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Abstract

Understanding the role of genes in human disease is of high importance. However, identify-

ing genes associated with human diseases requires laborious experiments that involve con-

siderable effort and time. Therefore, a computational approach to predict candidate genes

related to complex diseases including cancer has been extensively studied. In this study, we

propose a convolutional neural network-based knowledge graph-embedding model

(KGED), which is based on a biological knowledge graph with entity descriptions to infer

relationships between biological entities. As an application demonstration, we generated

gene-interaction networks for each cancer type using gene-gene relationships inferred by

KGED. We then analyzed the constructed gene networks using network centrality mea-

sures, including betweenness, closeness, degree, and eigenvector centrality metrics, to

rank the central genes of the network and identify highly correlated cancer genes. Further-

more, we evaluated our proposed approach for prostate, breast, and lung cancers by com-

paring the performance with that of existing approaches. The KGED model showed

improved performance in predicting cancer-related genes using the inferred gene-gene

interactions. Thus, we conclude that gene-gene interactions inferred by KGED can be help-

ful for future research, such as that aimed at future research on pathogenic mechanisms of

human diseases, and contribute to the field of disease treatment discovery.

Introduction

Cancer is a major threat to public health, with over 18.1 million new cases and 9.6 million can-

cer deaths in 2018. Lung cancer is the most commonly diagnosed cancer (11.6% of total cases)

and is the leading cause of cancer death (18.4% of total cancer deaths). This is closely followed

by female breast cancer (11.6%) and prostate cancer (7.1%) [1]. Cancer is a genetic disease,

and cancer-related genes are mutated and dysregulated, leading to tumor formation and can-

cer [2]. As genes function together in signaling and regulatory pathways, somatic mutations
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and changes in RNA and protein expression result in abnormal gene-gene interactions. It is

therefore essential to understand cancer-related genes in the context of a gene-gene interaction

network to enhance our knowledge about cancer development.

Over recent decades, the advancement of next generation sequencing technologies [3] and

microarray development [4] have encouraged many studies for identifying the major genes

involved in the physiopathology of various diseases, including cancer. These technologies and

studies allow us to monitor gene activity in cells [5, 6], leading to many scientific articles dem-

onstrating associations between diseases and genes. In addition, exome and genomic sequenc-

ing studies have demonstrated that different patterns of somatic mutation and gene expression

changes affect cancer initiation and progression [7]. Thus, recent computational algorithms [8,

9] have exploited mutations in genes to discover new cancer-associated genes from genome

sequencing data. In another previous work [10], researchers utilized both mutation informa-

tion of a given gene as well as that of its neighbors in a functional network. These efforts made

possible to discover new cancer-related genes, and newly discovered information can thus be

accumulated in the literature.

The last few decades have witnessed massive advances in biomedical research, resulting in

valuable knowledge and large amounts of data that are continuously updated and stored in

various freely accessible databases for further research. For example, the Comparative Toxico-

genomics Database (CTD) [11] integrates data from the scientific literature that can be

searched by professional biocurators to describe chemical interactions among genes, in addi-

tion to identifying associations between diseases and genes or chemicals. BioGRID [12] is a

well-known protein-gene interaction database that is manually curated from literature in the

Medline database. As the identification of genes associated with human diseases requires labo-

rious experiments that involve considerable effort and time, computational approaches that

utilize existing biological knowledge contained in such databases will be helpful for automati-

cally predicting the undiscovered genetic pathogenesis of cancer. In addition, gene-gene inter-

action networks have been constructed for humans, and have been used as an informative

resource for computationally predicting cancer-related genes [13, 14].

Knowledge graphs organize human knowledge into structured information in the real

world, and are important resources for intelligent applications such as question answering,

personalized recommendation systems, machine translation, and web searches [15]. A typical

knowledge graph consists of a collection of knowledge bases (KBs or fact triples) representing

relationships between two entities. KBs or triples are in the form of (head entity, relation, tail
entity). Since a knowledge graph is a way of connecting the fragmented knowledge, undiscov-

ered knowledge can be inferred from the graph. For example, relationships denoted as dashed

lines in Fig 1 can be predicted by existing knowledge bases in the graph. Over the past several

decades, the content and volume of general-purpose KBs, such as FreeBase [16], WordNet

[17], YAGO [18], DBpedia [19], and Wikidata [20] has rapidly accumulated due to collabora-

tive contributions by experts and the public. With the growing amount of KBs, many knowl-

edge graph embedding models, such as TransE [21] and ConvKB [22], have been proposed to

infer new triples by embedding existing multi-relational data in a low-dimensional vector

space. However, they have not been widely applied and evaluated in biological KBs for repre-

senting relationships between biological entities such as chemicals, genes, diseases, and symp-

toms because most knowledge graph embedding methods were originally designed for

general-purpose KBs. In our previous study [23], we demonstrated that TransE is useful for

inferring new biological relationships. However, the performance of TransE with biological

data was not as satisfactory as that of general-purpose KBs.

In this study, we propose a convolutional neural network (CNN)-based knowledge graph

embedding model using the biological knowledge graph with entity descriptions (KGED) to
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identify disease-gene associations. Moreover, we compared the performance of KGED to that

of TransE and ConvKB to demonstrate the superior performance of our system when embed-

ding biological KBs. We then predicted a gene-interaction network related to each cancer type

using KGED and analyzed the constructed gene network. We used network centrality mea-

sures to rank the central genes of the network and identify possible cancer-related genes. We

evaluated our proposed approach for prostate, breast, and lung cancers by comparing it with

existing approaches [13, 14, 24, 25]. A diagram explaining the entire procedure of this study is

shown in Fig 2. The source codes for KGED and datasets used for biological KBs and entity

descriptions are available at https://github.com/anispike1988/KGED.

