidification of metallic alloys.43,44 In the case of
nucleation from solutions, γ and μΔ depend mainly on
supersaturation. However, the dependence of the kinetic
prefactor on supersaturation is much weaker than the temper-
ature dependence of kin characteristic of supercooled liquids.
As a result, there is usually no maximum in the nucleation rate as
a function of supersaturation for nucleation from solutions.45

Although kin is supposed to play a minor role compared to
the exponential term in eq 4, the kinetic prefactor has been
repeatedly blamed for the quantitative disagreement between
experimental measurements and computed crystal nucleation
rates.39,46 Atomistic simulations could, in principle, help to clarify
the temperature dependence as well as the microscopic origin of

kin and also of the thermodynamic ingredients involved in the
formulation of CNT. However, quantities such as γ are not only
infamously difficult to converge within decent levels of
accuracy47,48 but can even be ill-defined in many situations.
For instance, it remains to be seen whether γ , which, in
principle, refers to a planar interface under equilibrium
conditions, can be safely defined when dealing with small
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crystalline clusters of irregular shapes. In fact, the early stages of
the nucleation process often involve crystalline nuclei whose size
and morphology fluctuate on a time scale shorter than the
structural relaxation time of the surrounding liquid. Moreover,
the dimensions of such nuclei can be of the same order as the
diffuse interface between the liquid and the solid phases, thus
rendering the notion of a well-defined γ value quite dangerous.
As an example, Joswiak et al.49 recently showed that, for liquid
water droplets, γ can strongly depend on the curvature of the
droplet. The mismatch between the macroscopic interfacial free
energy and its curvature-dependent value can spectacularly affect
water-droplet nucleation, as reported by atomistic simulations of
droplets characterized by radii on the order of ∼0.5−1.5 nm.

Some other quantities, such as the size of the critical cluster,
depend in many cases rather strongly on the degree of
supercooling. This is the case, for example, for the critical
nucleus size n*, which can easily span 2 orders of magnitude in
just 10 °C of supercooling.50,51

1.1.2. Two-Step Nucleation.Given the old age of CNT, it is
no surprise that substantial efforts have been devoted to extend
and/or improve its original theoretical framework. The most
relevant modifications possibly concern the issue of two-step
nucleation. Many excellent works have reviewed this subject
extensively (see, e.g., refs 18, 24, 52, and 53), so that we provide
only the essential concepts here.
In the original formulation of CNT, the system has to

overcome a single free energy barrier, corresponding to a
crystalline nucleus of a certain critical size, as depicted in Figure 3.
When dealing with crystal nucleation from the melt, it is rather
common to consider the number of crystalline particles within
the largest connected cluster, n, as the natural reaction coordinate
describing the whole nucleation process. In many cases, the melt
is dense enough that local density fluctuations are indeed not
particularly relevant and the slow degree of freedom is in fact the
crystalline ordering of the particles within the liquid network.
However, one can easily imagine that, in the case of crystal
nucleation of molecules in solutions, for example, the situation
can be quite different. Specifically, in a realistically supersaturated
solution, a consistent fluctuation of the solute density
(concentration) could be required just to bring a number nρ of
solute molecules close enough to form a connected cluster.
Assuming that the molecules involved in such a density
fluctuation will also order themselves in a crystalline fashion on
exactly the same time scale is rather counterintuitive.
In fact, the formation of crystals from molecules in solution

often occurs according to a two-step nucleation mechanism that
has no place in the original formulation of CNT. In the

Figure 2. Illustration of how certain quantities from CNT vary as a
function of supercooling, ΔT, for supercooled liquids. The free energy
difference between the liquid and the solid phase μΔ , the interfacial
free energy γ , and the kinetic prefactor kin are reported as functions of
ΔT in a generic case of diffusion-limited nucleation, characterized by a
maximum in the steady-state nucleation rate . μΔ is zero at the
melting temperature T , and kin is vanishingly small at the glass
transition temperature T .

Figure 3. Schematic comparison of one-step versus two-step nucleation for a generic supersaturated solution. (a) Sketch of the free energy difference
ΔGn,nρ as a function of the number of solute molecules in the largest “connected” cluster (they can be ordered in a crystalline fashion or not) (nρ) and of

the number of crystalline molecules within the largest connected cluster (n). The one-step mechanism predicted by CNT (purple) is characterized by a
single free energy barrier for nucleation, ΔGn,nρ,one‑step* . In contrast, the two-step nucleation requires a free energy barrier, ΔGnρ,two‑step* , to be overcome

through a local density fluctuation of the solution, leading to a dense, but not crystalline-like, precursor. The latter can be unstable (green) or stable
(orange) with respect to the liquid phase, being characterized by a higher (green) or lower (orange) free energy basin. Once this dense precursor has
been obtained, the second step consists of climbing a second free energy barrier, ΔGn,two‑step* , corresponding to the ordering of the solute molecules
within the precursor from a disordered state to the crystalline phase. (b) One-step (purple) and two-step (green and orange) nucleation mechanisms
visualized in the density (nρ)−ordering (n) plane. The one-step mechanism proceeds along the diagonal, as both nρ and n increase at the same time in
such a way that a single free energy barrier has to be overcome. In this scenario, the supersaturated solution transforms continuously into the crystalline
phase. On the other hand, within a two-step nucleation scenario, the system has to experience a favorable density fluctuation along nρ first, forming a
disordered precursor that, in a second step, orders itself in a crystalline fashion, moving along the (n) coordinate and ultimately leading to the crystal.
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prototypical scenario depicted in Figure 3, a first free energy
barrier, ΔGnρ,two‑step* , has to be overcome by means of a density
fluctuation of the solute, such that a cluster of connected
molecules of size nρ* is formed. This object does not yet have any
sort of crystalline order, and depending on the system under
consideration, it can be either unstable or stable with respect to
the supersaturated solution (see Figure 3). Subsequently, the
system has to climb a second free energy barrier, ΔGn,two‑step* , to
order the molecules within the dense cluster in a crystalline-like
fashion. A variety of different nucleation scenarios have been
loosely labeled as two-step, from crystal nucleation in colloids
(see section 2.1) or Lennard-Jones liquids (see section 2.2) to the
formation of crystals of urea or NaCl (see section 2.5), not to
mention biomineralization (see, e.g., refs 18 and 53) and protein
crystallization (see, e.g., refs 54 and 55).
In all of these cases, CNT as it is formulated is simply not

capable of dealing with two-step nucleation. This is why, in the
past few decades, a number of extensions and/ormodifications of
CNT have been proposed and indeed successfully applied to
account for the existence of a two-step mechanism. Here, we
mention the phenomenological theory of Pan et al.,54 who wrote
an expression for the nucleation rate assuming a free energy
profile similar to the one sketched in Figure 3, where dense
metastable states are involved as intermediates on the path
toward the final crystalline structure. The emergence of so-called
prenucleation clusters (PNCs), namely, stable states within
supersaturated solutions, which are known to play a very
important role in the crystallization of biominerals, for example,
was also recently fit into the framework of CNT by Hu et al.56

They proposed a modified expression for the excess free energy
of the nucleus that takes into account the shape, size and free
energy of the PNCs as well as the possibility for the PNCs to be
either metastable or stable with respect to the solution. A
comprehensive review of the subject is offered by the work of
Gebauer et al.18 It is worth noticing that these extensions of CNT
are mostly quite recent, as they were triggered by overwhelming
experimental evidence for two-step nucleation mechanisms.
1.1.3. Heterogeneous Nucleation. CNT is also the tool of

the trade for heterogeneous crystal nucleation, that is, nucleation
that occurs on account of the presence of a foreign phase (see
Figure 1). In fact, nucleation in liquids occurs heterogeneously
more often than not, as in some cases, the presence of foreign
substances in contact with the liquid can significantly lower the
free energy barrier Δ *G . A typical example is given by the
formation of ice: As we shall see in sections 2.4.1 and 2.4.2, it is
surprisingly difficult to freeze pure water, which invariably takes
advantage of a diverse portfolio of impurities, from clay minerals
to bacterial fragments,16 to facilitate the formation of ice nuclei.
Heterogeneous nucleation is customarily formulated within

the CNT framework in terms of geometric arguments.27

Specifically

θΔ * = Δ * ·G G f ( )(heterogeneous) (homogeneous) (6)

where f(θ)≤ 1 is the shape factor, a quantity that accounts for the
fact that three different interfacial free energies must be balanced:
γ (crystal,liquid), γ (crystal,foreign phase), and γ (liquid,foreign phase). For

instance, considering a supercooled liquid nucleating on top of
an ideal planar surface offered by the foreign phase, we obtain the
so-called Young’s relation

γ γ γ θ= + cos(liquid,foreign phase) (crystal,foreign phase) (crystal,liquid)

where θ is the contact angle, namely, a measure of the extent to
which the crystalline nucleus wets the foreign surface. Thus, the
contact angle determines whether and how much it could be
easier for a critical nucleus to form in an heterogeneous fashion,
as for 0 ≤ θ < π, the volume-to-surface energy ratio μ γΔ / is
larger for the spherical cap nucleating on the foreign surface than
for the sphere nucleating in the liquid. This simple formulation is
clearly only a rough approximation of what happens in reality. At
first, the contact angle is basically a macroscopic quantity, of
which the microscopic equivalent is in most cases ill-defined on
the typical length scales involved in the heterogeneous
nucleation process.57 In addition, in most cases, the nucleus
will not be shaped like a spherical cap, and to make things more
complicated, many different nucleation sites with different
morphologies typically exist on the same impurity. Finally, the
kinetic prefactor, kin, becomes even more obscure in
heterogeneous nucleation, as it is plausible that the foreign
phase will affect the dynamical properties of the supercooled
liquid.

1.1.4. Nucleation at Strong Supercooling. Moving
toward strong supercooling, several things can happen to the
supercooled liquid phase. Whether one can avoid the glass
transition largely depends on the specific liquid under
consideration and on the cooling rate (see, e.g., ref 58).
Assuming that the system can be cooled sufficiently slowly, hence
avoiding both the glass transition and crystal nucleation, one can,
in principle, enter a supercooled regime in which the liquid
becomes unstable with respect to the crystalline phase. This
region of the phase diagram is known as the spinodal region,
where the tiniest perturbation, for example, of the local density or
the degree of ordering leads the system toward the crystalline
phase without paying anything in terms of free energy (see Figure
1). In fact, below a certain critical temperature, T , the free
energy barrier for nucleation is zero, and the liquid transforms
spontaneously into the crystal on very short time scales. The
same picture holds for molecules in solution, as nicely discussed
by Gebauer et al.,18 and it cannot, by definition, be described by
conventional CNT, according to which a small Δ *G value
persists even at the strongest supercoolings.59

Although spinodal regimes have been observed in a variety of
scenarios,60 the existence of a proper spinodal decomposition
from the supercooled liquid to the crystalline phase has been
debated (see, e.g., ref 61). Enhanced-sampling MD simula-
tions,62 which we discuss in section 2.2, have suggested that
barrierless crystal nucleation is possible at very strong super-
cooling, whereas other works claim that this is not the case (see,
e.g., ref 63). Here, we simply note that, at strong supercooling
not necessarily within the presumed spinodal regimea number
of assumptions on which CNT relies become, if not erroneous,
ill-defined. The list is long, and in fact, a number of nucleation
theories27 able to at least take into account the emergence of a
spinodal decomposition exist, although they have mostly been
formulated for condensation problems. In any case, the
capillarity approximation is most likely to fail at strong
supercoolings, as the size of the critical nucleus becomes
exceedingly small, down to losing its meaning in the event of a
proper spinodal decomposition. Moreover, we shall see, for
instance, in section 2.2, that the shape of the crystalline clusters is
anything but spherical at strong supercooling and, at the same
time, the kinetic prefactor assumes a role of great importance. In
fact, nucleation at strong supercooling might very well be
dominated by kin, as the mobility of the supercooled liquid is
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what really matters when the free energy barrier for nucleation
approaches vanishingly small values. Strong supercooling is
important because this is the regime in which most computa-
tional studies have been performed. Large values of ΔT imply
high nucleation rates and smaller critical nuclei, although as one
moves away from T , most of the assumptions of CNT are
progressively invalidated.
At this point, given the substantial approximations of CNT64

and especially its old age, the reader might be waiting for us to
introduce the much more elegant, accurate, and comprehensive
theories that experiments and simulations surely embrace today.
Sadly, this is not the case. Countless flavors of nucleation theories
exist. Many of them, such as dynamical nucleation theory,65

mean-field kinetic nucleation theory,66 and coupled flux
theory,67−70 are mainly limited to condensation problems, and
some others have only rarely been applied, for example, to
crystallization in glasses,26 such as diffuse interface theory.71,72

Several improvements on CNT have been proposed, targeting
specific aspects such as the shape of the crystalline nuclei73 or the
finite size of the nonsharp crystal−liquid interface.49 Nucleation
theories largely unrelated to CNT can also be found, such as
classical density functional theory (cDFT)74−77 (classical, not to
be confused with the celebrated quantummechanical framework
of Hohenberg and Kohn78). A fairly complete inventory of
nucleation theories, together with an excellent review of
nucleation in condensed matter, can be found elsewhere.79

Here, we do not discuss the details of any of these approaches, as
indeed none of them has been consistently used to model crystal
nucleation in liquids. This is because CNT, despite having many
shortcomings, is a simple yet powerful theory that is able to
capture at least qualitatively the thermodynamics and kinetics of
nucleation for very different systems, from liquid metals to
organic crystals. It has been extended to include heterogeneous
nucleation, and it is fairly easy to modify it to take into
consideration multicomponent systems such as binary mixtures
as well.27,79

1.2. Experimental Methods

Several different experimental approaches have been employed
to understand the thermodynamics and kinetics of crystal
nucleation in liquids. Although this review discusses theory and
simulations almost exclusively, we present in this section a
concise overview of the state-of-the-art experimental techniques
to highlight their capabilities as well as their limitations.
A schematic synopsis focusing on both spatial and temporal

resolutions is sketched in Figure 4, and an inventory of notable
applications is reported in Table 1. As already stated, nucleation

is a dynamical process usually occurring on very small time and
length scales (nanoseconds and nanometers, respectively). Thus,
obtaining the necessary spatial and temporal resolutions is a
tough technical challenge.
Indeed, true microscopic80 insight has rarely been achieved.

For instance, colloids offer a playground where simple
microscopy can image the particles involved in the nucleation
events, which occur on such long time scales (seconds) that a full
characterization in time of the process has been achieved.81,82

Specifically, confocal microscopy has led to three-dimensional
imaging of colloidal systems, unraveling invaluable information
about the critical nucleus size, for example.83,84

In a similar fashion, Sleutel et al. achieved molecular resolution
of the formation of two-dimensional glucose isomerase crystals
by means of atomic force microscopy.85 This particular
investigation featured actual movies showing both crystal growth
and the dissolution of precritical clusters, as well as providing
information about the influence of the substrate. In addition,
cryo-TEM techniques have recently provided two-dimensional
snapshots of nucleation events at very low temperatures. In
selected cases, where the time scales involved are again on the
order of seconds, dynamical details have been obtained, as in the
cases of CaCO3,

86,87 metal phosphate,88 and magnetite.89

However, more often than not, crystal nucleation in liquids
takes place within time windows too small (nanoseconds) to

Figure 4. Overview of some of the experimental methods that have been applied to characterize nucleation. Ranges of the spatial and temporal
resolutions typical of each approach are reported on the x and y axes, respectively.

Table 1. Selection of Experimental Approaches That Have
Been Employed to Study Nucleation Phenomena, along with
Some Examples of Systems Examined

method example(s)

confocal scanning microscopy colloids,83,84 oogenesis in Xenopus136

AFM glucose isomerase85

SMRT-TEM, HREM organic crystals,137,138 metal phosphate88

cryo-TEM CaCO3,
86,87 magnetide,89 MCM41139

femtosecond X-ray scattering ice90,91

high-speed visible or IR
imaging

ice140

analytical ultracentrifugation CaCO3
128

powder diffraction colloids,94,95 ice96

FTIRS ice,123−125 glycine,126 paracetamol127,141

optical microscopy colloids,81,82 ice92,93

ambient-pressure XPS ice142,143

DSC glass fibers,117 hydrates,118 ice,119−121 metal
alloy122

environmental SEM CaP,144 ice145

flow chamber ice,129−131 n-penthanol132

cloud chamber ice2,133−135
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allow for a sequence of snapshots to be taken with high-spatial-
resolution instruments. In these cases, microscopic insights
cannot be obtained, and much more macroscopic measurements
have to be performed.
In this context, several experimental approaches aim at

examining a large number of independent nucleation events
for a whole set of rather small configurations of the system,
basically performing an ensemble average. For example, in
droplet experiments, nucleation is characterized as a function of
time or temperature. Freezing is identified for each nucleation
event within the ensemble of available configurations by
techniques such as femtosecond X-ray scattering,90,91 optical
microscopy,81,82,92,93 and powder X-ray diffraction.94−96 From
these data, the nucleation rate is often reconstructed by
measuring either metastable zone widths97−104 or induction
times105−110 (several examples are listed in, e.g., refs 111−115),
thus providing a solid connection to theoretical frameworks such
as CNT (see section 1.1). An essential technical detail within this
class of measurements is that the volume available for each
nucleation event has to be as small as possible to reduce the
occurrence of multiple nucleation events within the same
configuration. High-throughput devices such as the lab-on-a-
chip116 can significantly improve the statistics of the nucleation
events, thus enhancing the capabilities of these approaches.
Another line of action focuses on the study of large,

macroscopic systems. Freezing is detected by techniques such
as differential scanning calorimetry,117−122 Fourier transform
infrared spectroscopy (FTIRS),123−127 and analytical ultra-
centrifugation128 or by some flavor of chamber experi-
ments.2,129−135 In this case, the frozen fraction of the overall
system and/or the nucleation temperatures can be obtained, and
in some cases, nucleation rates have been extracted (see Table 1).
Finally, experimental methods that can detect nucleation and

the formation of the crystal (predominantly by means of optical
microscopy) but do not provide any microscopic detail have
helped to shed light on issues such as the role of the solvent or
impurities. This is usually possible by examining the amount of
crystalline phase obtained along with its structure.
Even though there are a large number of powerful

experimental techniques and new ones emerging (e.g., ultrafast
X-ray90), it is still incredibly challenging to obtain microscopic-
level insight into nucleation from experiments. As we shall see
now, MD simulations provide a powerful complement to
experiments.