Materials and methods

Biological knowledge bases and entity descriptions

Biological knowledge bases and entity descriptions. Knowledge graphs are graph-structured

KBs, wherein facts are represented in the form of edges between nodes. As an entity may have

multiple aspects and various relations may focus on different aspects of entities, these generally

consist of different types of entities and relations. To maximize connectivity between entities,

Fig 1. A toy example of inferring new relationships from existing knowledge bases. The knowledge graph in the toy example

contains relationships between biological entities. The relationship between PTEN and Lung cancer can be inferred from the

information on the relationship between PTEN and cadmium and between cadmium and lung cancer. Also, the relationship between

PTEN and IRF1 can be predicted by the relationship between PTEN and EGFR and between EGFR and IRF1.

https://doi.org/10.1371/journal.pone.0258626.g001
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we constructed the biological knowledge graph using chemical-gene, chemical-disease, gene-

gene, disease-gene, and disease-symptom relationships. These were obtained from public data-

bases. A chemical-gene relationship indicates that a chemical upregulates or downregulates a

gene, a chemical-disease relationship represents a chemical that is used to treat or cause a dis-

ease, and a disease-gene relationship indicates a gene targeted for the treatment of a disease or

that the gene causes a disease. These three relationships were extracted from the CTD database

(http://ctdbase.org/downloads/) as they provide files in tsv format for each relationship. More-

over, we downloaded a tab-separated text file containing the gene-gene interactions from the

BioGrid database (https://downloads.thebiogrid.org/BioGRID). Lastly, we extracted disease-

symptom relationships from the MalaCards human disease database (https://malacards.org/),

an integrated compendium of annotated diseases mined from 72 meta-resources [26], by pars-

ing xml files for each disease, which indicate that a disease contains diverse symptoms. We

then integrated all files extracted from each database to obtain the biological triples. During

the construction of the biological triples, only manually curated data by experts were used, due

to their higher confidence levels than inferred data. Table 1 shows more details regarding the

statistics of biological triples in terms of each relation. In this study, we used 3,273,215 triples

Fig 2. Summary of the complete study process. Biological knowledge bases (KBs) and their entity descriptions were

collected from public databases. We then converted biological KBs into training, validation, and test triples using a

dictionary for entities. Using these data, we learned the KGED model to infer biological relationships. Next, we

calculated the mean rank scores and hits@10 scores to evaluate our model. We also performed additional experiments

to prove the usefulness of gene-gene interactions inferred by KGED.

https://doi.org/10.1371/journal.pone.0258626.g002

Table 1. Statistics of biological triples between chemicals, genes, diseases, and symptoms obtained from the public databases.

Relations (h, r, t) #Head entities #Tail entities #Triples Data sources

Chemical, relate, gene 12,439 35,115 834,214 CTD

Chemical, relate, disease 9348 2973 89,457 CTD

Disease, relate, gene 5111 6760 27,363 CTD

Gene, relate, gene 49,590 49,590 2,193,026 BioGrid

Disease, have, symptom 9060 8728 129,155 MalaCards

The table means the details of biological dataset. The first column represents the data type. The second, third, and fourth columns represent the number of head and tail

entities in each data type and triples, respectively. Data sources for each data type are described in the last column.

https://doi.org/10.1371/journal.pone.0258626.t001
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with 103,625 entities, including 15,267 chemicals, 68,364 genes, 11,266 diseases, and 8728

symptoms, for training and evaluating the knowledge graph embedding models, as shown in

Table 2.

Textual information can contribute to representation of the knowledge graph. In the bio-

medical domain, there are concise descriptions for biological entity terms. These consist of

sentences, phrases, or short paragraphs with rich semantic information about these entities.

Learning how to jointly embed with both fact triples and entity descriptions can greatly pro-

mote better knowledge acquisition and inference. For example, Fig 3 shows the descriptions of

two entities in a fact triple. The description for the head entity, breast cancer, demonstrates a

strong relationship between breast cancer and other diseases and symptoms. It also shows an

association between breast cancer and the BRCA2 gene, which is the tail entity of the example

triple. Furthermore, the description of the tail entity, BRCA2, represents a connection between

the BRCA2 gene and diseases such as breast cancer. This rich semantic information contrib-

utes to the knowledge graph. Textual descriptions for diseases were obtained from the

Table 2. Statistics of datasets used for training and evaluating the knowledge graph embedding models.

Data set Biological KBs

#Entities 103,625

#Relations 5

#Triples 3,273,215

#Train 3,269,465

#Valid 2500

#Test 1250

We split our biological dataset into training, validation, test triples. 250 test triples and 500 validation triples for each

data type were randomly selected and the rest of triples were used as training triples. They were used to evaluate the

performance of knowledge graph embedding models.

https://doi.org/10.1371/journal.pone.0258626.t002

Fig 3. Example of entity descriptions for the disease (Breast cancer) and the gene (BRCA2). The textual description for breast cancer

contains a strong semantic relationship between breast cancer and other diseases and genes. Also, the description for BRCA2 represents

that the BRCA2 gene is related to breast cancer. This rich semantic information contributes to the biological knowledge graph.

https://doi.org/10.1371/journal.pone.0258626.g003
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MalaCards database. We obtained xml files for each disease from the MalaCards database

from which all descriptions for each disease were extracted. In addition, we extracted descrip-

tions for symptoms and genes by parsing xml files collected from Ontobee (http://ontobee.

org/), a web system serving as a linked data server and browser specifically targeted for ontol-

ogy terms [27], and GeneCards (https://genecards.org/) [28], respectively. Lastly, we collected

descriptions for chemicals using the E-Utilities API provided by the National Center for Bio-

technology Information database [29]. To automatically obtain the descriptions for chemicals,

we queried Medical Subject Heading (MeSH) identifiers of the chemicals to the API and then

extracted only the description for the corresponding chemical.

Fig 4 shows the data structure of the biological KBs and entity descriptions. The biological

KBs in the training, validation, and test datasets are stored in a text formatted file. Each col-

umn represents unique IDs of the head entities, relation types, and IDs of tail entities, respec-

tively. Textual descriptions for biological entities are also stored in the text file. Each column

shows unique IDs, entity names, and their descriptions, respectively. Note that both datasets

were used as inputs of our KGED model.

Knowledge graph embedding models

A knowledge graph consists of a set of fact triples in the form of (h, r, t), where h, t are head

and tail entities, and r indicates a relation between them (e.g., (Elon Musk, Founded, Tesla)).

The vectors for (h, r, and t) are denoted as h, r, and t in bold italic, respectively. A knowledge

graph embedding model aims to embed the knowledge graph into a continuous low-dimen-

sional space, and continuous numerical vectors can be used to reflect the structural character-

istics of the knowledge graph. There are various methods for embedding the general-purpose

knowledge graphs such as FreeBase and WordNet. In this section, we introduce two knowl-

edge graph embedding models.

TransE [21] is the first translation-based method which considers the relation as a transla-

tion vector r between two entity vectors h and t in a low-dimensional vector space. That is, the

embedding vector (h+r) is close to t when the triple (h, r, t) holds. Therefore, the energy score

function of TransE, Er(h, t), is expressed as follows:

Erðh; tÞ ¼ khþ r � tkL1=L2: ð1Þ

The energy score function is small if (h, r, t) exists, and is otherwise large. TransE is simple and

efficient, and has performed well for 1:1 relations given its simplicity. However, the primary

Fig 4. Example of data structures of biological KBs and their textual descriptions. Both biological KBs and their textual descriptions

are stored in text formatted files. In the left box, biological KBs are split into training, validation, and test text files. The contents in these

files consist of unique identifiers (IDs) of head and tail entities and relation types. In the right box, textual descriptions are stored. This

file contains IDs for entity descriptions, entity names, and their descriptions. These files are used as inputs of the KGED model.

https://doi.org/10.1371/journal.pone.0258626.g004
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disadvantage of TransE is that it has problems with modeling complex relations such as 1:N,

N:1, and N:N, where N is the number of entities.

ConvKB [22] proposes a novel use of a CNN to capture semantic information between enti-

ties and relations for knowledge graph embedding. In ConvKB, each entity or relation is trans-

formed to a unique k-dimensional embedding. For each triple (h, r, t), k-dimensional

embeddings (h, r, t) are represented as a k × 3 input matrix by concatenating each embedding

vector. Thereafter, this matrix is fed to a convolution layer where different filters are used to

extract multiple feature maps. These feature maps are then concatenated into a single feature

vector, which is computed with a weight vector via a dot product to generate a score of the tri-

ple (h, r, t). This score is applied to estimate whether the triple is valid or not. The score func-

tion of ConvKB, fr(h, t), is defined as follows:

frðh; tÞ ¼ concatðgð½h; r; t� �ΩÞÞ � w ð2Þ

where � denotes a convolution operator, O is the set of filters, γ is the number of filters, and

w 2 Rgk�1
is a weight vector. In this paper, we used ConvKB as a baseline model to jointly

embed representations of triples and biological descriptions for entities in the triples, and com-

pared the performance of KGED with that of TransE and ConvKB.

Entity normalization

Knowledge graph embedding models generally require a set of triples as an input. We there-

fore modified the biological dataset described in Table 1 into the form of a triple (h, r, t) to

ensure that it functions properly in KGED. We assigned unique identifiers to each entity in

our dataset. For example, the following disease-gene data, (cardiomyopathies is related to
CYCS), can be denoted as the following disease-gene triple: (/d/13364, d_relate_g, /g/28644).

The following chemical-gene data, (bisphenol a is related to MMS22L), can be represented as

the following chemical-gene triple: (/c/11853, c_relate_g, /g/06856). Before assigning unique

identifiers to entities, we first normalized entity names for genes and diseases, as the use of

these entity names could vary according to CTD, BioGrid, and MalaCards. This normalization

task is necessary since such name variations can result in assigning different vector embed-

dings for some entities that are actually the same entities. To normalize disease names in our

dataset, we first constructed a disease dictionary containing disease information, including dis-

ease names, concept identifiers such as MeSH [30], Online Mendelian Inheritance in Man

(OMIM) [31], and ICD [32], in addition to synonyms using public databases. Based on the dis-

ease dictionary, we assigned unique identifiers to disease names in our dataset. We also built a

gene dictionary containing gene symbols with corresponding identifiers and synonyms using

CTD and BioGrid. Using this gene dictionary, we gave gene names in our dataset unique

identifiers.

Initialization of embeddings of triples and textual descriptions

As previously mentioned, KGED uses two types of inputs; one is the matrix for the triple, and

the other is the matrix for the descriptions in terms of the corresponding triple. In [33], it has

been shown that pre-trained embedding vectors can be used to achieve better generalization

than random initialization. We therefore initialized the embeddings for entities 2 E and a rela-

tion 2 R for (h, r, t) in T by training TransE for 3,000 epochs. Textual descriptions for biologi-

cal entities consist of sentences, phrases, or short paragraphs, and contain rich semantic

information about these entities. We initialized the embeddings for entity descriptions hd, td 2
ED by using universal sentence encoder [34], which is a model designed for encoding sen-

tences into high dimensional vectors, surpassing the performance of word-level embeddings
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(e.g., Word2vec [35], Glove [36], and Fasttext [37]). The input of the encoder is variable length

English text, and the output is a 512-dimensional vector. In this process, we manually gener-

ated descriptions for five relations as follows:

1. (chemical, relate, gene): “a chemical is related to a gene”

2. (chemical, relate, disease): “a chemical is related to a disease”

3. (disease, relate, gene): “a disease is related to a gene”

4. (gene, relate, gene): “a gene is related to a gene”

5. (disease, have, symptom): “a disease contains a symptom”.