1.3. Molecular Dynamics Simulations

1.3.1. Brute-Force Simulations.When dealing with crystal
nucleation in liquids, atomistic simulations should provide a
detailed picture of the formation of the critical nucleus. The
simplest way to achieve this is by so-called brute-force MD
simulations, which involve cooling the system to below the
freezing temperature and then following its time evolution until
nucleation is observed. Brute-force simulations are the antagonist
of enhanced-sampling simulations, where specific computational
techniques are used to alter the dynamics of the system so as to
observe nucleation on a much shorter time scale. Monte Carlo
(MC) techniques, although typically coupled with enhanced
sampling techniques, can be used to recoverΔ *G ,146−148 but the
calculation of kin requires other methods, such as kinetic
Monte Carlo (KMC).39 The natural choice to simulate
nucleation events is instead MD simulations, which directly
provide the temporal evolution of the system.

MD simulations aimed at investigating nucleation are usually
performed in the isothermal−isobaric ensemble (NPT), where P
(usually ambient pressure) and T < T are kept constant by
means of a barostat and a thermostat, respectively. Such
computational tweaking is a double-edged sword. In fact,
nucleation and most notably crystal growth are exothermic
processes,149 and within the length scale probed by conventional
atomistic simulations (1−104 nm), it is necessary to keep the
system at constant temperature. On the other hand, in this way,
dynamical and structural effects in both the liquid and the
crystalline phases due to the heat developed during the
nucleation events are basically neglected.150−152 Although the
actual extent of these effects is not yet clear, forcing the sampling
of the canonical ensemble is expected to be especially dangerous
when dealing with very small systems affected by substantial
finite-size effects. More importantly, thermostats and barostats
affect the dynamics of the system. Small coupling constants and
clever approaches (e.g., stochastic thermostats153) can be
employed to limit the effects of the thermostats, but in general,
care must be taken. The same reasoning applies for P and
barostats as well. A density change of the system is usually
associated with nucleation,154 the crystalline phase being more
(or less, in the case of, e.g., water) dense than the liquid parent
phase.
Three conditions must be fulfilled to extract from brute-

force MD simulations:

(1) The system must be allowed to evolve in time until
spontaneous fluctuations lead to a nucleation event.

(2) The system size must be significantly larger than the
critical nucleus.

(3) Significant statistics of nucleation events must be
collected.

Each of these conditions is surprisingly difficult to fulfill. The
most daunting obstacle is probably the first one because of the so-
called time-scale problem.155,156 In most cases, nucleation is a
rare event, meaning that it usually occurs on a very long time
scale; precisely how long depends strongly on ΔT. A rough
estimate of the number of simulation steps required to observe a
nucleation event within a molecular dynamics run is reported in
Figure 5. Under the fairly optimistic assumption that classical
MD simulations can cope with up to ∼105 molecules on a time
scale of nano-/microseconds, there is only a very narrow set of
conditions for which brute-force classical MD simulations could
be used to investigate nucleation, usually only at strong
supercooling. Time scales typical of first-principles simulations,
also reported in Figure 5 assuming up to ∼102 molecules,
indicate that unbiased ab initio simulations of nucleation events
are unfeasible.
The second important condition is the size of the system. The

number of atoms (or molecules) in the system defines the time
scale accessible to the simulation and, thus, the severity of the
time-scale problem. The reason large simulation boxes,
significantly larger than the size of the critical nucleus, are
needed is because periodic boundary conditions will strongly
affect nucleation (and growth) if even the precritical nuclei are
allowed to interact with themselves. This usually leads to
unrealistically high nucleation rates. This issue worsens at mild
supercooling, where the critical nucleus size rapidly increases
toward dimensions not accessible by MD simulations.
Third, it is not sufficient to collect information on just one

nucleation event. Nucleation is a stochastic event following a
Poisson distribution (at least ideally; see section 1.1), and so to
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obtain the nucleation rate, one needs to accumulate decent
statistics.
Taking these issues into consideration, various approaches for

obtaining have emerged. One approach, known as the
Yasuoka−Matsumoto method,157 involves simulating a very
large system, so that different nucleation events can be observed
within a single run. In this case, large simulation boxes are needed
to collect sufficient statistics and to avoid spurious interactions
between different nuclei. Another family of methods involves
running many different simulations using much smaller systems,
which is usually computationally cheaper. Once a collection of
nucleation events has been obtained, several methods for
extracting can be employed. The simplest ones (mean
lifetime158 and survival probability159,160 methods) involve the
fitting of the nucleation times to Poisson statistics. A more in-
depth technique, the so-called mean first-passage method,161

allows for a detailed analysis of the nucleus population but
requires a probability distribution in terms of nucleus size.
The literature offers a notable number of works in which brute-

force MD simulations have been successfully applied. Most of
them rely on one approach to circumvent the above-mentioned
issues, particularly the time-scale problem. As we shall see in
section 2, to simulate nucleation events, one almost always has to
either choose a very simple system or increase the level of
approximation sometimes dramatically, for instance, by coarse-
graining the interatomic potential used.
1.3.2. Enhanced-Sampling Simulations. In the previous

section, we introduced the time-scale problem, the main reason
brute-force MD simulations are generally not feasible when
studying crystal nucleation. Enhanced sampling methods alter
how the system explores its configurational space, so that
nucleation events can be observed within a reasonable amount of
computational time. Broadly speaking, one can distinguish
between free-energy methods and path-sampling methods, both
of which have been extensively discussed elsewhere (see, e.g., refs
156 and 162−164). Thus, only the briefest of introductions is
needed here.
Of the many enhanced sampling methods, only a handful have

been successfully used to compute crystal nucleation rates. This
is because information is needed about both the thermodynamics

of the system (the free energy barrier for nucleation Δ *G ) and
the kinetics of the nucleation process (the kinetic prefactor

kin). When dealing with crystal nucleation in supercooled
liquids, free-energy-based methods are rather common, such as
umbrella sampling (US)165−167 and metadynamics.168−170 In
both cases, and indeed in almost all enhanced sampling methods
currently available, the free energy surface of the actual system is
coarse-grained by means of one or more order parameters or
collective variables. The choice of the order parameter is not
trivial and can have dramatic consequences. An external bias is
then applied to the system, leading to a modified sampling of the
configurational space that allows for the reconstruction of the
free energy profile with respect to the chosen order parameter
and, thus, for the computation of the free energy barrier. This
approach has been successful in a number of cases. However,
there is a price to be paid: Upon introduction of an extra term
into the systemHamiltonian, the actual dynamics of the system is
to some extent hampered, and much of the insight into the
nucleation mechanism is lost. Moreover,Δ *G is only half of the
story. To obtain kin, one needs complementary methods,
usually aimed at estimating the probability for the system on top
of the nucleation barrierin the space of the selected order
parameterto get back to the liquid phase or to evolve into the
crystal. Most frequently, such methods are based on some flavor
of transition state theory,171−174 such as the Bennett−Chandler
formulation,175,176 and require a massive set of MD or KMC
simulations to be performed.
On the other hand, the ever-growing family of path-sampling

methods can provide direct access to the kinetics of the
nucleation process. These approaches again rely on the definition
of an order parameter, but instead of applying an external bias
potential, an importance sampling is performed so as to enhance
the naturally occurring fluctuations of the system. Within the
majority of the path-sampling approaches currently used,
including transition interface sampling177−179 (TIS) and forward
flux sampling180,181 (FFS), the ensemble of paths connecting the
liquid and the crystal is divided into a series of interfaces
according to different values of the order parameter. By sampling
the probability with which the system crosses each of these
interfaces, a cumulative probability directly related to the
nucleation rate can be extracted. Other path-sampling techniques
such as transition path sampling182,183 (TPS) rely instead on the
sampling of the full ensemble of the reactive trajectories. In both
cases, by means of additional simulations involving, for example,
committor analysis distribution184 and thermodynamic integra-
tion,185 one can subsequently extract the size of the critical
nucleus and the free energy difference between the solid and
liquid phases, respectively. Many different path-sampling
methods are available, but to our knowledge, only TPS, TIS,
and most prominently FFS have allowed for estimates of crystal
nucleation rates. Under certain conditions, path-sampling
methods do not alter the dynamics of the system, allowing for
invaluable insight into the nucleation mechanism. However, they
are particularly sensitive to the slow dynamics of strongly
supercooled systems, which hinder the sampling of the paths and
makes them exceptionally expensive computationally. Although
the past few decades have taught us that enhanced sampling
techniques are effective in tackling crystal nucleation of colloids
(see section 2.1), Lennard-Jones melts (see section 2.2), and
other atomic liquids (see section 2.3), only recently have these
techniques been applied to more complex systems.

Figure 5.Nucleation rate as a function of the simulation time needed
within an MD simulation to observe a single nucleation event. The blue
shaded region highlights the approximate simulation times currently
affordable by classical MD simulations; clearly, only very fast nucleation
processes can be simulated with brute-force MD. For homogeneous ice
nucleation, = 100 and = 1025 can typically be observed for ΔT =
30 K and ΔT = 80 K, respectively. In the derivations of classical and ab
initio simulation times, 105 and 102 molecules, respectively, were
considered, together with the number density of a generic supercooled
liquid, ρ = 0.01 molecules·Å−3.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.5b00744
Chem. Rev. 2016, 116, 7078−7116

7085

http://dx.doi.org/10.1021/acs.chemrev.5b00744


One challenging scenario for simulations of nucleation is
provided by the formation of crystals from solutions charac-
terized by very low solute concentration. Although this
occurrence is often encountered in real systems of practical
interest, it is clearly extremely difficult for MD simulations, even
if aided by conventional enhanced sampling techniques, to deal
with just a few solute molecules dissolved within 103−106 solvent
molecules. In these cases, the diffusion of the solute plays a role of
great relevance, and the interaction between solvent and solute
can enter the nucleation mechanism itself. Thus, obtaining
information about the thermodynamics, let alone the kinetics, of
nucleation at very low solute concentrations is presently a
formidable task. However, efforts have been devoted to further
our understanding of solute migration and solute-nuclei
association, for example, as demonstrated by the pioneering
works of Gavezzotti and co-workers186,187 and more recently by
Kawska and co-workers.188,189 In the latter work, the authors
illustrate an approach that relies on the modeling of the
subsequent growth step, where solute particles (often ions) are
progressively added to the (crystalline or not) cluster. After each
of these growth steps, a structural optimization of the cluster and
the solvent by means of MD simulations is performed. Although
this method cannot provide quantitative results in terms of the
thermodynamics and/or the kinetics of nucleation, it can, in
principle, provide valuable insight into the very early stages of
crystal nucleation when dealing with solutions characterized by
very low solute concentrations.
On a final note, we mention seeded MD simulations. This

technique relies on simulations in which a crystalline nucleus of a
certain size is inserted into the system at the beginning of the
simulation. Although useful information about critical nucleus
size can be obtained in this way,51,190−192 the method does not
usually allow for a direct calculation of the nucleation rate.
However, seeded MD simulations are one of the very few
methods by which it is currently possible to investigate solute
precipitate nucleation (see, e.g., Knott et al.193). In this case, the
exceedingly low attachment rate of the solute often prevents both
free-energy- and transition-path-sampling-enhanced sampling
methods from being applied effectively.
As we shall see in the next few sections, the daunting

computational costs, together with the delicate choice of order
parameter and the underlying framework of CNT, still make
enhanced-sampling simulations of crystal nucleation in liquids an
intimidating challenge.

2. SELECTED SYSTEMS
We have chosen to review different classes of systems, which we
present in order of increasing complexity. We start in sections 2.1
and 2.2 with colloids and Lennard-Jones liquids, respectively.
These systems are described by simple interatomic potentials
that allow large-scale MD simulations, and thus with them, many
aspects of CNT can be investigated and nucleation rates
calculated. In some cases, the latter can can be directly compared
to experimental results. As such, colloids and Lennard-Jones
liquids represent a sort of benchmark for MD simulations of
crystal nucleation in liquids, although we shall see that our
understanding of crystal nucleation is far from satisfactory even
within these relatively easy playgrounds. In section 2.3, we
discuss selected atomic liquids of technological interest such as
liquid metals, supercooled liquid silicon, and phase-change
materials for which nucleation occurs on very small time scales.
As the first example of a molecular system, we then focus on the
most important liquid of them all, water. We review the body of

computational work devoted to unraveling both the homoge-
neous (section 2.4.1) and heterogeneous (section 2.4.2)
formation of ice, offering a historical perspective guiding the
reader through the many advances that have furthered our
understanding of ice nucleation in the past decades.
Next, we present an overview of nucleation from solution

(section 2.5), where simulations have to deal with solute and
solvent. We take into account systems of great practical relevance
such as urea molecular crystals, highlighting the complexity of the
nucleation mechanism, which is very different from what CNT
predicts. Finally, section 2.6 is devoted to the formation of gas
hydrates.
As a general rule, increasing the complexity of the system raises

more questions about the validity of the assumptions under-
pinning CNT. The reader will surely notice that simulations have
revealed many drawbacks of CNT along the way and that
reaching decent agreement for the nucleation rate between
experiments and simulations still remains a formidable task.

2.1. Colloids

Hard-sphere model systems take a special place in nucleation
studies. One reason for this is the simplicity of the interatomic
potential customarily used tomodel them: The only interaction a
hard-sphere particle experiences comes from elastic collisions
with other particles. Because there is no attractive force between
particles, a hard-sphere system is entirely driven by entropy. As a
consequence, the phase diagram is very simple and can be
entirely described with one single parameter, the volume fraction
Φ. Only two different phases are possible: a fluid and a crystal. At
volume fractions Φ < 0.494, the system is in its fluid state; at
0.492 < Φ < 0.545, the system will be a mixture of fluid and
crystalline states; and atΦ > 0.545, the thermodynamically most
stable phase is the crystal. The transformation from fluid to
crystal occurs through a first-order phase transition.194 Despite
their simplicity, systems behaving like hard spheres can be
prepared experimentally. Colloids made of polymers are
commonly used for this purpose, the most prominent example
being poly(methyl methacrylate) (PMMA) spheres coated with
a layer of poly(12-hydroxystearic acid). After the spheres have
been synthesized, they are dissolved in a mixture of cis-decaline
and tetraline, which enables the use of a wide range of powerful
optical techniques to investigate nucleation.195,196 The possi-
bility of using these large hard spheres in nucleation experiments
has two major advantages: First, a particle size larger than the
wavelength used in microscopy experiments makes it possible to
track the particle trajectories in real space. In additional,
nucleation occurs in a matter of seconds, which allows
experimentalists to follow the complete nucleation process in
detail. Compared to other systems, it is therefore possible to
observe the critical nucleus directly, for example, by confocal
microscopy (see section 1.2), which is of crucial importance for
understanding nucleation. These qualities of hard-sphere
systems make them ideal candidates to advance our under-
standing of nucleation. As such, it is not surprising that the
freezing of hard spheres is better characterized than any other
nucleation scenario, and in fact, a number of excellent reviews in
this field already exist.197−202 Our aim here is thus not to give a
detailed overview of the field but to highlight some of the
milestones and key discoveries and connect them to other
nucleation studies. To keep the discussion reasonably brief, we
limit the latter to neutral and perfectly spherical hard-sphere
systems. However, we note that a sizable amount of work has
been devoted to a diverse range of colloidal systems, such as
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nonspherical particles,203−208 charged particles, and mixtures of
different colloidal particles,209−214 to name just a few.
Readers interested in the state of the art in about 2000 are

referred to other reviews.197,198 In the early 2000s, two major
advances in the field were made, one on the theoretical side and
the other experimentally. In 2001, Auer and Frenkel39 computed
absolute nucleation rates of a hard-sphere system using KMC
simulations. They did so by calculating Pcrit, the probability of
forming a critical nucleus spontaneously, and kin, the kinetic
prefactor. This made a direct comparison between simulations
and experiments possible. The outcome was surprising and
worrisome. They found that the experimental and theoretical
nucleation rates disagreed by several orders of magnitude. This
was surprising, because simulations did really well in describing
all sorts of properties of hard spheres before. It was worrisome
because only very few sound approximations were made by Auer
and Frenkel to obtain their nucleation rates. Their theoretical
approach seemed to be as good as it gets. The authors’
suggestion, that the problem lay in experiments or, more
precisely, in the interpretation of experiments, showed a possible
way to resolve the discrepancy. In the same year, Gasser et al.83

conducted ground-breaking experiments, imaging the nucleation
of a colloidal suspension in real space using confocal microscopy.
Four snapshots of their system containing approximately 4000
particles are shown in Figure 6. This was a significant step,

because nucleation had previously been investigated indirectly,
using the structure factor obtained from light-scattering
experiments, for example. In their study, they were able to
directly measure the size of a critical nucleus for the first time.
Achieving sufficient temporal and spatial resolution at the same
time is possible thus far only for colloidal systems (for more
details about experimental techniques, see section 1.2). They

found that the nucleus was rather aspherical with a rough surface;
both of these effects are completely neglected in CNT. Note that
aspherical nuclei also appear in LJ systems, for example (see
section 2.2.1). In addition, a random hexagonal close-packed
(rhcp) structure for the hard spheres was observed, in good
agreement with Auer and Frenkel.39 This is interesting, because
slightly different systems such as soft spheres and Lennard-Jones
particles seem to favor body-centered-cubic (bcc) stacking.
However, Gasser et al.’s study did not resolve the discrepancy
between experimental and simulated nucleation rates, as their
results were in agreement with earlier small-angle light-scattering
experiments.215