Thereafter, the embeddings for relation descriptions rd 2 ER were also initialized by the

universal sentence encoder. Consequently, we could obtain the pre-trained embedding matri-

ces A ¼ ½h; r; t� 2 Rk�3
and B ¼ ½hd; rd; td� 2 R

l�3
as the inputs of KGED.

Overall architecture of the proposed model

In this section, we introduce the model architecture of KGED, summarized in Fig 5. A KB is a

collection of fact triples in the form of (head entity, relation, tail entity). Given a set T of triples

(h, r, t) composed of two entities h, t 2 E (the set of entities), a relation r 2 R (the set of rela-

tions), descriptions for the corresponding two entities hd, td 2 ED (the set of entity descrip-

tions), and a description for the corresponding relation rd 2 RD (the set of relation

descriptions), KGED learns vector embeddings of the entities, relations, and their descriptions.

Fig 5. Overall architecture of KGED. In the KGED model, the input layer contains two parts; the first is the matrix for the triple, and

the second is the matrix for the corresponding descriptions of each element in the triple. The former is initialized by pre-training

TransE for 3,000 epochs. The latter is encoded by the universal sentence encoder to reduce the dimensionality. The filters (ω1, ω2) are

then convolved with these two inputs to generate feature maps (α, β). Thereafter, all feature maps are concatenated to one vector, which

can be the representation of the inputs. This vector is computed with a weight vector w via a dot product to give a score for the triple.

https://doi.org/10.1371/journal.pone.0258626.g005
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Herein, embeddings for entities and relations are set as h; r; t 2 Rk
, and embeddings for

descriptions for two entities and relations are set as hd; rd; td 2 R
l
.

A CNN is a multilayer learning framework for learning nonlinear features to capture com-

plex relationships. These consist of an input layer, a convolutional layer, and an output layer

for logistic regression. In KGED, the input layer consists of the matrix for the triple and the

corresponding descriptions. The former can be represented as the matrix A ¼ ½h; r; t� 2 Rk�3
,

and the latter is denoted as the matrix B ¼ ½hd; rd; td� 2 R
l�3

. Herein, we define that Ai:i+k-1

and Bi:i+l-1 refer to the concatenation of row (Ai, Ai+1,. . ., Ai+k-1) and (Bi, Bi+1,. . ., Bi+l-1),

respectively, where i starts with 1.

On the convolution layer we used the filter ω 2 Rn�3
, which is repeatedly applied to a win-

dow of n rows of two input matrices to create feature maps containing highly informative fea-

tures describing the inputs. Note that filter sizes n are set to 3, 4, and 5 in this study. For

example, a feature αi is generated from a window of n rows of the input matrix for the triple by

ai ¼ gðω1 � Ai:iþn� 1 þ b1Þ: ð3Þ

Similarly, a feature βi is produced from a window of n rows of the input matrix for the corre-

sponding descriptions by

bi ¼ gðω2 � Bi:iþn� 1 þ b2Þ ð4Þ

where b1; b2 2 R are bias terms and g is a nonlinear activation function, such as the hyperbolic

tangent and rectified linear unit (ReLU). Each filter (ω1, ω2) is respectively applied to a window

of n rows in the two input matrices, (A1:n, A2:n+1,. . ., Ak-n+1:k) and (B1:n, B2:n+1,. . ., Bl-n+1:l) to

generate each corresponding feature map α and β as:

α ¼ ½a1; a2; . . . ; ak� nþ1�; ð5Þ

β ¼ ½b1; b2; . . . ; bl� nþ1� ð6Þ

with α 2 Rðk� nþ1Þ�1
and β 2 Rðl� nþ1Þ�1

.

In KGED, different filters are used to generate different feature maps. Let Θ and δ represent

the set of filters and the number of filters. Then, there are δ feature maps such as δ = |Θ|. These

δ feature maps for each filter size (n = 3, 4, 5) are concatenated into a single vector. Two

concatenated vectors, namely X 2 R3dðk� 3Þ�1 for the triple and Y 2 R3dðl� 3Þ�1 for its correspond-

ing descriptions, are generated. Thereafter, these two vectors are also concatenated and calcu-

lated with a weight vector w inR3dðkþl� 6Þ�1
via a dot product to derive a score for a given triple

(h, r, t).
Herein, we define the score function f of KGED as follows:

f ðh; r; tÞ ¼ concatðX;YÞ � w;

X ¼ concatðgð½h; r; t� �Θ1ÞÞ;

Y ¼ concatðgð½hd; rd; td� �Θ2ÞÞ

ð7Þ

where Θ1, Θ2 and w are shared parameters. � represents a convolution operator with the set of

filters, and concat represents the operation that concatenates vectors. X and Y are concatenated

vectors from feature maps for the triple and the corresponding descriptions, respectively.

To train KGED, we regularized the model by using dropout on the feature maps after the

convolution operation. We also used the Adam optimizer [38], a gradient descent optimiza-

tion function with an adaptive value learning rates for each parameter [39], by minimizing the
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loss function L with L2 regularization on the weight vector w of the model. The loss function is

defined as follows:

L ¼
X

ðh;r;tÞ2fT[T0g

logð1þ expðlðh;r;tÞ � f ðh; r; tÞÞÞ

þ
l

2
kwk2

2

ð8Þ

where l(h,r,t) is 1 for (h, r, t) 2 T and −1 for (h, r, t) 2 T 0, λ is the L2-regularizer to lessen over-fit-

ting, and

T 0 ¼ fðh0; r; tÞjh0 2 Eg [ fðh; r; t0Þjt0 2 Eg: ð9Þ

In Eq (9), T 0 is a set of invalid triples generated by corrupting valid triples in T. The set of cor-

rupted triples is created from the training triples by replacing the head or tail entity with all the

other entities in turn (but not both at the same time). The loss function prefers lower values

for the training triples rather than for the corrupted triples.

Results

Biological knowledge graph dataset

We compared the performance of KGED with that of TransE and ConvKB (baseline model).

Thus, the biological triples in Table 2 were used to train and evaluate the models. The structure

of our biological knowledge graph is very complex. The reference [40] indicates that the num-

ber of averaged triples per entity (ATPE) measures the diversity and complexity of datasets,

which is calculated by the total number of triples divided by the total number of entities. In

general, more triples result in more complex knowledge graph structures. The performance of

knowledge graph embedding models is not satisfactory when a dataset with higher ATPE is

used. FB15K is a subset of FreeBase containing 14,951 entities and 1,345 different relations in

592,213 triples. WN18 is a subset of WordNet consisting of 40,743 entities and 18 relations in

151,442 triples. The ATPE values for FB15K and WN18 are 39.61 and 3.71, respectively, and

the ATPE value for our biological knowledge graph with 103,625 entities and 5 relations in

3,273,215 triples is 31.59. Thus, our biological knowledge graph is as complex as FB15K.

Moreover, we observed a difference between FreeBase/WordNet and our biological KBs.

First, transitive relations (if ðx; yÞ 2 R and ðy; zÞ 2 R imply ðx; zÞ 2 R) can be established in

FreeBase and WordNet. However, this is not always satisfied in the biological KBs due to the

characteristics of biological entities and relations between them. For example, the relation

(gene1, relate, gene3) is not always valid, although BioGrid contains the following two gene

interactions: (gene1, relate, gene2) and (gene2, relate, gene3). Second, FreeBase and WordNet

consist of 1345 and 18 distinct relations, respectively, indicating that the distinction between

relations is quite clear. However, relations in our biological KBs are semantically related with

each other, as four among five relations are the “relate” relations (i.e., (chemical, relate, gene),
(chemical, relate, disease), (gene, relate, gene), (disease, relate, gene)). We assume that these

properties of biological KBs could result in relatively lower performance quality of various

knowledge graph embedding models compared with using other common knowledge bases,

such as FreeBase and WordNet.

Evaluation protocol

A KB is a collection of fact triples, meaning that there is no negative triple. KBs in various

domains are incomplete as they do not cover the full spectrum of knowledge. This implies that
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it is hard to determine whether undiscovered knowledge not currently included in the KBs is a

true negative. Thus, general evaluation methods like the area under the curve between true-

positive and false-positive data are unsuitable for evaluating knowledge graph embedding

models. In this study, we used the same evaluation metrics including mean rank (MR) and

Hits@10, as described in [21].

In the KB completion or link prediction task, the knowledge graph embedding model aims

to predict a missing entity given a relation and another entity. More specifically, it infers a

head entity h given a relation and a tail entity (r, t) or infers a tail entity t given a head entity

and a relation (h, r). We first assessed the performance of the knowledge graph embedding

models using the following ranking task: for all test triples (h, r, t), (1) the head entity h was

removed and replaced by all entities except the head entity to generate the corrupted triples;

(2) scores for these corrupted triples and the test triple were calculated using a score function;,

(3) score values are were sorted in descending order;, and (4) the correct head entity in the test

triple was recorded to obtain its rank. An identical process was repeated for predicting the tail

entity. For example, let us suppose that we have the following test triple: (chemical1, relate,
gene1). The head entity chemical1 is replaced with all chemical entities except chemical1 to gen-

erate the corrupted triples. We then calculate score values for these corrupted triples and the

test triple, thus obtaining the rank of chemical1 by sorting scores in descending order. The

same procedure is conducted for determining the ranking of gene1. Note that we used the “Fil-

tered” setting [21] during evaluation, implying that any corrupted triples that already appear

in our biological KBs are excluded. On the basis of the above ranking task, the mean rank

(MR) is defined as the average ranking for all test triples. Hits@10 is the proportion of correct

triples ranked in the top 10. Therefore, lower MR or higher Hits@10 reflects better perfor-

mance on the link prediction task.

Implementation details

TransE. For experiments with TransE, we selected the embedding dimension k 2 {20, 50},

the SGD learning rate lr 2 {0.01, 0.001, 0.0001}, L1-norm, or L2-norm, and the margin γ 2 {1,

2, 5}. We fixed the batch size to 100. Training time was set to 200 epochs. Optimal configura-

tions on our biological KBs were as follows: k = 50, lr = 0.01, L1-norm, and γ = 2.

ConvKB and KGED. For experiments with ConvKB and KGED, we chose the embedding

dimension k 2 {20, 50}, the learning rate lr 2 {0.01, 0.001, 0.0001}, the number of filters δ 2
{100, 300, 500}, and drop-out rate 2 {0.3, 0.5, 0.7} to avoid overfitting during the training of

the considered models. We fixed the batch size to 128, filter size = {3, 4, 5}, L2-regularizer λ =

0.0001, and learning epochs = 200. Optimal configurations for both models were as follows:

k = 50, lr = 0.0001, δ = 500, and drop-out rate = 0.7. We used ReLU as the activation function

g. To initialize the embeddings for entities and relations, we pre-trained TransE for 3,000

epochs. For KGED, we initialized the embeddings for descriptions using the universal sentence

encoder. The embedding dimension for descriptions (l) was fixed at 512. In ConvKB and

KGED, we used a single convolutional layer architecture to reduce the number of parameters

in the model.

Performance comparison of KGED with other existing models on the basis

of mean rank and hits at 10

To train and evaluate the knowledge graph embedding models including TransE, ConvKB,

and KGED, we randomly selected 250 test triples and 500 validation triples for each relation

from 3,273,215 triples, yielding 1,250 test and 2,500 validation triples. The rest of the data were

used as training triples as shown in Table 2. In this experiment, to add statistical significance
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to the results, we repeated this process 10 times and reported the average results in Tables 3

and 4. Note that the test and validation triples in each process are not duplicated.