Much of the subsequent work focused on trying to resolve this
discrepancy between experiments and simulation. A step forward
was made in 2006 and 2007.216,217 Schöpe et al. found
experimental evidence supporting a two-step crystallization
process (see section 1.1.2) in hard-sphere systems. Other
systems such as proteins and molecules in solution (see section
2.5) were well-known at that time to crystallize through a more
complex mechanism than that assumed by CNT. Even for hard-
sphere systems, two-step nucleation processes were reported
before 2006;218−220 the occurrence of this mechanism was
attributed to details of the polydispersity of the hard spheres,
however. The new insight provided by Schöpe et al. in 2006 and
2007 was that the two-step nucleation process is general, and as
such, it does not depend on either polydispersity or volume
fraction. In 2010, simulations performed by Schilling et al.221

supported these experimental findings. Using unbiased MC
simulations, Schilling et al. were able to reproduce the evolution
of the structure factor from previous experiments. Not even the
simplest model system seemed to follow the traditional picture
assumed in CNT. Could this two-step mechanism explain why
the computational rates39 disagreed with experiments? At first, it
seems like a tempting explanation, because Auer and Frenkel39

had to introduce order parameters to calculate absolute
nucleation rates. Such a conclusion, however, automatically
presupposes a reaction pathway, which might not necessarily
match the nucleation pathway taken in experiments. Filion et
al.222 showed in the same year, however, that very different
computational approaches [brute-force MD, US, and FFS, which
we described earlier (see section 1.3.2)] led to the same
nucleation rates, all in agreement with Auer and Frenkel.39 They
therefore concluded that the discrepancy between simulations
and experiments did not lie in the computational approach
employed by Auer and Frenkel. They offered two possible
explanations, one being that hydrodynamic effects, completely
neglected in the simulations, might play a role and the other
being possible difficulties in interpreting the experiments.
Schilling et al.147 tried to address one of the key issues when
comparing experiments with simulations: uncertainties and error
estimation. Whereas the determination of the most characteristic
quantity in hard-sphere systems, the volume fractions, is
straightforward for simulations, experimentalists are confronted
with a more difficult task in this case. The typical error in
determining the volume fraction experimentally is about±0.004,
which translates into an uncertainty in the nucleation rate of
about an order of magnitude. Upon taking these considerations
into account, the authors concluded that the discrepancy can be
explained by statistical errors and uncertainties.
Does this mean that the past 10 years of research tried to

explain a discrepancy that is actually not there? Filion et al.223

rightfully pointed out that, whereas the rates between experi-
ments and simulations coincide at high volume fraction, they still

Figure 6. Crystallization of PMMA withΦ = 0.45 observed by confocal
microscopy. Red (large) and blue (small) spheres show crystal- and
liquid-like particles, respectively. The size of the observed volume is 58
μm by 55 μm by 20 μm, containing about 4000 particles. After shear
melting of the sample, snapshots were taken after (A) 20, (B) 43, (C) 66,
and (D) 89 min. The time series shows how an aspherical nucleus forms
and grows over time. Reprinted with permission from ref 83. Copyright
2001 American Association for the Advancement of Science.
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clearly disagree in the low-volume-fraction regime. No simple
rescaling justified by statistical uncertainty could possibly resolve
that discrepancy. In their article, they also addressed a different
issue. In a computational study in 2010, Kawasaki and Tanaka224

obtained, by means of Brownian dynamics,225 nucleation rates in
good agreement with experiments, contrary to the nucleation
rates computed by Auer and Frenkel using brute-force MD.39 It
should be noted that Kawasaki and Tanaka did not use a pure
hard-sphere potential, but used a Weeks−Chandler−Andersen
potential instead. Was the approximation of a hard-sphere
system, something that can never be fully realized in experiments,
the problem all the time? What Filion et al. showed is that
different computational approaches (brute-force MD, US, and
FSS) all lead to the same nucleation rates, all of them in
disagreement with what Kawasaki and Tanaka found. Through a
detailed evaluation of their approach and that of Kawasaki and
Tanaka, they concluded that their rates are more reliable. The
discrepancy was back on the table, where it still remains and is as
large as ever.
For a detailed comparison between experimental and

computational rates, the reader is referred to ref 202. The
message we want to convey here is that the disagreement
between simulations and experiments in the simplest system still
persists today. It is worth mentioning that this fundamental
disagreement between simulations and experiments is not
unique to colloids. Other systems such as water (sections 2.4.1
and 2.4.2) and molecules in solution (section 2.5) also show
discrepancies of several orders of magnitude in nucleation rates.
This long-standing debate is of great relevance to all
investigations dealing with systems modeled using any flavor of
hard-sphere potential. A notable example in this context is the
crystallization of proteins, which are usually treated as hard
spheres. Despite basically neglecting most of the complexity of
these systems, this substantial approximation has allowed for a
number of computational studies226−236 that, although outside
the scope of this review, certainly contributed to furthering our
understanding of the self-assembly of biological particles.

2.2. Lennard-Jones Liquids

Beyond hard spheres, the first step toward more realistic systems
involves the inclusion of attractive interactions. The Lennard-
Jones liquid is a widely studied model system that does just that.
It can be seen as the natural extension of the hard-sphere model,
to which it becomes equivalent when the strength of the
attractive interactions goes to zero. LJ liquids were first
introduced in 1924,237 and since then, they have been the
subject of countless computational studies. LJ potentials allow
for exceedingly fast MD simulations, and a wide range of
thermodynamic information is available for them, such as the
phase diagram238−242 and the interfacial free energy.243−245

The stable structure of the LJ system up to T is a face-
centered-cubic (fcc) crystal; slightly less stable in free energy is a
hexagonal-close-packed (hcp) structure, which, in turn, is
significantly more stable then a third body-centered-cubic
(bcc) phase.246,247 With his study of liquid argon in 1964,
Rahman reported what is probably the first LJ MD simulation.248

His findings showed good agreement with experimental data for
the pair distribution function and the self-diffusion coefficient,
thus demonstrating that LJ potentials can properly describe
noble elements in their liquid form at ambient pressure. This
conclusion was validated later by Verlet249 and McGinty.250 To
the best of our knowledge, nucleation of LJ liquids was
investigated for the first time in 1969 by de Wette et al.240 and

in 1976 by Mandell et al.251 for two-dimensional and three-
dimensional systems, respectively.

2.2.1. Nonspherical Nuclei. Early simulations252,253 inves-
tigating the condensation of LJ vapors into a liquid already
indicated a substantial discrepancy with CNT rates. It is worth
noticing that the order parameter for crystal-like particles
presented by ten Wolde et al.252 fostered a considerable amount
of later work devoted to improving the order parameters
customarily used to describe crystal nucleation from the liquid
phase (see, e.g., ref 254). In 2008, Kalikmanov et al.255 compared
CNT and cDFT (see section 1.1) simulations with condensation
data for argon. They found that CNT spectacularly failed to
reproduce experimental condensation rates, underestimating
them by up to 26 orders of magnitude. This disagreement
triggered a number of computational studies aimed at clarifying
the assumption of the sphericity of the critical nucleus within the
freezing of LJ liquids. By embedding pre-existing spherical
clusters into supercooled LJ liquids, Bai and Li256,257 found
values of the critical nucleus size in excellent agreement with
CNT within a broad range of temperatures. However, these
results have been disputed by the umbrella sampling simulations
of Wang et al.,258 for example, as well as the path-sampling
investigation of Moroni et al.259 In both cases, the nuclei became
less spherical with increasing ΔT. In addition, Moroni et al.
pointed out that the critical nucleus size is determined by a
nontrivial interplay between the shape, the size, and the degree of
crystallinity of the cluster. Such a scenario is clearly much more
complex than the usual CNT picture, as it violates the capillarity
approximation (see 1.1.1). Nonspherical nuclei were also
observed by Trudu et al.,62 who extended the conventional
CNT formula to account for ellipsoidal nuclei. Such a tweak gave
much better estimations of both the critical nucleus size and the
nucleation barrier. Recall that the shape of the critical nuclei can
be observed experimentally in very few cases (see sections 1.2
and 2.1).
However, at very strong supercooling, things fell apart because

of the emergence of spinodal effects (see section 1.1). Note that
CNT fails at strong supercooling even without the occurrence of
spinodal effects, as the time lag (transient time) needed for
structural relaxation into the steady-state regime results in a time-
dependent nucleation rate.19 For instance, Huitema et al.260

showed that incorporating the time dependence into the kinetic
prefactor yields an improved estimate of nucleation rates. In fact,
by embedding extensions to the original CNT framework, one
can, in some cases, recover a reasonable agreement between
simulations and experiments even at strong supercooling. As an
example, Peng et al.261 also showed that including enthalpy-
based terms in the formulation of the temperature dependence of
γ substantially improves the outcomes of CNT.

2.2.2. Polymorphism. Another aspect that has been
thoroughly addressed within the crystal nucleation of LJ liquids
is the structure of the crystalline clusters involved. The mean-
field theory approach of Klein and Leyvraz262 suggests a decrease
of the nucleus density as well as an increase of the bcc character
when moving toward the spinodal region. These findings were
confirmed by the umbrella sampling approach of ten Wolde et
al.,252,263,264 who reported a bcc shell surrounding fcc cores.
Furthermore, Wang et al.258 showed that the distinction between
the crystalline clusters and the surrounding liquid phase falls off
as a function ofΔT. In fact, the free energy barrier for nucleation,
computed by means of umbrella sampling simulations (see
section 1.3.2), was found to be on the order of kBT atΔT = 52%.
In addition, the nuclei undergo substantial structural changes
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toward nonsymmetric shapes, a finding validated by the
metadynamics simulations of Trudu et al.62 The same authors
investigated the nucleation mechanism close to the critical
temperature for spinodal decomposition,T (see section 1.1.4),
where the free energy basin corresponding to the liquid phase
turned out to be ill-defined, that is, already overlapping with the
free energy basin of the crystal. Such a finding suggested that,
below T , there is no free energy barrier for nucleation,
indicating that the liquid is unstable rather than metastable and
that the crystallization mechanism has changed from nucleation
toward the more collective process of spinodal decomposition
(see section 1.1.4 and Figure 1).
Insights into the interplay between nucleation and poly-

morphism have been provided by the simulations of tenWolde et
al.,252,263,264 among others, suggesting that, within the early
stages of the nucleation process, the crystalline clusters are bcc-
like, later turning into fcc crystalline kernels surrounded by bcc
shells. These findings were validated by Desgranges and
Delhommelle265 and Wang et al.258

More recently, Wang et al.266 performed a cDFT study to
determine the difference between the free energy barrier for
nucleation required for the creation of an fcc or bcc critical
nucleus. In addition, the difficulty for nucleation of the three
different crystal orientations for fcc was ranked (100) > (110) >
(111). These studies confirm the presence of a two-step
mechanism (see section 1.1.2) and the validity of Ostwald’s
step rule267 for the LJ model. As we will see later (e.g.,
homogeneous ice nucleation, section 2.4.1), nucleation through
metastable phases has also been observed for more complicated
liquids. Important contributions regarding polymorph control
during crystallization were made by Desgranges and Delhom-
melle,247,265,268 who investigated nucleation under different
thermodynamic conditions. By keeping the temperature
constant and altering the pressure, they were able to influence
the amount of bcc particles. This reached up to a point where the
nucleus was almost purely bcc-like. Calculation of the bcc−liquid
line in the phase diagram showed that these nucleation events
occurred in the bcc existence domain. Additionally, the
transformation from fcc to hcp during crystal growth, well after
the critical nucleus size has been reached, was studied by
changing the temperature at constant pressure. As depicted in
Figure 7, at ΔT = 10%, a small number of hcp atoms were
observed surrounding the fcc core, whereas at ΔT = 22%, much
larger hcp domains formed within the crystallite, suggesting that

the conversion from hcp to fcc is hindered at higher
temperatures. On a final note, we emphasize that many findings
related to polymorphism are often quite dependent on the choice
of the order parameters employed. This issue is not limited to LJ
systems, and it is especially important when dealing with similarly
dense liquid and crystalline phases (e.g., metallic liquids), where
order parameters usually struggle to properly distinguish the
different crystalline phases from the liquid.268 In particular, it
remains to be seen whether the fractional bcc, fcc, and hcp
contents of the LJ nuclei that we have discussed will stand the test
of the last generation of order parameters.

2.2.3. Heterogeneous Nucleation. Heterogeneous crystal
nucleation has also been investigated for a variety of LJ systems.
For instance, Wang et al.258 used umbrella-sampling simulations
(see section 1.3.2) to calculate the free energy barrier for
heterogeneous nucleation of an LJ liquid on top of an ideal
impurity, represented by a single fcc (111) layer of LJ particles.
By explicitly varying the lattice spacing of the substrate, asub, they
calculated Δ *G as a function of asub − aequi, where aequi is the
lattice spacing of the equilibrium crystalline phase.269 They
found thatΔ *G displays a minimum for asub − aequi = 0, whereas
for large values of asub− aequi, nucleation proceeds within the bulk
of the supercooled liquid phase. These findings support the early
argument of the zero lattice mismatch introduced by Turnbull
and Vonnegut270 to justify the striking effectiveness of AgI
crystals in promoting heterogeneous ice nucleation. In fact, in
several situations, one can define a disregistry or lattice mismatch
δ as

δ =
−a a

a
sub equi

equi (7)

Values of δ close to or even equal to zero have often been
celebrated as the main ingredient that makes a crystalline
impurity particularly effective in promoting heterogeneous
nucleation. However, the universality of this concept has been
severely questioned in the past few decades, as we shall see in
section 2.4.2 for heterogeneous ice nucleation. Nonetheless, it
seems that the argument regarding zero lattice mismatch can
hold for certain simple cases, as demonstrated by Mithen and
Sear,271 who studied heterogeneous nucleation of LJ liquids on
the (111) and (100) faces of an fcc crystal by means of FFS
simulations (see section 1.3.2). They reported a maximum in the
heterogeneous nucleation rate for a small, albeit nonzero, value
of δ (see Figure 8). The difference between their study and that
of Wang et al.258 is simply that many more values of δ were taken
into account by Mithen and Sear,271 thus allowing the maximum
of to be determined more precisely. On a different note,
Dellago et al.272 performed TIS simulations (see section 1.3.2) to
investigate heterogeneous crystal nucleation of LJ supercooled
liquids on very small crystalline impurities. They found that even
tiny crystalline clusters of just ∼10 LJ particles can actively
promote nucleation and that the morphology of the substrate can
play a role as well. Specifically, whereas fcc-like clusters were
rather effective in enhancing nucleation rates, no substantial
promotion was observed for icosahedrally ordered seeds.
MC simulations performed by Page and Sear273 have

demonstrated that confinement effects can be of great relevance
as well. They computed heterogeneous nucleation rates for a LJ
liquid walled inbetween two flat crystalline planes characterized
by a certain angle θsub. A maximum of was found for a specific
value of θsub, boosting the nucleation rate by several orders of
magnitude with respect to the promoting effect of a flat