We used mean rank and hits at 10 (Hits@10) as a metric to evaluate the performance of the

knowledge graph embedding models on a link prediction task. Table 3 displays the perfor-

mance of each model on the link prediction task based on mean rank scores. Each knowledge

graph embedding model is shown in the first column. In the second column, the name of each

relation is listed to indicate the individual performance according to each relation. The name

denoted as “ALL” is for indicating the average of mean ranks for the five relations. The mean

rank for predicting h or t given (r, t) or (h, r) is described in the third and fourth columns,

respectively. For example, in Table 3, KGED achieves a mean rank of 444.1 for the head entity

(h) in the relation (genehead, relate, genetail). This means that correct genehead entities given

(relate, genetail) pairs in the test triples were ranked in the top 0.65% on average among a total

of 68,364 genes. The last column represents the mean rank for both head and tail entities

((mean rank for head + mean rank for tail)/2). In the KGED part in Table 3, we described the

statistical significance of KGED compared with TransE and ConvKB using an asterisk symbol.

As we previously mentioned, we repeatedly selected random triples for training, validation,

and test data 10 times. Therefore, to calculate the statistical significance, we counted how

many times KGED performed better than TransE and ConvKB for each test. According to this

result, the KGED model showed remarkable performance in inferring gene-gene and disease-

symptom relationships compared with the comparative models.

Table 4 represents the performance of each model based on Hits@10. Each Hits@10 for h
and t is shown in the second and third columns, respectively. For example, the Hits@10 for

predicting head entities in KGED was 27.4%, indicating that 27.4% of the 1250 original head

entities in the test triples were correctly ranked within the top 10. The last column shows the

average Hit@10 scores for both head and tail entities.

Based on the results in Tables 3 and 4, KGED achieved a significant improvement of 1504.8

− 1233.7 = 271.1 in the mean rank for both head and tail entities (approximately 18.02%

improvement), and 26.8 − 15.7 = 11.1% in Hits@10 when compared with TransE. Addition-

ally, KGED obtained 1431.4 − 1233.7 = 197.7 absolute improvement in the mean rank for both

head and tail entities (approximately 13.8% improvement), and 26.8 − 18.2 = 8.6% improve-

ment in Hits@10 when compared with ConvKB (baseline model).

Furthermore, as shown in Table 3, KGED resulted in a huge improvement of 1664.3

− 456.9 = 1207.4 in the mean rank for the relation, (gene, relate, gene), which is an improve-

ment of approximately 72.6% compared with TransE. Moreover, KGED showed an improve-

ment of approximately 59.1% in the mean rank for the same relation (1115.8 − 456.9 = 658.9)

compared with ConvKB. We further focused on this improvement because gene-gene interac-

tions are important for predicting the pathogenesis of human diseases. Therefore, gene-gene

interactions inferred by KGED can be utilized for further research. In the next section, we per-

formed describe the results of experiments performed to prove how such gene-gene interac-

tions inferred by KGED can address an actual biological problem such as discovering genes

that are closely related to a specific disease.

To prove validity of inferred relationships, we additionally investigated inferred disease-

gene relationships. First of all, we collected the top 10 disease-gene relationships inferred by

KGED for three cancer types (breast, lung, prostate). Then, we searched for evidence sentences

in articles describing that those genes are actually related to each cancer. The results are shown

in S9 Table. In breast cancer, evidence sentences in articles were found for all but two genes

(TPI, ARMD14). In lung cancer, evidence sentences were also found for all but three genes

(BID, NPY, TPI). In prostate cancer, we found supporting sentences for all genes. Although

we could not find any supporting information about relationships between breast cancer and
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two genes (TPI, ARMD14) and between lung cancer and three genes (BID, NPY, TPI), it may

be worthwhile to further investigate about these relationships.

Analyzing disease-related subnetworks using different centrality measures

In [13], linear (weighted logistic regression (WLR)) and nonlinear classification (weighted ker-

nel logistic regression (WKLR)) models were used to predict gene-gene interactions based on

the co-occurrence frequency between biological terms, such as genes and Gene Ontology

(GO) terms, within the biomedical literature. Using gene-gene interactions predicted by their

models, they also constructed gene interaction subnetworks related to different cancer types (i,

e., prostate, breast, lung). These subnetworks by were analyzed using different centrality mea-

sures to identify which genes are important or more central in the network.

Table 3. Comparison of the average performance values of the different knowledge graph embedding models based on the mean rank scores.

Model Relation Mean Rank for head ± SD (the top %) Mean Rank for tail ± SD (the top %) Mean Rank for both head and tail ± SD

TransE ALL 1156.3 ± 89.9 1853.2 ± 90.2 1504.8 ± 58.7

chemical, relate, gene 435.3 ± 60.3 (2.85%) 3760.4 ± 471.8 (5.5%) 2097.9 ± 246.3

chemical, relate, disease 1354.1 ± 218.4 (8.87%) 397.7 ± 68.6 (3.53%) 875.9 ± 93.5

gene, relate, gene 1691.1 ± 187.7 (2.47%) 1637.4 ± 202.9 (2.4%) 1664.3 ± 185.3

disease, relate, gene 1222.7 ± 201.2 (10.85%) 2775.3 ± 290.4 (4.06%) 1999 ± 148.4

disease, have, symptom 1078.4 ± 141.1 (9.57%) 694.9 ± 98.4 (7.96%) 886.7 ± 110.6

ConvKB (base) ALL 1063.7 ± 101.4 1799 ± 125.6 1431.4 ± 108.1

chemical, relate, gene 396.7 ± 58.5 (2.6%) 3449.4 ± 362.1 (5.05%) 1923.1 ± 192.8

chemical, relate, disease 1354 ± 253.6 (8.87%) 465.4 ± 72.1 (4.13%) 909.7 ± 133.6