Figure 7. Cross section of postcritical crystalline clusters of 5000 LJ
particles forΔT = (a) 10% and (b) 22%. fcc-, hcp-, and bcc-like particles
are depicted in gray, yellow, and red, respectively. At ΔT = 22%
substantial hcp domains form within the crystallite, whereas at ΔT =
10%, hcp particles can be found almost exclusively on the surface of the
fcc core. Reprinted with permission from ref 247. Copyright 2007
American Physical Society.
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crystalline surface. In addition, different values of θsub led to the
formation of different crystalline polymorphs.
Finally, Zhang et al.274 recently probed the influence of

structured and structureless LJ potential walls or nucleation rates.
Both types of wall were found to increase the temperature at
which nucleation occurs. However, this effect became negligible
when moving toward vanishingly small liquid−wall interaction
strengths. We shall see in section 2.4.2 that the interplay between
the morphology of the substrate and the strength of the liquid−
substrate interaction can lead to a diverse range of nucleation
behavior.
2.2.4. Finite-Size Effects. MD simulations of LJ liquids are

computationally cheap, making them the perfect candidates to
examine how finite-size effects impact crystal nucleation. The
seminal work of Honeycutt and Andersen275 took into account
up to 1300 LJ particles at ϵ =k T/ 0.45B LJ , which turned out to be
too few particles to completely rule out the effects of periodic
boundary conditions. In fact, the authors suggested that extra

care had to be taken because of the diffuseness of the interface
between the supercooled liquid phase and the crystalline nucleus,
which can induce an artificial long-range order in the system,
leading to a nonphysically high nucleation rate. These findings
are particularly relevant, as the critical nucleus size at this ΔT
value is on the order of just a few tens of particles, representing a
tiny fraction of the whole system. Only a few years later, Swope
and Andersen276 investigated the same effects by taking into
account up to 106 LJ particles subjected to the same strong
supercooling as probed by Honeycutt and Andersen.275

According to their large-scale MD simulations, 15000 particles
seem to be sufficient to avoid finite-size effects. This outcome
must be carefully pondered, as currently, the vast majority of
simulations dealing with crystallization of realistic systems
cannot afford to take into account system sizes 3 orders of
magnitude larger than the size of the critical nucleus. Consistent
with Honeycutt and Andersen,275 Huitema et al.260 examined the
nucleation of an LJ liquid in a wide range of temperatures (70−
140 K). Although nonphysical instantaneous crystallization was
observed for systems on the order of ∼500 particles, simulation
boxes containing about 10000 particles seemed to be free from
finite-size effects.
It is also worth pointing out that Peng et al.261 recently

described a novel class of finite-size effects unrelated to periodic
boundary conditions. In fact, they showed that the equilibrium
density of critical nuclei, equi,

277 can effectively influence the
absolute value of nucleation rates. Specifically, at very strong
supercooling, the critical nuclei will on average form very shortly
after the transient time, whereas at mildΔT, the stochastic nature
of nucleation will lead to a consistent scatter of the nucleation
times. In other words, in the latter scenario, either exceedingly
large systems must be taken into account, or a sizable number of
independent simulations must be performed to deal with the
long tails of the distribution of nucleation times.

2.3. Atomic Liquids

Various interatomic potentials have been developed to deal with
atomic liquids. Examples include the Sutton−Chen potentials278
for several metals and the Tosi−Fumi potential279 for molten
salts such as NaCl. Terms accounting for the directionality of
covalent bonds have been included, for example, in the
Stillinger−Weber potential280 for Si; the bond order potentials
of Tersoff281,282 for Si, GaAs, and Ge; and the reactive potential
of Brenner283 for carbon-based systems. Another class of

Figure 8. Nucleation rates computed with the FFS method for a rigid
hexagonal surface of LJ atoms in contact with a LJ liquid. Potentials 1
and 2 describe the interaction between substrate and liquid and differ
only slightly by the value of σ they use. Error bars are standard deviations
from five FFS runs. These results show that the maximum in the
nucleation rate occurs at nonzero values of the lattice mismatch δ.
Reprinted with permission from ref 271. Copyright 2014 AIP Publishing
LLC.

Figure 9. Crystal nucleation of supercooled Fe by means of large-scale MD simulations. (a) Snapshots of trajectories at different temperatures.
Crystalline (bcc) atoms are depicted in purple. Yellow circles highlight small crystalline grains doomed to be incorporated into the larger ones later on
because of grain coarsening. (b) Nucleation rate as a function of temperature. Reprinted with permission from ref 290. Copyright 2015 Nature
Publishing Group.
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interatomic potential is based on the concept of local electronic
density and includes, for instance, the Finnis−Sinclair
potentials278,284 for metallic systems, the whole family of the
embedded-atom-method (EAM) potentials,285 and the glue
potential286,287 for Au and Al.
Many of these potentials are still incredibly cheap in terms of

computer time, thus allowing for large-scale, unbiased MD
simulations. Recently, massively parallel MD runs succeeded in
nucleating supercooled liquid Al288 and Fe289 using an EAM
potential and a Finnis−Sinclair potential, respectively. As up to
106 atoms were taken into account, actual grain boundaries were
observed, providing unprecedented insight in to the crystal
growth process. The nucleation of bcc Fe crystallites and the
evolution of the resulting grain boundaries at different
temperatures can be appreciated in Figure 9a. The sizable
dimension of the simulation boxes (∼50 nm) allowed nucleation
events to be observed within hundreds of picoseconds, and grain
coarsening (i.e., the process by which small crystallites end up
incorporated into larger ones) is also clearly visible. Mere visual
inspection of the nucleation trajectories depicted in Figure 9a
suggests different nucleation regimes as a function of temper-
ature. In fact, the same authors calculated a temperature profile
for the nucleation rate, shown in Figure 9b, that demonstrates the
emergence of a maximum of value characteristic of diffusion-
limited nucleation (see section 1.1.1).
A field that has greatly benefited from MD simulations is the

crystallization of metal clusters, as nicely reviewed by Aguado and
Jarrold.291 For instance, it is possible to probe the interplay
between the size of the clusters and the cooling rate upon crystal
nucleation and growth. In this context, Shibuta292 reported three
different outcomes for supercooled liquid Mo nanoparticles
modeled by means of a Finnis−Sinclair potential, namely, the
formation of a bcc single crystal, a glassy state, or a polycrystalline
phase. In some cases, nucleation rates obtained from simulations
were consistent with CNT, as in the case of Ni nanodroplets,293

for which nucleation events were again observed by means of
brute-force MD simulations using the Sutton−Chen potential.
The influence of the redox potential on the nucleation process
has also been investigated. Milek and Zahn294 employed an
enhanced flavor of the EAM potential to study the nucleation of
Ag nanoparticles from solution. They established that the
outcome of nucleation events is strongly influenced by the
strength of the redox potential, able to foster either a rather
regular fcc phase or a multitwinned polycrystal. Similar to what
was done for LJ liquids, the effects of confinement were assessed
for Au nanodomains modeled using the glue potential by Pan and
Shou.295 According to their findings, smaller domains facilitate
crystal nucleation. Lü and Chen296 instead investigated surface-
layering-induced crystallization of Ni−Si nanodroplets using a
modified EAM potential. It seems that, for this particular system,
atoms proximal to the free surface of the droplet assume a
crystalline-like ordering on very short time scales, thus triggering
crystallization in the inner regions of the system. No such effect
has been reported in the case of surface-induced crystallization in
supercooled tetrahedral liquids such as Si and Ge, as investigated
by Li et al.297 through FFS simulations employing both Tersoff
and Stillinger−Weber potentials. The presence of the free surface
facilitates crystal nucleation for this class of systems as well, but
surface layering was not observed. Instead, the authors claimed
that the surface reduces the free energy barrier for nucleation as it
introduces a pressure-dependent term in the volume free energy
change expected for the formation of the crystalline clusters. The
situation is quite different for surface-induced ice nucleation, at

least according to the coarse-grained mWmodel of Molinero and
Moore.298 In fact, Haji-Akbari et al.299 recently investigated ice
nucleation in free-standing films of supercooled mW water using
both FFS and US, finding that, in these systems, crystallization is
inhibited in the proximity of the vapor−liquid interface. Very
recently, Gianetti et al.300 extended the investigation of Haji-
Akbari et al.299 to the crystallization of a whole family of modified
Stillinger−Weber liquids with different degrees of tetrahedrality
λ, locating a crossover from surface-enhanced to bulk-dominated
crystallization in free-standing films as a function of λ. Another
seminal study by Li et al.,301 again using FFS, focused on
homogeneous ice nucleation within supercooled mW water
nanodroplets, where nucleation rates turned out to be strongly
size dependent and in general consistently smaller (by several
orders of magnitude) than the bulk case. FFS was also applied by
Li et al.302 to examine homogeneous nucleation of supercooled
Si. FFS has also been successful in predicting homogeneous
crystal nucleation rates in molten NaCl, modeled using a Tosi−
Fumi potential by Valeriani et al.303 Large discrepancies between
their results and experimental nucleation rates can be appreciated
when CNT is used to extrapolate the calculations to the milder
supercooling probed by the actual measurements. Given that the
authors obtained consistent results using two different enhanced
sampling methods, this study hints again at the many pitfalls of
CNT.

2.3.1. Phase-Change Materials. A unique example of a
class of materials for which nucleation can be effectively
addressed by brute-force MD simulations is given by so-called
phase-change materials.304,305 These systems are of great
technological interest as they are widely employed in optical
memories (e.g., DVD-RW) and in a promising class of
nonvolatile memories known as phase-change memory,306

based on the fast and reversible transition from the amorphous
to the crystalline phase. Although crystal nucleation in
amorphous systems, especially metallic and covalent glasses, is
beyond the scope of this review, we refer the reader to the
excellent work of Kelton and Greer26 for a detailed introduction.
Here we just note that in phase change memories the amorphous
phase is often heated above the glass transition temperature, so
that crystal nucleation occurs within the supercooled liquid
phase. Phase-change materials used in optical and electronic
devices are typically tellurium-based chalcogenide alloys (see ref
305). The family of the pseudobinary compounds (Ge-
Te)x(Sb2Te3)y represents a prototypical system. Although both
the structure and dynamics of these systems are far from trivial,
nucleation from the melt takes place on the nanosecond time
scale for a wide range of supercooling.304−306 Thus, with phase-
change materials, we have a great opportunity to investigate
nucleation in a complex system by means of brute-force MD
simulations. We note that the crystallization of these systems has
been extensively characterized by different experimental
techniques [particularly TEM and AFM (see section 1.2); the
crystallization kinetics has also been recently investigated by
means of ultrafast-heating calorimetry307 and ultrafast X-ray
imagining308], but because of the exceptionally high nucleation
rates, it is difficult to extract information about the early stages of
the nucleation process. Thus, in this scenario, simulations could
play an important role. Unfortunately, phase-change materials
require ab initio methods or sophisticated interatomic potentials
with first-principles accuracy. In fact, several attempts have been
made to study nucleation in phase-change materials by ab initio
MD in very small systems.309,310 Although these studies provided
useful insights into the nucleation mechanism, severe finite-size
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effects prevented the full characterization of the crystallization
process. The limited length and time scales typical of first-
principles calculations were recently outstripped in the case of
the prototypical phase-change material GeTe by the capabilities
of a neural network interatomic potential.311 Such potentials
allow for a computational speedup of several orders of magnitude
compared to conventional ab initio methods while retaining an
accuracy close to that of the latter.312 Although nucleation rates
have not yet been calculated, detailed investigations of
homogeneous and heterogeneous nucleation have already been
reported.313,314 For instance, as shown in Figure 10, a single-

crystalline nucleus formed in a 4000-atom model of supercooled
liquid GeTe in the 625−675 K temperature regime within a few
hundred picoseconds. On the same timescale, several nuclei
appeared below 600 K, suggesting that the free energy barrier for
nucleation is vanishingly small for this class of materials just
above the glass transition temperature. This is because of the
fragility315 of the supercooled liquid, which displays a substantial
atomic mobility even at large supercoolings.316 Thus, in this
particular case, the kinetic prefactor kin (see eq 5) is not
hindered that much by the strong supercooling, whereas the free
energy difference between the liquid and the crystal μΔ (see eq
1) skyrockets as expected, leading to the exceedingly high
nucleation rates characteristic of these materials.
In conclusion, whereas MD simulations have by no means

exhausted the field of crystal nucleation of atomic liquids, they
have certainly provided insight into a number of interesting

systems and paved the way for the study of more complex
systems, as we shall see in the following sections.

2.4. Water

2.4.1. Homogeneous Ice Nucleation. Ice nucleation
impacts many different areas, ranging from aviation317,318 to
biological cells319 and Earth’s climate.320,321 It is therefore not
surprising that a considerable body of work has been carried out
to understand this fundamental process. We cannot cover it all
here; instead, we give a general overview of the field, starting with
a discussion of nucleation rates. This allows us to directly
compare experiments and simulations and to identify strengths
and weaknesses of different approaches. We then discuss insights
into the nucleation mechanism. The heterogeneous formation of
ice is presented in section 2.4.2.

Nucleation Rates. An important goal for both experiments
and simulations is to extract nucleation rates. Experimental
nucleation rates have been measured over a broad range of
temperatures, most often with micrometer-sized water droplets
so as to avoid heterogeneous nucleation. In Figure 11, we bring
together nucleation rates obtained from various experiments,
along with computed nucleation rates.
Accessing nucleation rates from MD simulations became

feasible only in the past few years as a result of advances in force
fields (such as the coarse-grained mW298 potential) and
enhanced sampling techniques described earlier (see section
1.3.2). These methods have therefore been widely used for
studies of not only homogeneous but also heterogeneous
nucleation (see section 2.4.2). From the comparison of
experimental and computational nucleation rates reported in
Figure 11, a few conclusions are apparent. First, nucleation rates
vary hugely with supercooling, by a factor of more than 1035.
Second, nucleation rates differ substantially (approximately 10
orders of magnitude) between simulations (solid symbols) and
experiments (crossed symbols) at relatively small supercoolings
(∼30−50 K). At larger supercoolings, the agreement appears to
be slightly better, even though very few simulations have been
reported at very strong supercooling. The third striking feature is
that, whereas the experimental results agree well with each other
(within 1−2 orders of magnitude), the computational rates differ
from each other by a factor of approximately 1010.
What is the cause of disagreement between different

computational approaches? Part of the reason is certainly that
different water models lead to different rates; see, for example,
Espinosa et al.326 Yet, even if the same water model is employed,
the rates do not agree with each other very well. A neat example is
offered by nucleation rates obtained using the mW model. An
early study by Moore and Molinero336 succeeded in calculating
the Avrami exponent337,338 for the crystallization kinetics of ice
from brute-force MD simulations at very strong supercooling,
obtaining results remarkably similar to experiment.339,340

However, mW nucleation rates turned out to be far less
encouraging. In fact, Li et al.322 and Reinhardt and Doye324 both
performed simulations using the mW model, obtaining
nucleation rates that differed by about 5 orders of magnitude.
The only major difference was the enhanced sampling technique
employed, FFS by Li et al. and US by Reinhardt and Doye. The
statistical uncertainties of the two approaches (1−2 orders of
magnitude) are much smaller than the 5-orders-of-magnitude
discrepancy between the two studies. It was also shown that the
two methods agree very well with each other for colloids,222 for
example (see section 2.1). The use of different computational

Figure 10. Fast crystallization of supercooled GeTe by means of MD
simulations with neural-network-derived potentials. The number of
crystalline nuclei larger than 29 atoms at different temperatures in the
supercooled liquid phase is reported as a function of time (notice the
exceedingly small time scale at strong supercooling). Two snapshots at
the highest and lowest temperatures showing only the crystalline atoms
are also reported. At high temperature, a single nucleus is present,
whereas several nuclei (each one depicted in a different color) appear at
low temperature. The number of nuclei first increases and then
decreases due to coalescence. Reprinted with permission from ref 313.
Copyright 2013 American Chemical Society.
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approaches therefore also seems to be unlikely as the source of
the disagreement. What the cause is remains elusive.
Because we cannot cover all of the work shown in Figure 11 in

detail here, we now discuss just two studies. First, that of Sanz et
al.,51 which agrees best with the experimental rates. The authors
used the TIP4P/2005 and TIP4P/Ice water models in
combination with seeded MD simulations (see section 1.3.2.
For more details, the reader is referred to the original article51).
Seeding involves considerably more assumptions than, for
example, US or FFS. In particular, the approach assumes a
CNT-like free energy profile, although it does not usually employ
the macroscopic interfacial free energy. Furthermore, the
temperature dependence of key quantities such as γ and μΔ
(see section 1.1.1) is approximated. Nevertheless, the agreement
between their nucleation rates and experiment seemingly
outperformed other approaches. In amore recent work, Espinosa
et al.326 obtained nucleation rates for a few other water models as
well. However, it should be noted that the good agreement
between the nucleation rates reported in refs 51 and 326 and the
experimental data could originate from error cancellation. In fact,
whereas the rather conservative definition of crystalline nucleus
adopted in these works will lead to small nucleation barriers (and
thus to higher nucleation rates), the TIP4P family of water
models is characterized by small thermodynamic driving forces
to nucleation,327 which, in turn, results in smaller nucleation
rates.
The second work we briefly discuss here is the very recent

study (2015) of Haji-Akbari and Debenedetti.327 The authors
directly calculated the nucleation rate at 230 K of an all-atom
model of water (TIP4P/ICE) using a novel FFS sampling
approach.327 This was a tour de force, but strikingly, their rates
differed from experiment by about 11 orders of magnitude. The
authors noted that this might be as close as one can actually get to
experiment with current classical water models. This is because of
the extreme sensitivity of nucleation rates to thermodynamic

properties such as γ and μΔ , which, according to CNT, enter
exponentially (section 1.1.1) in the definition of . For instance,
an uncertainty of only 6−7% for γ at 235 K leads to an error of
about 9 orders of magnitude in .322 Experimental estimates for
γ range from 25 to 35 mN/m;341 computational estimates range
from about 20342 to 35 mN/m.343 As another example, Haji-
Akbari and Debenedetti327 explicitly quantified the extent to
which the TIP4P/Ice model underestimates the free energy
difference μΔ between the crystalline and liquid phases and

found that the mismatch between μΔ (TIP4P/Ice) and

μΔ (experimental) alone leads to an overestimation of the
free energy barrier for nucleation of about 60%, which translates
into nucleation rates up to 9 orders of magnitude larger. In fact,
taking into account such a discrepancy brings the results of Haji-
Akbari and Debenedetti within the confidence interval of the
experimental data. Thus, it is clear that we simply do not know
some key quantities accurately enough to expect perfect
agreement between simulations and experiments.
In addition to issues of modeling water/ice accurately, finite-

size effects can be expected to also play a role [as they do with
Lennard-Jones systems (section 2.2) and molecules in solution
(section 2.5)]. Only recently was this issue addressed explicitly
for ice nucleation by English and Tse344 in unbiased simulations
with the mW model. They were able to simulate systems
containing nearly 10 million water molecules on a microsecond
time scale and found that larger systems favor the formation of
crystallization precursors compared to smaller ones. Interest-
ingly, lifetimes of the precursors were found to be less sensitive to
system size. A quantitative understanding of finite-size effects on
nucleation rates remains elusive nevertheless.
In summary, it can be said that, in terms of accurate nucleation

rates, experiments are still clearly superior to simulations.
However, the advantage of simulations is that the nucleation
mechanism can also be obtained, which, at present, is not