gene, relate, gene 1116 ± 95.6 (1.63%) 1115.5 ± 80.2 (1.63%) 1115.8 ± 64.3

disease, relate, gene 1486 ± 293.5 (13.19%) 3285.2 ± 433.2 (4.81%) 2385.6 ± 337

disease, has, symptom 965.6 ± 118.2 (8.57%) 679.6 ± 102.3 (7.79%) 822.6 ± 104.1

KGED ALL 805.3 ± 88.8, ���/��� 1662.1 ± 122.7, ��/�� 1233.7 ± 94, ���/���

chemical, relate, gene 450.7 ± 93.7 (2.95%), −/− 3659.1 ± 542.1 (5.35%), −/− 2054.9 ± 482.9, −/−
chemical, relate, disease 1233.9 ± 214.9 (8.08%), �/� 453.2 ± 90.5 (4.02%), −/− 843.6 ± 118.4, −/−
gene, relate, gene 444.1 ± 35.5 (0.65%), ���/��� 469.6 ± 38.6 (0.69%), ���/��� 456.9 ± 31, ���/���

disease, relate, gene 1197.2 ± 209.3 (10.63%), −/� 3218.5 ± 321.2 (4.71%), −/− 2207.9 ± 212.2, −/�

disease, has, symptom 700.9 ± 105.6 (6.22%), ���/�� 510.1 ± 92.2 (5.84%), ���/��� 605.5 ± 93.2, ���/���

To add statistical significance to the prediction results, we repeatedly split biological triples into the same number of training, validation, and test triples as shwon in

Table 2 10 times. Here, we reported the average results. SD represents standard deviation, and the asterisks in the table indicate the number of outperforming cases

compared with TransE and ConvKB (−; �; ��; ���). The single asterisk (�) indicates that KGED outperformed the comparative model in 8 (out of 10) tests. The double

asterisk (��) and triple asterisk (���) represent 9 and 10 (out of 10) tests, respectively. The symbol “−” indicates that KGED outperformed the comparative model in less

than or equal to 7 tests.

https://doi.org/10.1371/journal.pone.0258626.t003

Table 4. Comparison of the performance of the different knowledge graph embedding models on the basis of

Hits@10 (in %).

Model Hits@10 for head Hits@10 for tail Hits@10 for both head and tail

TransE 16.5 14.9 15.7

ConvKB (base) 19 17.4 18.2

KGED 27.4 26.1 26.8

Table notes the average results based on Hits@10 for each knowledge graph embedding model.

https://doi.org/10.1371/journal.pone.0258626.t004
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In this experiment, we evaluated the ability of KGED to predict disease-gene associations

using predicted gene-gene interactions and three types of cancer-related seed genes. This was

done by comparing its performance with that of [13] and ConvKB. To construct disease-spe-

cific subnetworks and analyze these networks for their ability to identify disease-related

human genes (with reference to two benchmarks such as MalaCards [26] and the National

Cancer Institute’s Genomic Data Commons (NCI’s GDC [41]), we carried out the following

steps:

1. Inference of human gene-gene interactions: KGED returns predicted the head or tail enti-

ties for a given pair (r, t) or (h, r), respectively. We collected 13,905 human genes in our bio-

medical dataset and used them to construct the input data for KGED in the form of (head
entity, relation). Thus, we entered a set of pairs (head_human_genei, g_relate_g) for i = 1, 2,

. . ., 13,905 to KGED for predicting corresponding tail genes with inference scores. These

were calculated by the score function in Eq (7). We then ranked these predictions in accor-

dance with the inference scores. Higher ranked predictions had higher reliability than the

lower ranked ones. Note that we removed (disease, relate, gene) triples of the three cancer

types from biological KBs when inferring human gene-gene interactions for predicting can-

cer-gene associations.

2. Collecting an initial list of seed genes: The seed gene is already known to be related to a

specific disease. In [13], OMIM was used to download seed genes related to prostate, breast,

and lung cancer. To construct disease-related subnetworks, we used the same seed genes

(18 prostate cancer seed genes, 23 for breast cancer, 16 for lung cancer) used in [13]. The

seed genes for each cancer type are listed in Table 5.

3. Constructing disease-related subnetworks: In the previous step, we inferred human gene-

gene interactions using KGED. From these predicted gene-gene relationships, we extracted

all pairs that are related to at least one seed gene to construct each disease-related subnet-

work. All pairs of gene-gene interactions in the generated subnetwork therefore contain at

least one seed gene. Here, the subnetwork contains a subset of highly ranked gene-gene

interactions when sorted by prediction scores. In this study, we performed experiments

with several different numbers of gene-gene interactions from 5000 to 100,000 by every

5,000 pairs.

4. Analyzing the subnetworks using centrality measures: In this step, we used Cytoscape

(https://cytoscape.org, version 3.7.1) [42], which is an open-source software tool for inte-

gration, visualization, and analysis of biomedical networks composed of protein, gene, and

other interactions. We used this tool to rank genes in the disease-related network by calcu-

lating different centrality measures. Centrality measures determine the relative significance

of a node in a network. In this study, we used the four centrality metrics closeness, between-

ness, degree, and eigenvector, as follows:

(a) Closeness centrality The closeness centrality is the sum of the shortest distances

between a node and all the other nodes, wherein the distance from one node to another

is defined as the length of the shortest path. Therefore, a node with a high closeness

value is most central in the network, indicating that all other nodes can be reached easily

from this node. The closeness centrality of a node Vi is defined as:

CCðViÞ ¼
jVj � 1

SVj2V
distanceðVi;VjÞ

; ð10Þ
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where V is a set of nodes in a network, and distance(Vi, Vj) is the shortest distance

between nodes Vi and Vj.

(b) Betweenness centrality The betweenness centrality is defined as the number of times

that a node acts as a bridge in the shortest paths between two other nodes. A high

betweenness value represents its role as a gateway for connecting different parts of the

network. The betweenness centrality of a node Vi is given by:

CBðViÞ ¼

SVi 6¼Vj 6¼Vk2V

sðVj;VkjViÞ

sðVj;VkÞ

ðjVj � 1ÞðjVj � 2Þ=2
;

ð11Þ

where σ(Vj, Vk) is the number of shortest paths from node Vj to node Vk, and σ(Vj, Vk|
Vi) is the number of the paths that pass through node Vi.