Figure 11. Compilation of homogeneous nucleation rates for water, obtained by experiments and simulations. The x axis shows the supercooling with
respect to the melting point of different water models or 273.15 K for experiment. The y axis shows the logarithm of the nucleation rate in m−3 s−1. Rates
obtained with computational approaches are shown as solid symbols; experimental rates are shown as crossed symbols. For each computational study,
the computational approach and the water force field used are specified. The nucleation study of Sanz et al.51 is not included in this graph, because their
study was conducted at a small supercooling (20 K), which resulted in a very low estimated nucleation rate far outside this plot (it would correspond to
−83 on the y axis). Taborek329 performed measurements with different setups, namely, using sorbitan tristearate (STS) and sorbitan trioleate (STO) as
surfactants. Data for the graph were taken from refs 124, 299, 301, and 322−335.
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possible with experiments, although femtosecond X-ray laser
spectroscopy might be able to partially overcome this limitation
in the near future.90

Nucleation Mechanism. In 2002, Matsumoto et al.345 were
the first to report a nucleation event in an unbiased simulation
based on an all-atom model of water (TIP4P). Their landmark
work opened the doors to the study of ice nucleation at an
atomistic level. They found that nucleation took place once a
sufficient number of long-lived hydrogen bonds were formed
with a nucleus of ice. Recent evidence suggests that, most likely,
their nucleation trajectory was driven by finite-size effects.51

Together with the simulations of Vrbka and Jungwirth,346 also
affected by severe finite-size effects,51 the work of Matsumoto et
al. remains, to date, the only seemingly unbiased MD simulation
observing homogeneous ice nucleation with an all-atom force
field.
What really enabled the community to investigate ice

formation at a molecular level was the development of the
coarse-grained mW potential for water298 in the early 2010s.
Using unbiased MD simulations based on the mW force field,
Moore and Molinero in 2011323 provided evidence that, in the
supercooled regime around the homogenous nucleation temper-
ature, Th, the fraction of 4-fold-coordinated water molecules
increases sharply prior to a nucleation event. In a separate work,
the same authors suggested347 that, at very strong supercooling,
the critical nucleus is mostly made of cubic ice, which
subsequently evolves into a mixture of stacking-disordered
cubic and hexagonal ice layers. In the same year, Li et al.322

identified another structural motif that might play a role in ice
nucleation. They consistently observed a topological defect
structure in growing ice nuclei in their FFS simulations based on
the mW representation of water. This defect, depicted in Figure
12a, can be described as a twin boundary with 5-fold symmetry,
and it has also been observed302 in nucleation simulations of

tetrahedral liquids simulated with the Stillinger−Weber
potential, on which the mW coarse-grained model was built.
In 2012, another significant leap in understanding the

nucleation mechanism of ice from a structural point of view
was made by combining experimental and computational
techniques.342 Specifically, Malkin et al. showed that ice forming
homogeneously is stacking-disordered (the corresponding ice
structure was called Isd), meaning that it is made out of cubic and
hexagonal ice layers stacked in a random fashion.
In 2014, two studies substantiated the potential relevance of

precursor structures prior to ice formation. Palmer et al. provided
evidence for a liquid−liquid transition in supercooled water in a
molecular model of water (ST2).349 In their study, the authors
sampled the energy landscape of supercooled water and found
two metastable liquid basins corresponding to low-density
(LDL) and high-density (HDL) water. The appealing idea
behind the transition fromHDL to LDL prior to ice nucleation is
that LDL is structurally closer to ice than HDL. Note that the
existence of two metastable liquid basins was not a general
finding: The mW model does not have a basin for LDL, for
example.323 Indeed, the presence of this liquid−liquid phase
transition is a highly debated issue.350,351

Another conceptually similar idea is ice formation through ice
0 (I0), proposed by Russo et al.325 Instead of a liquid−liquid
phase transition that transforms water into another liquid state
prior to nucleation, the authors proposed a new ice polymorph
(I0) to bridge the gap between supercooled water and ice. I0 is a
metastable ice polymorph and is structurally similar to the
supercooled liquid. It has a low interfacial energy with both liquid
water and ice Ic/Ih. Russo et al. therefore proposed I0 to bridge
liquid water to crystalline Ic/Ih. Indeed, the authors found I0 at
the surface of growing ice nuclei in MD simulations; we show
part of a nucleation trajectory in Figure 12b. Furthermore, they
showed that the shape of the nucleation barrier is much better
described by a core−shell-like model (Ic/Ih core surrounded by
I0) compared to the classical nucleationmodel. This is important,
because it suggests that models that are based solely on CNT
assumptions might not be appropriate for describing homoge-
neous ice nucleation.
However, the emergence of I0 has not yet been reported by any

other nucleation study, including the recent work of Haji-Akbari
and Debenedetti327 that we previously mentioned in the context
of nucleation rates. In that work,327 the authors performed a
topological analysis of the nuclei, validated by the substantial
statistics provided by the FFS simulations. As depicted in Figure
13, the majority of nuclei that reached the critical nucleus size
contained a large amount of double-diamond cages (DDCs, the
building blocks of Ic), whereas nuclei rich in hexagonal cages
(HCs, the building blocks of Ih) had a very low probability to
overcome the free energy barrier for nucleation. In addition, even
postcritical nuclei had a high content of DDCs, whereas HCs did
not show any preference to appear within the core of the
postcritical nuclei. This evidence is consistent with the findings
reported in ref 323 and in contrast with the widely invoked
scenario in which a kernel of thermodynamically stable
polymorph (in this case, Ih) is surrounded by a shell of a less
stable crystalline structure (in this case, Ic).
In the past few years, the understanding of homogeneous ice

nucleation has improved dramatically. We now have a good
understanding of the structure of ice that forms through
homogeneous nucleation, stacking-disordered ice. Furthermore,
there is very good agreement (within 2 orders of magnitude)
between experimental nucleation rates in a certain temperature

Figure 12. (a) Formation of a topological defect with 5-fold symmetry
during homogeneous ice nucleation. The snapshots (i−iv) show the
time evolution of the defect structure, indicated by black dashed lines. Ic
and Ih water molecules are shown in blue and red, respectively.
Reprinted with permission from ref 322 (Copyright 2011 Royal Society
of Chemistry), in which Li et al. performed FFS simulations of models
containing about 4000 mW water molecules. (b) Nucleation of an ice
cluster forming homogeneously from I0-rich precritical nuclei. Water
molecules belonging to Ic, Ih, a clathrate-like phase, and I0 are depicted in
yellow, green, orange, and magenta, respectively. (i,ii) A critical nucleus
forms in an I0-rich region. (iii) The crystalline cluster evolves in a
postcritical nucleus, formed by an Ic-rich core surrounded by an I0-rich
shell. (iv) The same postcritical nucleus as depicted in iii, but only
particles with 12 or more connections (among ice-like particles) are
shown. The color map refers to the order parameter Q12 specified in ref
325, from which this image was reprinted with permission (Copyright
2014 Nature Publishing Group). The unbiased MD simulations on
which the analysis is based feature 10000 mW molecules.
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range. Computational methods face the problem of being very
sensitive to some key thermodynamic properties; the nucleation
rates they predict are therefore less accurate. On the other hand,
they allow us to study conditions that are very challenging to
probe experimentally, and they also provide insight into the
molecular mechanisms involved in the crystallization process.
2.4.2. Heterogeneous Ice Nucleation. As mentioned in

the previous section, homogeneous ice nucleation becomes
extremely slow at moderate supercooling. This seems at odds
with our everyday experiencewe do not, for example, have to
wait for temperatures to reach −30 °C before we have to use a
deicer on our car windows. In fact, the formation of ice in nature
occurs almost exclusively heterogeneously, thanks to the
presence of foreign particles. These ice-nucleating agents
facilitate the formation of ice by lowering the free energy barrier
for nucleation (see Figure 1). Indeed, the work of Sanz et al.,51 in
which homogeneous ice nucleation was studied using seeded
MD (see section 1.3.1), found rates so low at temperatures above
ΔT = 20 K that they concluded that all ice nucleation above this
temperature must occur heterogeneously. Homogeneous
nucleation is still of great importance in atmospheric processes
and climate modeling, as under certain conditions, both
heterogeneous and homogeneous nucleation are feasible routes

toward the formation of ice in clouds, as reported in ref 352, for
example.
In addition to the challenges (both computational and

experimental) faced when investigating homogeneous ice
nucleation, one also has to consider the structure of the
water−surface interface and how this impacts the nucleation rate.
Generally, the experimental data for the rates and character-
ization of the interfacial structure come from two different
communities: Climate scientists have provided much informa-
tion on how various particles, often dust particles or biological
matter such as pollen, affect ice nucleation (as depicted in Figure
14), whereas surface scientists have invested a great deal of effort
in trying to understand, at the molecular level, how water
interacts with and assembles itself at surfaces (see, e.g., ref 353).
This means that there is a huge gap in our understanding, as the
surfaces of the particles used to obtain rates are often not
characterized, whereas surface science experiments are generally
carried out at pristine, often metallic, surfaces under ultrahigh-
vacuum conditions. We will see in this section that computa-
tional studies have gone some way toward bridging this gap,
although there is still much work to be done should we wish to
quantitatively predict a material’s ice-nucleating efficacy.

Water on Crystalline Surfaces. From a computational
perspective, it is the surface science experiments that lend
themselves most readily to modeling. In fact, even relatively
expensive computational methods such as density functional
theory (DFT), which have not featured much in this article, have
proven indispensable in furthering our understanding of how
water behaves at surfaces, especially when used in conjunction
with experiments (see, e.g., refs 353 and 355 for an overview). As
such, early computational studies focused on understanding how
the surface affected the first few layers of water, especially with
respect to the concept of lattice mismatch (see section 2.2),
where a surface that has a structure commensurate with ice acts as
a template for the crystal. Nutt and co-workers356−358

investigated the adsorption structures of water at a model
hexagonal surface and at BaF2(111) using interaction potentials
derived from ab initio calculations. Although the surfaces under
investigation had structures that matched the basal face of ice
well, they found disordered structures of water to be more
favorable than ice-like overlayers. Using DFT, Hu and
Michaelides investigated the adsorption of water on the (001)
face of the clay mineral kaolinite,359,360 a known ice-nucleating
agent in the atmosphere. The (001) surface of kaolinite exposes a

Figure 13. (Left) A typical double-diamond cage (DDC, blue) and a
hexagonal cage (HC, red), the building blocks of Ic and Ih, respectively.
(Right) Temporal evolution of an ice nucleus from (i,ii) the early stages
of nucleations up to (v,vi) postcritical dimensions, as observed in the
FFS simulations of Haji-Akbari and Debenedetti.327 About 4000 water
molecules, modeled with the TIP4P/Ice potential,348 were considered
in the NPT ensemble at ΔT ≈ 40 K. One can clearly notice the
abundance of DDCs throughout the whole temporal evolution. In
contrast, HC-rich nuclei have only a marginal probability to cross the
nucleation barrier (see text). Reprinted with permission from ref 327.
Copyright 2015 National Academy of Sciences.

Figure 14. Potential immersion-mode ice nucleus concentrations, Nice, a measure of the efficiency of a given substance to boost heterogeneous ice
nucleation, as a function of temperature for a range of atmospheric aerosol species. Note the wide range of nucleating capability for materials as diverse as
soot and bacterial fragments over a very broad range of temperatures. Reprinted with permission from ref 354. Copyright 2012 Royal Society of
Chemistry.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.5b00744
Chem. Rev. 2016, 116, 7078−7116

7095

http://dx.doi.org/10.1021/acs.chemrev.5b00744


pseudohexagonal arrangement of OH groups that were proposed
to be the cause of its good ice-nucleating ability.361 Although they
found that a stable ice-like layer could form at the surface, the
amphoteric nature of the kaolinite surface, depicted in Figure 15,
meant that all of water molecules could participate in four
hydrogen bonds, making further growth on top of the ice-like
layer unfavorable. Croteau et al.362,363 investigated adsorption of
water on kaolinite using the CLAYFF and SPC/E poten-
tials364,365 and grand canonicalMonte Carlo (GCMC). Although
some hexagonal patches of water were seen in the contact layer,
the overall structure was mostly disordered, and the hexagonal
structures that did form were strained relative to those found in
ice. Also using GCMC, Cox et al.366 investigated the role of
lattice mismatch using model hexagonal surfaces and TIP4P
water.367 They found that, for atomically flat surfaces, a
nominally zero lattice mismatch produced disordered contact
layers comprising smaller-sized rings (i.e., pentagons and
squares) and observed hexagonal ice-like layers only for surfaces
with larger lattice constants.
Prior to ca. 2010, the above types of study were the state of the

art for simulations of heterogeneous ice nucleation. Although
they provided evidence that properties such as lattice match
alone are insufficient to explain a material’s ice-nucleating ability,
because ice nucleation itself was not directly observed, only
inferences could be drawn about how certain properties might
actually affect ice nucleation. Yan and Patey368 investigated the
effects of electric fields on ice nucleation using brute-force
molecular dynamics (the electric fields were externally applied
and were not due to an explicit surface). They found that the
electric field needed to act over only a small range (e.g., 10 Å) and
that the ice that formed near the “surface” was ferroelectric cubic
ice, although the rest of the ice that formed above was not. Cox et
al. performed simulations of heterogeneous ice nucleation369 in
which the atomistic natures of both the water and the surface
were simulated explicitly, using TIP4P/2005 water370 and
CLAYFF364 to describe kaolinite. Despite the fact that the
simulations were affected by finite-size effects, the simulations
revealed that the amphoteric nature of the kaolinite359,360 is
important to ice nucleation. In the liquid, a strongly bound

contact layer was observed, and for ice nucleation to occur,
significant rearrangement in the above water layers was required.
It was found that ice nucleated with its prism face, rather than its
basal face, bound to the kaolinite, which was unexpected based
on the theory that the pseudohexagonal arrangement of OH
groups at the surface was responsible for templating the basal
face. Cox et al. rationalized the formation of the prism of ice at the
kaolinite as being due to its ability to donate hydrogen bonds
both to the surface and to the water molecules above (see Figure
15), whereas the basal face maximizes hydrogen bonding to the
surface only.359,360 More recent simulation studies, employing
rigid and constrained models of kaolinite, have also found the
amphoteric nature of the kaolinite surface to be important.371

However, the heterogeneous nucleation mechanism of water on
clays is yet to be validated by unconstrained simulations
unaffected by substantial finite-size effects.

Hydrophobicity and Surface Morphology. As in the case of
simulations of homogeneous ice nucleation, the use of the
coarse-grained mW potential298 has seen the emergence of
computational studies that actually quantify the ice-nucleating
efficiencies of different surfaces. Recently, Lupi et al.372

investigated ice nucleation at carbonaceous surfaces (both
smooth graphitic and rough amorphous surfaces) using cooling
ramps to measure nonequilibrium freezing temperatures ΔTf ≡
Tf − Tf

homo, where Tf is the temperature at which ice nucleates in
the presence of a surface and Tf

homo = 201 ± 1 K is the
temperature at which homogeneous ice nucleation occurs. It was
found that the rough amorphous surface did not enhance ice
nucleation (ΔTf = 0 K), whereas the smooth graphitic surfaces
promoted ice nucleation (ΔTf = 11−13 K). This was attributed
to the fact that the smooth graphitic surface induced a layering in
the density profile of water above the surface, whereas the rough
amorphous surface did not. Lupi and Molinero quantified the
extent of layering as
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Figure 15.The amphoteric nature of kaolinite is important to its ice-nucleating ability. (Left) Ice-like contact layers at the kaolinite surface, with the (a,c)
basal and (b,d) prism faces of ice adsorbed on kaolinite, as viewed from the (a,b) side and (c,d) top. (Right) Adsorption energy of ice on kaolinite when
bound through either its basal face (red data) or its prism face (blue data) for varying numbers of layers of ice. (Open and solid symbols indicate data
obtained with a classical force field and with DFT, respectively.) When only the contact layer is present, the basal face structure is more stable than the
prism face structure, but as soon as more layers are present, the prism face structure becomes more stable. This can be understood by the ability of the
prism face to donate hydrogen bonds to the surface, and to the water molecules above, through the “dangling” hydrogen bonds seen in b and d.
Reprinted with permission from ref 369. Copyright 2013 Royal Society of Chemistry.
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where ρ(z) is the density of water at a height z above the surface
and ρ0≡ ρ(zbulk), where zbulk is a height where the density profile
is bulk-like. In a subsequent work using the same methodology,
Lupi and Molinero373 investigated how the hydrophilicity of
graphitic surfaces affected ice nucleation. The hydrophilicity of
the surface was modified in two different ways: first, by uniformly
modifying the water−surface interaction strength and, second,
by introducing hydrophilic species at the surface. It was found
that the two ways produced qualitatively different results:
Uniformly modifying the interaction potential led to enhanced
ice nucleation, whereas increasing the density of hydrophilic
species was detrimental to ice nucleation (although the surfaces
still enhanced nucleation relative to homogeneous nucleation). It
was concluded that hydrophilicity is not a good indicator of the
ice-nucleating ability of graphitic surfaces. As for the difference
between increasing the hydrophilicity by uniformly modifying of
the interaction potential and by introducing hydrophilic species,
Lupi andMolinero again saw that the extent of layering in water’s
density profile above the surface correlated well with the ice-
nucleating efficacy. The general applicability of the layering
mechanism, however, was left as an open question.
Cox et al.374,375 addressed the question of the general

applicability of the layering mechanism by investigating ice
nucleation rates over a wider range of hydrophilicities (by
uniformly changing the interaction strength) on two surfaces
with different morphologies: (i) the (111) surface of a face-
centered-cubic LJ crystal (fcc-111) that provided distinct
adsorption sites for the water molecules and (ii) a graphitic
surface, similar to that of Lupi et al.372 Although it was found that
the layering mechanism (albeit with a slight modification to the
definition used by Lupi et al.) could describe the ice-nucleating
behavior of the graphitic surface, at the fcc-111 surface, no
beneficial effects of layering were observed. This was attributed
to fact that the fcc-111 surface also affected the structure of the

water molecules in the second layer above the surface, in a
manner detrimental to ice nucleation. It was concluded that
layering of water above the surface can be beneficial to ice
nucleation, but only if the surface presents a relatively smooth
potential energy surface to the water molecules.
The studies at the carbonaceous and fcc-111 surfaces372−375

discussed above hinted that the heterogeneous nucleation
mechanism could be very different at different types of surfaces.
Although there is experimental evidence that, for example,
different carbon nanomaterials are capable of boosting ice
nucleation (see, e.g., ref 376), most experiments can only
quantify the ice-nucleating ability of the substrates (see section
1.2). However, the structure of the water−substrate interface and
any insight into the morphology of the nuclei are typically not
available, making simulations essential to complement the
experimental picture. In this respect, Zhang et al.377 assessed
that the (regular) pattering of a generic crystalline surface at the
nanoscale can strongly affect ice formation. More generally, the
interplay between hydrophobicity and surface morphology was
recently elucidated by Fitzner et al.378 Brute-force MD
simulations of heterogeneous ice nucleation were performed
for the mW water model on top of several crystalline faces of a
generic fcc crystal, taking into account different values of the
water−surface interaction strength, as well as different values of
the lattice parameter. The latter is involved in the rather dated270

concept of zero lattice mismatch, which we introduced in section
2.2 (see eq 7) and which has been often quoted as the main
requirement of an effective ice-nucleating agent. However, a
surprisingly nontrivial interplay between hydrophobicity and
morphology was observed, as depicted in Figure 16. Clearly,
neither the layering nor the lattice mismatch alone are sufficient
to explain such a diverse scenario. In fact, the authors proposed
three additional microscopic factors that can effectively aid
heterogeneous ice nucleation on crystalline surfaces: (i) an in-

Figure 16. Interplay between surface morphology and water−surface interaction on the heterogeneous ice nucleation rate. (a) Heat maps representing
the values of ice nucleation rates on top of four different fcc surfaces [(111), (100), (110), (211)], plotted as a function of the adsorption energy, Eads,
and the lattice parameter, afcc. The lattice mismatch δ with respect to ice on (111) is indicated below the corresponding graph in panel a. The values of
the nucleation rate, , are reported as log10(J/J0), where J0 refers to the homogeneous nucleation rate at the same temperature. (b) Sketches of the
different regions (white areas) in (Eads,afcc) space in which a significant enhancement of the nucleation rate is observed. Each region is labeled according
to the face of Ih nucleating and growing on top of the surface [basal, prismatic, or (11/200), together with an indication of what it is that enhances the
nucleation, where “temp”, “buck”, and “highE” refer to the in-plane template of the first overlayer, the ice-like buckling of the contact layer, and the
nucleation for high adsorption energies on compact surfaces, respectively. Reprinted with permission from ref 378. Copyright 2015 American Chemical
Society.
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plane templating of the first water overlayer on top of the
crystalline surface; (ii) a first overlayer buckled in an ice-like
fashion; and (iii) enhanced nucleation in regions of the liquid
beyond the first two overlayers, possibly aided by dynamical
effects and/or structural templating effects of the substrate
extending past the surface water interface. In addition, it turned
out that different lattice parameters can lead to the nucleation
and growth of up to three different faces of ice [basal, prismatic,
and secondary prismatic ({1120})] on top of the very same
surface, adding a layer of complexity to the nucleation scenario.
Insights into the interplay between hydrophobicity and
morphology were also very recently obtained by Bi et al.,379

who investigated heterogeneous ice nucleation on top of
graphitic surfaces by means of FFS simulations using the mW
model. Among their findings, the authors suggested that the
efficiency of ice-nucleating agents can be a function not only of
surface chemistry and surface crystallinity but of the elasticity of
the substrate as well.
Computational Methods and Models. Enhanced sampling

techniques have also been used to investigate heterogeneous ice
nucleation. Reinhardt and Doye380 used umbrella sampling with
the mW model to investigate nucleation at a smooth planar
interface and at an ice-like surface. They found that the flat planar
interface did not help nucleate ice and that homogeneous
nucleation was the preferred pathway. One explanation given for
this finding was that, as the density of liquid water is higher than
that of ice, an attractive surface favors the liquid phase. It was also
noted that the mW potential imposes an energy penalty for
nontetrahedral triplets, that removing neighbors at the surface
decreases this energetic penalty, and that this reduction in
tetrahedrality favors the liquid phase. Cabriolu and Li recently
studied ice nucleation at graphitic surfaces using forward flux
sampling,381 again with the mW model. Under the assumptions
that μΔ ,water,ice depends linearly on ΔT and that γ does not

depend on ΔT, Cabriolu and Li also extracted the values of the
contact angle at different temperatures, which, along with the free
energy barrier, turned out to be consistent with CNT for
heterogeneous nucleation (see section 1.1.3). Although
intriguing, the generality of this finding to surfaces that include
strong and localized chemical interactions remains an open
question.
We have seen that, for both homogeneous and heterogeneous

nucleation, using the coarse-grained mW model has greatly
enhanced our ability to perform quantitative, systematic
simulation studies of ice nucleation. We must face the fact,
however, that this approach will further our understanding of
heterogeneous ice nucleation only so far. As discussed for
kaolinite,359,360,369,371 an explicit treatment of the hydrogen
bonds is essential in describing heterogeneous ice nucleation. In
addition, the mWmodel (as well as the majority of fully atomistic
water models) cannot take into account surface-charge effects.
Surfaces can polarize water molecules in the proximity of the
substrate, alter their protonation state, and even play a role in
determining the equilibrium structure of the liquid at the
interface. In light of recent studies,368,382 it seems that these
effects can heavily affect nucleation rates of many different
systems. How, then, do we proceed? The answer is not clear. As
discussed, enhanced sampling techniques such as umbrella
sampling380 and forward flux sampling381 have been applied to
heterogeneous ice nucleation with the mW model, and we have
seen the latter applied successfully to homogeneous nucleation
with an all-atom model of water;327 the computational cost,

however, was huge. Although the presence of an ice-nucleating
agent should help reduce this cost, the parameter space that we
wish to study is large, and systematically studying how the various
properties of a surface affect ice nucleation requires the
investigation of many different surfaces.
There is another computational issue that also requires

attention. Simulating heterogeneous ice nucleation under
realistic conditions does not mean just mild supercooling; we
also need realistic models of the surfaces that we wish to study!
Most studies of kaolinite have considered only the planar
interface, even though, in nature, kaolinite crystals have many
step edges and defects. Ice nucleation at AgI was also recently
studied,383,384 although bulk truncated structures for the exposed
crystal faces were used. In the case of AgI(0001), this is
problematic, as the wurtzite structure of the crystal means that
this basal face is polar and likely to undergo reconstruction.385

Furthermore, AgI is photosensitive, and it has been shown
experimentally that exposure to light enhances its ice-nucleating
efficacy,386 suggesting that structural motifs at the surface very
different from those expected from the bulk crystal structure are
important. The development of computational techniques to
determine surface structures, along with accurate force fields to
describe the interaction with water, will be essential if we are to
fully understand heterogeneous ice nucleation.

2.5. Nucleation from Solution

Understanding crystal nucleation from solution is a problem of
great practical interest, influencing, for instance, pharmaceutical,
chemical, and food processing companies. Being able to obtain a
microscopic description of nucleation and growth would allow
the selection of specific crystalline polymorphs, which, in turn,
can have an enormous impact on the final product.387 An
(in)famous case illustrating the importance of this issue is the
drug Ritonavir,388,389 originally marketed as solid capsules to
treat HIV. This compound has at least two polymorphs: the
marketed and thoroughly tested polymorph (PI) and a second
more stable crystalline phase PII that appeared after PI went to
market. PII is basically nonactive as a drug because of a much
lower solubility than PI. As such and, most importantly, because
of the fact that PII had never been properly tested, Ritonavir was
withdrawn from the market in favor of a much safer alternative in
the form of gel capsules. Many other examples390 could be listed,
as various environmental factors (such as the temperature, the
degree of supersaturation, the type of solvent, and the presence of
impurities) can play a role in determining the final polymorph of
many classes of molecular crystals. Thus, it is highly desirable to
pinpoint a priori the conditions leading to the formation of a
specific polymorph possessing the optimal physical/chemical
properties for the application of interest.
The term nucleation from solution encompasses a whole range

of systems, from small molecules in aqueous or organic solvents
to proteins, peptides, and other macromolecular systems in their
natural environment. These systems are very diverse, and a
universal nucleation framework is probably not applicable to all
of these cases. The review by Dadey et al.391 discusses the role of
the solvent in determining the final crystal. Many aspects of the
nucleation of solute precipitates from solution were recently
reviewed by Agarwal and Peters.392 In this section, we limit the
discussion to small molecules in solution.
A central issue with MD simulations of nucleation from

solution is the choice of order parameters able to distinguish
different polymorphs. Many of these collective variables have
been used in enhanced-sampling simulations (see section 1.3.2).
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Several examples can be found in refs 214 and 393−396. MD
simulations of nucleation from solution are particularly
challenging because of finite-size effects due to the nature of
the solute/solvent system.152,397 In the NVT and NPT
ensembles, where MD simulations of nucleation are usually
performed, the total number of solute molecules is constant.
However, the ratio between the numbers of solute molecules in
the crystalline phase and in the solution varies during the
nucleation events, leading to a change in the chemical potential of
the system. This occurrence has negligible effects in the
thermodynamic limit,398 but it can substantially affect the
outcomes of, for example, free-energy-based enhanced-sampling
simulations. Simulations of models containing a large number
(103−105) of molecules can alleviate the problem,399 although
this is not always the case.392,400,401 An analytic correction to the
free energy for NPT simulations of nucleation of molecules from
solution was proposed in refs 392 and 401 on the basis of a
number of previous works (see, e.g., refs 152, 397, and 402) and
applied later in ref 403 as well. Alternative approaches include
seededMD simulations193,399 (see section 1.3.1) and simulations
mimicking the grand canonical ensemble (μVT),404,405 where
the number of constituents is not a constant and the number of
molecules inin this casethe solution is allowed to evolve in
time. It is worth noticing that nucleation of molecules in solution
is a challenging playground for experiments as well. For instance,
quantitative data about nucleation of ionic solutions are
amazingly hard to find within the current literature. This is in
stark contrast with the vast amount of data covering, for example,
ice nucleation (as illustrated in section 2.4).
2.5.1. Organic Crystals. Among the countless organic

compounds, urea molecules can be regarded as a benchmark for
MD simulation of nucleation from solution. This is because urea
is a system of great practical importance that (i) displays fast
nucleation kinetics and (ii) has only one experimentally
characterized polymorph. Early studies by Piana and co-
workers406,407 focused on the growth rate of urea crystals,
which turned out to be consistent with experimental results.
Years later, the inhibition of urea crystal growth by additives was
investigated by Salvalaglio et al.408,409 The investigation of the
early stages of nucleation was tackled only recently by Salvalaglio
et al.410 for urea molecules in aqueous and organic (ethanol,
methanol, and acetonitrile) solvents. In these studies, the authors
employed metadynamics along with the generalized Amber force
field.411,412 The resulting free energies, modified for finite-size
effects related to the solvent,410 suggested that different solvents
lead to different nucleation mechanisms. Whereas a single-step
nucleation process is favored in methanol and ethanol, a two-step
mechanism (see section 1.1.2) emerges for urea molecules in
acetonitrile and water, as depicted in Figure 17. In this case, the
initial formation of an amorphousalbeit densecluster is
followed by evolution into a crystalline nucleus. Note that,
according to the free energy surface reported in Figure 17a, the
amorphous clusters (configurations 2 and 3 in Figure 17a,b) are
unstable with respect to the liquid phase; that is, they are not
metastable states having their own free energy bases, but rather,
they originate from fluctuations within the liquid phase. This
evidence, together with the fact that the transition state
(configuration 4 in Figure 17a,b) displays a fully crystalline
core, prompts the following, long-standing question: If the
critical nucleus is mostly crystalline and the amorphous
precursors are unstable with respect to the liquid phase, can we
truly talk about a two-step mechanism? Reference 392 suggests
the terms ripening regime two-step nucleation when dealing with

stable amorphous precursors and crystallization-limited two-step
nucleation when the amorphous clusters are unstable and the
limiting step is the formation of a crystalline core within the
clusters. Salvalaglio et al.410 also observed two polymorphs (PI
and PII) in the early stages of the nucleation process. PI
corresponds to the experimental crystal structure and is the
most stable structure in the limit of an infinite crystal.413 PII,
however, is more stable for small crystalline clusters. In
agreement with the Ostwald rule (see section 2.2), the small
crystalline clusters that initially form in solution are of the PII
type, and the subsequent conversion from PII to PI seems to be an
almost-barrierless process.
An approach similar to that employed in ref 410 was used to

investigate crystal nucleation of 1,3,5-tris(4-bromophenyl)-

Figure 17. (a) Free-energy surface (FES) associated with the early
stages of nucleation of urea in aqueous solution, as obtained by
Salvalaglio et al.403 from a well-tempered metadynamics simulation of
300 urea molecules and 3173 water molecules, within an isothermal−
isobaric ensemble at p = 1 bar and T = 300 K (simulation S2 in ref 403
with a correction term to the free-energy included to represent the case
of a constant supersaturation of 2.5). The contour plot of the FES is
reported as a function of the number of molecules belonging to the
largest connected cluster (n, along the ordinate) and the number of
molecules in a crystal-like configuration within the largest cluster (no,
along the abscissa). Note that n ≥ no by definition and that CNT would
prescribe that the evolution of the largest cluster in the simulation box is
such that n = no (i.e., only the diagonal of the contour plot is populated).
The presence of an off-diagonal basin provides evidence of a two-step
nucleation of urea crystals from aqueous solutions. This is further
supported by the representative states sampled during the nucleation
process, shown in panel b. Urea molecules are represented as blue
spheres, and red connections are drawn between urea molecules falling
within a cutoff distance of 0.6 nm of each other. Reprinted with
permission from ref 403. Copyright 2015National Academy of Sciences.
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benzene molecules in water and methanol. These simulations
showed the emergence of prenucleation clusters, consistent with
recent experimental results137 based on single-molecule real-time
transmission electron microscopy (SMRT-TEM; see section
1.2). The formation of prenucleation clusters in the early stages
of nucleation from solution has been observed in several other
cases.18,24,137,391,414 This is of great relevance, as CNT is not able
to account for two- (or multi-) step nucleation. MD simulations
have been of help in several cases, validating or supporting a
particular mechanism. For instance, MD simulations provided
evidence for two-step nucleation in aqueous solutions of α-
glycine415 and n-octane (or n-octanol) solutions of D-/L-
norleucine.416

2.5.2. Sodium Chloride. Sodium chloride (NaCl) nuclea-
tion from supersaturated brines represents an interesting
challenge for simulations, as the system is relatively easy to
model and experimental nucleation rates are available.
The first simulations of NaCl nucleation date back to the early

1990s, when Ohtaki and Fukushima417 performed brute-force
MD simulations using very small systems (448 molecules
including water molecules and ions) and exceedingly short
simulation times (∼10 ps). Thus, the formation of small
crystalline clusters that they observed was most likely a
consequence of finite-size effects. More recently, the TPS
simulations of Zahn418 suggested that the centers of stability for
NaCl aggregates consist of nonhydrated Na+ ions octahedrally
coordinated with Cl− ions, although the results were related to
very small simulations boxes (containing 310 molecules in total).
Tentative insight into the structure of the crystalline clusters

came with the work of Nahtigal et al.,419 featuring simulations of
4132 molecules (4000 water molecules and 132 ions) in the
673−1073 K range for supercritical water at different densities
(0.17−0.34 g/cm3). They reported a strong dependence of the
crystalline cluster size distribution on the system density, with
larger clusters formed at lower densities. Moreover, the clusters
appeared to be amorphous. The emergence of amorphous
precursors was also reported in the work of Chakraborty and
Patey,420,421 who performed large-scale MD simulations
featuring 56000 water molecules and 4000 ion pairs in the
NPT ensemble. The SPC/Emodel422 was used for water, and the
ion parameters were those used in the OPLS423,424 force field.
Their findings provided strong evidence for a two-step
mechanism of nucleation, where a dense but unstructured
NaCl nucleus is formed first, followed by a rearrangement into
the rock salt structure, as depicted in Figure 18a. On a similar
note, metadynamics simulations performed by Giberti et al.425

using the GROMOS426 force field for the ions and the SPC/E422

model for water suggested the emergence of a wurtzite-like
polymorph in the early stages of nucleation. This precursor could
be an intermediate state along the path from brine to the NaCl
crystal. However, Alejandre and Hansen427 pointed out a strong
sensitivity of the nucleationmechanism on the choice of the force
field.
In fact, very recent simulations by Zimmermann et al.399

demonstrated that the GROMOS force field overestimates the
stability of the wurtzite-like polymorph. The authors employed a
seeding approach within an NVT setup for which the absence of
depletion effects was explicitly verified.152 The force fields used
were those developed by Joung and Cheatham428 for Na+ and
Cl− and SPC/E422 for water, which provide reliable solubilities
and accurate chemical potential driving force.429 Using a
methodology introduced in ref 193, the interfacial free energy
and the attachment frequency δn were deduced. A thorough

investigation of the latter demonstrated that the limiting factor
for δn, which, in turn, strongly affects the kinetics of nucleation
(see section 1.1.1), is not the diffusion of the ions within the
solution but is instead the desolvation process needed for the
ions to get rid of the solvent and join the crystalline clusters.
Moreover, Zimmermann et al.399 evaluated the nucleation free
energy barrier as well as the nucleation rate as a function of
supersaturation, providing three estimates using different
approaches. The results are compared with experiments in
Figure 18b, showing a substantial discrepancy as large as 30
orders of magnitude. Interestingly, experimental nucleation rates

Figure 18. (a) Snapshots from anMD simulation of crystal nucleation of
NaCl from aqueous solution. The simulations, carried out by
Chakraborty and Patey,420 involved 56000 water molecules and 4000
ion pairs (concentration of 3.97 m) in the NPT ensemble. All Na+

(black) and Cl− (yellow) ions within 2 nm of a reference Na+ ion (larger
and blue) are shown, together with water molecules (oxygen and
hydrogen atoms in red and white, respectively) within 0.4 nm from each
ion. From the relatively homogeneous solution (3 ns), an amorphous
cluster of ions emerges (5 ns). This fluctuation in the concentration of
the ions leads to a subsequent ordering of the disordered cluster (10 ns)
in a crystalline fashion (30 ns), consistently with a two-step nucleation
mechanism. Reprinted with permission from ref 420. Copyright 2013
American Chemical Society. (b) Comparison of NaCl nucleation rates,
, as a function of the driving force for nucleation, reported as 1/(Δμ/

kBT)
2. Red points and blue and gray (continuous) lines were estimated

by three different approaches in the simulations of Zimmermann et al.399

Experimental data obtained employing an electrodynamic levitator trap
(Na et al.433), an efflorescence chamber (Gao et al.434), and
microcapillaries (Desarnaud et al.435) are also reported, together with
a tentative fit (γfit

exp, dotted line). Note the substantial (up to about 30
orders of magnitude) discrepancy between experiments and simu-
lations. Reprinted with permission from ref 399. Copyright 2015
American Chemical Society.
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are much smaller than what is observed in simulations, contrary
to what has been observed for colloids, for example (see section
2.1). We stress that the work of Zimmermann et al. employed
state-of-the-art computational techniques and explored NaCl
nucleation under different conditions using a variety of
approaches. The fact that these tour de force simulations yielded
nucleation rates that differed significantly from experiments casts
yet another doubt on the possibility of effectively comparing
experiments and simulations. However, it must be noted that
Zimmermann et al.399 assumed a value of about 5.0 molNaCl/
kgH2O for the NaCl solubility in water, as proposed in ref 429.
This differs substantially from the values independently obtained
by Moucka et al.430 (3.64 molNaCl/kgH2O) and more recently by

Mester and Panagiotopoulos431 (3.71 molNaCl/kgH2O). This
discrepancy can explain the enormous mismatch reported by
Zimmermann et al.,399 once again demonstrating the severe
sensitivity of nucleation rates to any of the ingredients involved in
their calculations.
On a final note, we stress that many other examples of

molecular dynamics simulations looking at specific aspects of
crystal nucleation from solution exist in the literature. For
instance, a recent study by Anwar et al.432 describes secondary
crystal nucleation, where crystalline seeds are already present
within the solution. The authors suggest, for a generic solution
represented by Lennard-Jones particles, a (secondary) nuclea-
tion mechanism enhanced by the existence of PNCs (see section
1.1.2). Kawska et al.189 stressed instead the importance of proton
transfer within the early stages of nucleation of zinc oxide
nanoclusters from an ethanol solution. The emergence of similar
ripening processes, selecting specific crystalline polymorphs, for
example, according to the effect of different solvents is still fairly
unexplored but bound to be of great relevance in the future.
Finally, several computational studies have dealt with the
crystallization of calcium carbonate, which was recently reviewed
extensively in ref 18 and thus, together with the broad topic of
crystal nucleation of biominerals, is not discussed in here.

2.6. Natural Gas Hydrates

Natural gas hydrates are crystalline compounds in which small
gas molecules are caged (or enclathrated) in a host framework of
water molecules. As natural gas molecules (e.g., methane, ethane,
propane) are hydrophobic, gas hydrates are favored by
conditions of high pressure and low temperature, and are
found to occur naturally in the ocean bed and in permafrost
regions.436 With exceptionally high gas storage capabilities and
the fact that it is believed that gas hydrates exceed conventional
gas reserves by at least an order of magnitude,437 there is interest
in trying to exploit gas hydrates as a future energy resource.
Although gas hydrates might potentially play a positive role in the
energy industry’s future, they are currently considered a
hindrance: If mixed phases of water and natural gas are allowed
to cool in an oil pipeline, then a hydrate can form and block the
line, causing production to stall. Understanding the mecha-
nism(s) by which gas hydrates nucleate is likely to play an
important role in the rational design of more effective hydrate
inhibitors.
2.6.1. Hydrate Structures. There are two main types of

natural gas hydrates: structure I (sI), which has a cubic structure
(space group Pm3̅n), and structure II (sII), which also has a cubic
structure (space group Fd3̅m). (There is also a third, less
common type, sH, which has a hexagonal crystal structure, but
we do not discuss this structure any further here.) Structurally,

the water frameworks of both sI and sII hydrates are similar to
that of ice Ih, with each water molecule finding itself in an
approximately tetrahedral environment with its nearest
neighbors. Unlike ice Ih, however, the water framework consists
of cages, with cavities large enough to accommodate a gas
molecule.
Between the sI and sII hydrates, there exist three types of

cages, which are denoted 5p6h depending on the numbers of five-
and six-sided faces that make up the cage. For example, common
to both the sI and sII hydrates is the 512 cage, where the water
molecules sit on the vertices of a pentagonal dodecahedron.
Along with 512 cages, the sI hydrate also consists of a 51262 cages,
which have two six-sided faces and 12 five-sided faces: There are
two 512 cages and six 51262 cages in the unit cell. The sII hydrate,
on the other hand, has a unit cell made up of 16 512 cages and
eight 51264 cages. Because of the larger size of the 51264 cage, the
sII structure forms in the presence of larger guest molecules such
as propane, whereas small guest molecules such as methane favor
the sI hydrate. (This is not to say that small guest molecules are
not present in sII, just that the presence of larger guest molecules
is necessary to stabilize the larger cavities.) The sI, sII, and sH
crystals structures are shown in Figure 19, along with the
individual cage structures. Further details regarding the crystal
structures of natural gas hydrates can be found in ref 436.

2.6.2. Homogeneous Nucleation. Historically, two main
molecular mechanisms for hydrate nucleation have been
proposed. First, Sloan and co-workers439,440 proposed the labile
cluster hypothesis (LCH), which essentially describes the
nucleation process as the formation of isolated hydrate cages
that then agglomerate to form a critical hydrate nucleus. Second,
the local structure hypothesis (LSH) was proposed after umbrella
sampling simulations by Radhakrishnan and Trout441 suggested
that the guest molecules first arrange themselves in a structure
similar to the hydrate phase, which is accompanied by a
perturbation (relative to the bulkmixture) of the water molecules
around the locally ordered guest molecules. For the same reasons
as already outlined elsewhere (see section 1.2), it is
experimentally challenging the verify which, if either, of these
two nucleation mechanisms is correct. What we will see in this
section is how computer simulations of gas hydrate nucleation
have been used to help shed light on this process.

Figure 19. Crystal structures of the sI, sII and sH gas hydrates, along
with the corresponding cage structures. Only the water molecule
positions are shown, as spheres connected by lines. Reprinted with
permission from ref 438. Copyright 2007 John Wiley & Sons.
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Although not the first computer simulation study of natural gas
hydrate formation (see, e.g., refs 441−444), one the most
influential simulation works on gas hydrate formation is that of
Walsh et al.,445 in which methane hydrate formation was directly
simulated under conditions of 250 K and 500 bar. It was found
that nucleation proceeded through the cooperative organization
of two methane and five water molecules into a stable structure,
with the methane molecules adsorbed on opposite sides of a
pentagonal ring of water molecules. This initial structure allowed
the growth of more water faces and adsorbed methane, until a 512

cage formed. This process took on the order of 50−100 ns to
complete. After persisting for ∼30 ns, this 512 cage opened when
two newwater molecules were inserted into the only face without
an adsorbed methane molecule, on the side opposite to that
where several new full cages were completed. This opening of the
original 512 cage was then followed by the relatively fast growth of
methane hydrate. The early stages of hydrate nucleation are
shown in Figure 20. After ∼240 ns, the original 512 cage
transformed into a 51263 cage, a structure not found in any

equilibrium hydrate structure. Walsh et al. also found that 512

cages dominated, in terms of abundance, during the early stages
of nucleation. 51262 cages (which along with the 512 cages
comprise the sI hydrate) were the second most abundant,
although their formation occurred approximately 100 ns after
that of the initial 512 cages. A significant amount of the larger
51264 cages that are found in the sII hydrate was also observed,
which was rationalized by the large number of face-sharing 512

cages providing an appropriate pattern. The 51263 cages were also
observed in an abundance close to that of the 51262 cages. The
final structure can be summarized as a mixture of sI and sII
motifs, linked by 51263 cages. A similar structure had previously
been reported as a result of hydrate growth simulations.446,447

Even though the work ofWalsh et al.445 provided useful insight
into the hydrate nucleation mechanism, the conclusions were
based on only two independent nucleation trajectories. Soon
after the publication by Walsh et al., Jacobsen et al.448 reported a
set of 12 simulations using a methane−water model449 based on
mW water under conditions of 210 K and 500 atm (the melting

Figure 20. Early stages of hydrate nucleation observed by Walsh et al.:445 (A−C) A pair of methane molecules is adsorbed on either side of a single
pentagonal face of water molecules. Partial cages form around this pair, near the eventual central violet methane molecule, only to dissociate over several
nanoseconds. (D,E) A small cage forms around the violet methane, and other methane molecules adsorb at 11 of the 12 pentagonal faces of the cage,
creating the bowl-like pattern shown. (F,G) The initial central cage opens on the end opposite to the formation of a network of face-sharing cages, and
rapid hydrate growth follows. (H) A snapshot of the system after hydrate growth shows the fates of those methane molecules that made up the initial
bowl-like structure (other cages not shown). Reprinted with permission from ref 445. Copyright 2009 American Association for the Advancement of
Science.

Figure 21. Sketch of the nucleation mechanism of methane hydrates proposed in ref 448. Clusters of guest molecules aggregate in blobs, which
transform into amorphous clathrates as soon as the water molecules arrange themselves in the cages characteristic of crystalline clathrate, which
eventually form upon the reordering of the guest moleculesand thus of the cagesin a crystalline fashion. Note that the difference between the blob
and the amorphous clathrate is that the water molecules have yet to be locked into clathrate hydrate cages in the former. Reprinted with permission from
ref 448. Copyright 2010 American Chemical Society.
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point of the model is approximately 300 K). Owing to the
reduced computational cost of the coarse-grained model, they
were also able to study a much larger system size thanWalsh et al.
(8000 water and 1153 guest molecules448 vs 2944 water and 512
guest molecules445). In agreement with Walsh et al., the initial
stages of the nucleation mechanism were also dominated by 512

cages, and a mixture of sI and sII motifs connected by 51263 cages
was observed. It was also observed that solvent-separated pairs of
guest molecules were stabilized by greater numbers of guest
molecules in the cluster. As gas hydrates are composed of
solvent-separated pairs of guest molecules as opposed to contact
pairs, this suggests a resemblance to the LSH, where the local
ordering of guest molecules drives the nucleation of the hydrate.
Jacobsen et al., however, also found a likeness to the LCH:
Clusters of guest molecules and their surrounding water
molecules formed long-lived blobs that slowly diffused in
solution. These blobs could be considered large analogues of
the labile clusters proposed in the LCH. Through analysis of their
simulation data, Jacobsen et al. concluded that the blob is a guest-
rich precursor in the nucleation pathway of gas hydrates with
small guest molecules (such as methane). Note that the
distinction between blobs and the amorphous clathrate is that
the water molecules have yet to be locked into the clathrate
hydrate cages in the former. The overall nucleation mechanism is
depicted in Figure 21.
Both the work ofWalsh et al. and that of Jacobson et al. suggest

that amorphous hydrate structures are involved in the nucleation
mechanism, although both studies were carried out under high
driving forces. In ref 450, Jacobsen and Molinero addressed the
following two questions raised by the above studies: How could
amorphous nuclei grow into a crystalline form? Are amorphous
nuclei precursors intermediates for clathrate hydrates under less
forcing conditions? By considering the size-dependent melting
temperature of spherical particles using the Gibbs−Thomson
equation, Jacobson and Molinero found for all temperatures that
the size of the crystalline critical nucleus was always smaller than
that of the amorphous critical nucleus, with the two becoming
virtually indistinguishable in terms of stability for very small
nuclei of ∼15 guest molecules (i.e., under very forcing
conditions). From a thermodynamic perspective, this would
suggest that nucleation would always proceed through a
crystalline nucleus. The observation of amorphous nu-
clei,442,445,448,451,452 even at temperatures as high as 20%
supercooling, hints that their formation might be favored for
kinetic reasons. Employing the CNT expression for the free
energy barrier suggested that the amorphous nuclei could be
kinetically favored up to 17% supercooling if γa/γx = 0.5, where γa
and γx are the surface tensions of the liquid-amorphous and
liquid-crystal structures, respectively. Jacobson and Molinero
estimated γx≈ 36mJ/m2 and 16 < γa < 32mJ/m2, so it is certainly
plausible that amorphous precursors are intermediates for
clathrate hydrates under certain conditions. The growth of
clathrate hydrates from amorphous and crystalline seeds was also
studied, where it was found that crystalline clathrate can grow
from amorphous nuclei. As the simulation led to fast mass
transport, the growth of postcritical nuclei was relatively quick,
and the amorphous seed became encapsulated by a (poly)-
crystalline shell. Under conditions where an amorphous nucleus
forms first because of a smaller free energy barrier but diffusion of
the guest species becomes a limiting factor, it is likely that small
nuclei would have long enough to anneal to structures of greater
crystallinity before growing to the macroscopic crystal phase.

It thus appears that gas hydrates might exhibit a multistep
nucleation process involving amorphous precursors for reason-
ably forcing conditions, but for temperatures close to
coexistence, it seems that nucleation should proceed through a
single crystalline nucleus. By assuming a CNT expression for the
free energy (as well as the total rate), Knott et al.453 used the
seeding technique (see section 1.3.1) to compute the nucleation
rate for sI methane hydrate with relatively mild supersaturation
of methane, in a manner similar to that of Espinosa et al.326 for
homogeneous ice nucleation as discussed in section 2.4.1. They
found vanishingly small homogeneous nucleation rates of 10−111

nuclei cm−3 s−1, meaning that, even with all of Earth’s ocean
waters, the induction time to form one crystal nucleus
homogeneously would be ∼1080 years! Knott et al. therefore
concluded that, under mild conditions, hydrate nucleation must
occur heterogeneously.

2.6.3. Heterogeneous Nucleation. Compared to homoge-
neous nucleation, the heterogeneous nucleation of gas hydrates
has been little studied. Liang et al.451 investigated the steady-state
growth of a H2S hydrate crystal in the presence of silica surfaces,
finding that the crystal preferentially grew in the bulk solution
rather than at the interface with the solid. They also observed
that, in one simulation, local gas density fluctuations of the
dissolved guest led to the spontaneous formation of a gas bubble
from solution, which was located at the silica interface. This had
two effects on the observed growth: (i) the bubble depleted most
of the gas from solution, leading to an overall decrease of the
crystal growth rate, and (ii) because of the location of the guest
bubble, the silica surface effectively acted like a source of gas,
promoting growth of the crystal closer to the interface relative to
the bulk.
Bai et al. investigated the heterogeneous nucleation of CO2

hydrate in the presence of a fully hydroxylated silica surface, first
in a two-phase system where the water and CO2 were well-
mixed454 and then in a three-phase system where the CO2 and
water were initially phase-separated.455 For the two-phase
system, the authors reported the formation of an ice-like layer
at the silica surface, above which a layer composed of semi-512

cage-like structures mediated the structural mismatch between
the ice-like contact layer and the sI hydrate structure above. In
the three-phase system, nucleation was observed at the three-
phase contact line, along which the crystal nucleus also grew.
This was attributed to the stabilizing effect of the silica on the
hydrate cages, plus the requirement for the availability of both
water and CO2. In a later work, Bai et al.456 investigated the
effects of surface hydrophilicity (by decreasing the percentage of
surface hydroxyl groups) and crystallinity on the nucleation of
CO2 hydrate. They found that, in the case of decreased
hydrophilicity, the ice-like layer at the crystalline surface
vanished, replaced instead by a single liquid-like layer upon
which the hydrate directly nucleated. Whereas shorter induction
times to nucleation at the less hydrophilic surfaces were reported,
little dependence on the crystallinity of the surface was observed.
Although certainly an interesting observation, as only a single
trajectory was performed for each system, studies in which
multiple trajectories are used to obtain a distribution of induction
times would be desirable, and as the hydrate actually appears to
form away from the surface in all cases, a full comparison of the
heterogeneous and homogeneous rates would also be a
worthwhile pursuit.
There have also been a number of studies investigating the

potential role of ice in the nucleation of gas hydrates. Pirzadeh
and Kusalik457 performed MD simulations of methane hydrate
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nucleation in the presence of ice surfaces and reported that an
increased density of methane at the interface induced structural
defects (coupled 5−8 rings) in the ice that facilitated the
formation of hydrate cages. Nguyen et al.458 used MD
simulations to directly investigate the interface between a gas
hydrate and ice and found the existence of an interfacial transition
layer (ITL) between the two crystal structures. The water
molecules in the ITL, which was found to be disordered and two
to three layers of water in thickness, had a tetrahedrality and
potential energy intermediate between those of either of the
crystal structures and liquid water. The authors suggested that
the ITL could assist the heterogeneous nucleation of gas hydrates
from ice by providing a lower surface free energy than either of
the ice−liquid and hydrate−liquid interfaces. Differential
scanning calorimetry experiments by Zhang et al.459 found ice
and hydrate formation to occur simultaneously (on the
experimental time scale), which was attributed to the
heterogeneous nucleation of ice, which, in turn, facilitated
hydrate formation. Poon and Peters460 provide a possible
explanation for ice acting as a heterogeneous nucleating agent for
gas hydrates, aside from the structural considerations of refs 457
and 459: At a growing ice front, the local supersaturation of
methane can be dramatically increased, to the extent that
induction times to nucleation are reduced by as much as a factor
10100.
Computer simulations of hydrate nucleation have certainly

contributed to our understanding of the underlying mechanisms,
especially in the case of homogeneous nucleation. One fairly
consistent observation across many simulation studies (e.g., refs
441, 442, 444, 445, 448, 450, and 461) suggests that some type of
ordering of dissolved guest molecules precedes the formation of
hydrate cages. Another is that amorphous nuclei, consisting of
structural elements of both sI and sII hydrates form when
conditions are forcing enough. Nevertheless, open questions still
remain. In particular, the prediction that homogeneous
nucleation rates are vanishingly small under mild conditions453

emphasizes the need to better understand heterogeneous
nucleation. To this end, enhanced sampling techniques such as
FFS, which was recently applied to methane hydrate nucleation
at 220 K and 500 bar,461 are likely to be useful, although directly
simulating nucleation under mild conditions is still likely to be a
daunting task. Another complicating factor is that, aside from the
presence of solid particles, the conditions from which natural gas
hydrates form are often highly complex; for example, in an oil or
gas line, there is fluid flow, and understanding how this effects the
methane distribution in water is likely to be an important factor
in determining how fast gas hydrates form.462 In this respect, the
formation of natural gas hydrates is a truly multiscale
phenomenon.

3. FUTURE PERSPECTIVES
We have described only a fraction of the many computer
simulation studies of crystal nucleation in supercooled liquids
and solutions. Still, we have learned that MD simulations have
dramatically improved our fundamental understanding of
nucleation. For instance, several studies on colloidal particles
(see section 2.1) provided evidence for two-step nucleation
mechanisms, and the investigation of LJ liquids yielded valuable
insights into the effects of confinement (see section 2.2). In
addition, the investigation of more realistic systems has provided
outcomes directly related to problems of great relevance. For
example, the influence of different solvents on the early stages of
urea crystallization (see section 2.5) has important consequences

in fine chemistry and in the fertilizer industry, and the molecular
details of clathrate nucleation (see section 2.5) could help to
rationalize and prevent hydrate formation in oil or natural gas
pipelines. Thus, it is fair to say that MD simulations have been
and will remain a powerful complement to experiments.
However, simulations are presently affected by several

shortcomings, which hinder a reliable comparison with
experimental nucleation rates and limit nucleation studies to
systems and/or conditions often far from those investigated
experimentally. These weaknesses can be classified in two main
categories: (i) limitations related to the accuracy of the
computational model used to represent the system and (ii)
shortcomings due to the computational techniques employed to
simulate nucleation events.

(i) In an ideal world, ab initio calculations would be the tool of
the trade. Unfortunately, in all but a handful of cases such
as the phase-change materials presented in section 2.3, the
time-scale problem makes ab initio simulations of crystal
nucleation unfeasible (see Figure 5). As this will be the
status quo for the next few decades, we are forced to focus
our efforts on improving the current classical force fields
and on developing novel classical interatomic potentials.
This is a fundamental issue that affects computer
simulations of materials as a whole. Although this is not
really an issue for nucleation of simple systems such as
colloids (section 2.1), things start to fall apart when
dealing with more realistic systems (see, e.g., sections 2.5
and 2.6) and become even worse in the case of
heterogeneous nucleation (see, e.g., section 2.4.2), as the
description of the interface requires extremely transferable
and reliable force fields. Machine learning techniques463

such as neural network potentials (see section 2.3 and refs
464 and 465) are emerging as possible candidates to allow
for classical MD simulations with an accuracy closer to
first-principles calculations, but the field is constantly
looking for other options that are capable of bringing
simulations closer to reality.

(ii) The limitations of the computational techniques currently
employed to study crystal nucleation are those character-
istic of rare-events sampling. Brute-force MD simulations
(see section 1.3.1) allow for an unbiased investigation of
nucleation events, but the time-scale problem limits this
approach to very few systems, typically very distant from
realistic materials (see, e.g., sections 2.1 and 2.2)
although notable exceptions exist (see section 2.3). It is
also worth noticing that, whereas brute-force MD is not
able to provide a full characterization of the nucleation
process, useful insight can still be gained, for example, into
prenucleation events.18,466 Enhanced sampling techniques
(see section 1.3.2) are rapidly evolving and have the
potential to take the field to the next level. However, free
energy methods as they are do not give access to
nucleation kinetics and, in the case of complex systems
(see, e.g., sections 2.4.1 and 2.5), are strongly dependent
on the choice of the order parameter. On the other hand,
in light of the body of work reviewed, it seems that path-
sampling methods can provide a more comprehensive
picture of crystal nucleation. However, at the moment,
these techniques are computationally expensive, and a
general implementation is not available yet, although
consistent efforts have recently been put in place. We
believe that the development of efficient enhanced
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sampling methods specific to crystal nucleation is one of
the crucial challenges ahead.

At the moment, simulations of crystal nucleation of complex
liquids are restricted to small systems (102−104 particles), most
often under idealized conditions. For instance, it is presently very
difficult to take into account impurities or, in the case of
heterogeneous nucleation, defects of the substrate. Indeed,
defects seem to be ubiquitous in many different systems, such as
ice, hard-sphere crystals, LJ crystals, and organic crystals as well.
Defects are also often associated with polymorphism, but
possibly because of the inherent difficulties in modeling them
(or in characterizing them experimentally), they are under-
represented in the current literature. These are important aspects
that almost always impact experimental measurements and that
should thus be included in simulations as well. In general,
simulations of nucleation should allow us not only to provide
microscopic insight but also to make useful predictions and/or to
provide a general understanding to be applied to a variety of
systems. These two ambitious goals are particularly challenging
for simulations of heterogeneous nucleation. In light of the
literature we have reviewed in this work, we believe that much of
the effort in the future has to be devoted to (i) enabling atomistic
simulations of heterogeneous nucleation dealing with increas-
ingly realistic interfaces and (ii) obtaining general, maybe non-
material-specific trends able to point the community into the
right direction, even at the cost of sacrificing accuracy to a certain
extent. On the other hand, we hope that the body of work
reviewed here will inspire future experiments targeting cleaner,
well-defined systems by means of novel techniques, possibly
characterized by better temporal and spatial resolution.
Improving on the current limitations of the computational
models and techniques would enable simulations of much larger
systems over much longer time scales, with a degree of accuracy
that would allow a fruitful comparison with experiments. We
think this should be the long-term objective for the field. Up to
now, the only way to connect simulations and experiments has
been through the comparison of crystal nucleation rates, which
even now still exhibit substantial discrepancies for every single
class of systems we have reviewed. This is true not only for
complex liquids such as water (see section 2.4.1) but even for
model systems such as colloids (section 2.1). This, together with
the fact that, in some cases, even experimental data are scattered
across several orders of magnitude, suggests that we are dealing
with crystal nucleation in liquids within a flawed theoretical
framework.
In fact, CNT is now 90 years old. It is thus no wonder that

every aspect of this battered theory has been criticized at some
point. However, some aspects have been questioned more
frequently than others. For instance, the emergence of two-step
(or even multistep) mechanisms for nucleation has been
reported for many different systems (see sections 2.1, 2.2, 2.5,
and 2.6) and cannot be easily embedded in CNT as it is, although
several improvements on the original CNT formulation have
appeared within the past decade (see section 1.1.2). Nonetheless,
CNT is basically the only theory invoked by both experiments
and simulations when dealing with crystal nucleation from the
liquid phase. CNT is widely used because it offers a simple and
unified picture for nucleation and it is often very useful. However,
as demonstrated by both experiments and simulations, even the
basic rules governing the formation of the critical nucleus can
change dramatically from one system to another. Thus, we
believe that any sort of theoretical universal approach, a brand
new CNT, so to say, will be unlikely to significantly further the

field. Indeed, we fear that the same reasoning will hold for the
computational methods required. We cannot think of a single
enhanced sampling technique capable of tackling the complexity
of crystal nucleation as a whole. The interesting but
uncomfortable truth is that each class of supercooled liquids
often exhibits unique behavior, which, in turn, results in specific
features ruling the crystal nucleation process. Thus, it is very
much possible that different systems under different conditions
could require different, ad hoc flavors of CNT. Although the
latter have been evolving for decades, we believe that a sizable
fraction of the new developments in the field should aim at
producing particular flavors of CNT, specifically tailored to the
problem at hand.
In conclusion, it is clear that MD simulations have proven

themselves to be of the utmost importance in unraveling the
microscopic details of crystal nucleation in liquids. We have
reviewed important advances that have provided valuable
insights into fundamental issues and diverse nucleation scenarios,
complementing experiments and furthering our understanding
of nucleation as a whole. Whether CNT can be effectively
improved in a universal fashion is unclear. We feel that the
ultimate goal for simulations should be to get substantially closer
to the reality probed by experiments and that, to do so, we have
to sharpen our computational and possibly theoretical tools. In
particular, we believe that the community should invest in
improving the classical interatomic potentials available as well as
the enhanced sampling techniques currently used, enabling
accurate simulations of crystal nucleation for systems of practical
relevance.
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bcc body-centered cubic
cDFT classical density functional theory
CNT classical nucleation theory
DFT density functional theory
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HDL high-density liquid
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LDL low-density liquid
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MetaD metadynamics
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in ÜbersÄttigten DÄmpfen. Ann. Phys. 1935, 416, 719−752.
(32) Zeldovich, J. B. On the Theory of New Phase Formation,
Cavitation. Acta Physicochim. URSS 1943, 18, 1−22.
(33) Gibbs, J. W. The Collected Works of J. Willard Gibbs; Longmans,
Green and Co.: New York, 1928.
(34) In several cases, including, for instance, the aggregation of amyloid
fibrils,468 nucleation effectively occurs in two dimensions.
(35) A number of additional assumptions have to be made to write
down the steady-state nucleation rate. See, e.g., ref 469.
(36) Baidakov, V. G.; Tipeev, A. O. Crystal Nucleation and the Solid−
Liquid Interfacial Free Energy. J. Chem. Phys. 2012, 136, 074510.
(37) Hoffman, J. D. Thermodynamic Driving Force in Nucleation and
Growth Processes. J. Chem. Phys. 1958, 29, 1192−1193.
(38) Thompson, C. V.; Spaepen, F. On the Approximation of the Free
Energy Change on Crystallization. Acta Metall. 1979, 27, 1855−1859.
(39) Auer, S.; Frenkel, D. Prediction of Absolute Crystal-Nucleation
Rate in Hard-Sphere Colloids. Nature 2001, 409, 1020−1023.
(40) Schmelzer, J. W. P. On. The Determination of the Kinetic Pre-
Factor in Classical Nucleation Theory. J. Non-Cryst. Solids 2010, 356,
2901−2907.
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Ebert, M.; Kandler, K.; Worringen, A. Ice Nucleation Properties of the
Most Abundant Mineral Dust Phases. J. Geophys. Res. 2008, 113,
D23204.
(146) Auer, S.; Frenkel, D. Numerical Prediction of Absolute
Crystallization Rates in Hard-Sphere Colloids. J. Chem. Phys. 2004,
120, 3015−3029.
(147) Schilling, T.; Dorosz, S.; Schöpe, H. J.; Opletal, G.
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Approximation Potentials: The Accuracy of Quantum Mechanics,
Without the Electrons. Phys. Rev. Lett. 2010, 104, 136403.
(466) Tribello, G. A.; Bruneval, F.; Liew, C.; Parrinello, M. AMolecular
Dynamics Study of the Early Stages of Calcium Carbonate Growth. J.
Phys. Chem. B 2009, 113, 11680−11687.
(467) Zallen, R. The Physics of Amorphous Solids; Wiley-VCH: New
York, 1998.
(468) Cabriolu, R.; Kashchiev, D.; Auer, S. Breakdown of nucleation
theory for crystals with strongly anisotropic interactions between
molecules. J. Chem. Phys. 2012, 137, 204903.
(469) Sear, R. P. The Non-Classical Nucleation of Crystals:
Microscopic Mechanisms and Applications to Molecular Crystals, Ice
and Calcium Carbonate. Int. Mater. Rev. 2012, 57, 328−356.
(470) Menon, N. A. Simple Demonstration of a Metastable State. Am.
J. Phys. 1999, 67, 1109−1110.
(471) Schuss, Z. Brownian Dynamics at Boundaries and Interfaces: In
Physics, Chemistry, and Biology; Springer,New York, 2013; includes
bibliographical references and index.
(472) Ostwald, W. Studien über die Bildung und Umwandlung Fester
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