(c) Degree centrality The degree centrality is based on the degree of a node. Nodes with

a higher degree are more central to the network and tend to influence others more

Table 5. The seed genes related to each cancer type.

Breast cancer Lung cancer Prostate cancer

CASP8 CASP8 PCAP

PIK3CA PIK3CA HPC5

SLC22A1L SLC22A1L MAD1L1

KRAS KRAS HPC4

BRCA2 FASLG BRCA2

CDH1 DLEC1 CDH1

CHEK2 RASSF1 CHEK2

RAD54L IRF1 HIP1

BARD1 PRKN MSR1

HMMR EGFR KLF6

NQO2 BRAF PTEN

ESR1 MAP3K8 MXI1

RB1CC1 ERCC6 CD82

TSG101 PPP2R1B ZFHX3

ATM ERBB2 HPCQTL19

XRCC3 CYP2A6 HPC3

AKT1 HPC6

RAD51A AR

PALB2

TP53

PHB

PPM1D

BRIP1

The seed genes are already known to be related to a specific disease. We used 23 breast cancer genes, 16 lung cancer

genes, and 18 prostate cancer genes as seed genes.

https://doi.org/10.1371/journal.pone.0258626.t005
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powerfully. The degree centrality of a node Vi can be calculated by:

CDðViÞ ¼
jNðViÞj

jVj � 1
; ð12Þ

where N(Vi) is the set of nodes connected to Vi.

(d) Eigenvector centrality The eigenvector centrality is an extension of degree centrality.

The difference is that the eigenvector centrality gives more weight to connections with

more highly connected nodes. Thus, it is based on the idea that the important node has

connections to other nodes that are themselves important in the network. The score of a

node will therefore be higher if it is connected to nodes with a high eigenvector value

than if it is connected to nodes with a low eigenvector value. The eigenvector centrality

of a node Vi is defined as:

CEðViÞ ¼
1

l

X

Vj2NðViÞ

wji � CEðVjÞ; ð13Þ

where wji is the weight of the edge between nodes Vj and Vi, λ is a constant, and N(Vi) is

the set of nodes connected to Vi.

We applied the above centrality measures to the disease-related subnetworks con-

structed in the previous step to test the prediction quality of KGED. Furthermore, we

compared KGED with the proposed approaches in [13] and ConvKB. We then enumer-

ated the top 15 genes ranked by each centrality measure for three cancer types (prostate,

breast, lung cancers) and counted how many of them appeared in the two benchmarks

(MalaCards and NCI’s GDC) to calculate the precision values of each centrality mea-

sure. Note that the datasets of the two benchmarks are the same as those used in [13].

MalaCards contains 261, 317, and 239 known genes for prostate, breast, lung cancers,

respectively. The NCI’s GDC includes 455 prostate genes, 562 breast genes, and 570

known genes related to lung cancer. We repeated the above experiment with ConvKB.

S1 and S2 Tables show the precision of each centrality measure for the top 15 ranked genes

in each cancer subnetwork, as generated by ConvKB and KGED. In both tables, the precision

results are classified according to the cancer types and benchmark datasets (MalaCards, NCI’s

GDC, and combining MalaCards and NCI’s GDC). Note that the first column represents the

number of top N gene-gene interactions predicted by a given model in the subnetwork. For

example, in S2 Table, KGED achieved 100% precision for all centrality measures evaluated

against breast cancer genes with reference to MalaCards. Therefore, all top 15 ranked genes

sorted by each centrality measure in the breast cancer subnetwork, consisting of the top 80,000

predicted gene pairs, were found to be associated to breast cancer with reference to

MalaCards.

As shown in the tables, regarding the top 15 prostate-cancer-genes predicted by ConvKB

and KGED, we achieved balanced and optimal results for all centrality measures evaluated

against all benchmark datasets when N was 75,000 for ConvKB and 85,000, 90,000, 95,000, and

100,000 for KGED. Optimal precision results were obtained for the top 15 breast cancer genes

when N was 85,000, 90,000 for ConvKB and 80,000, 85,000, 90,000, 95,000, and 100,000 for

KGED. Lastly, the best precision results were obtained for the top 15 lung cancer genes when

N was 85,000 for ConvKB and 95,000 and 100,000 for KGED. We also represent the average

precision values for each centrality measure against each benchmark to compare the overall

performance of the two models. When comparing the cancer types, the average precision

results for prostate and breast cancer show that KGED predicted genes for prostate and breast
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cancer more effectively than ConvKB according to all benchmark datasets. However, ConvKB

outperformed KGED in predicting lung cancer genes according to MalaCards and MalaCards

+NCI’s GDC. According to the average precision values for all centrality measures and all can-

cer types, degree centrality is the best measure to detect most influenced nodes, and between-

ness centrality is the second best. We also reported the precision results for the four centrality

measures evaluated against corresponding benchmark data in S3–S5 Tables for the top n
ranked genes predicted by KGED (N = 100,000). For each centrality measure, as n increased,

the precision degreased, gradually converging towards each other.

Furthermore, in Tables 6–8, we summarized the performance comparison of WLR and

WKLR in [13], ConvKB, and KGED. In this comparison, the balanced and optimal results for

ConvKB and KGED were chosen as compare objects. In Tables 6 and 8, both ConvKB and

KGED not only achieved the highest precision, but also performed better than WLR and

WKLR for most of centrality measures for all cancer types when evaluated against MalaCards

and MalaCards+NCI’s GDC data. Especially, the precision values achieved by all centrality

measures evaluated against MalaCards and MalaCards+NCI’s GDC data were 100% for the

top 15 breast cancer genes predicted by ConvKB and KGED. All 15 predicted genes are there-

fore related to breast cancer, with reference to the above two benchmark datasets. On the

other hand, both WLR and WKLR performed slightly higher than ConvKB and KGED in

many of the centrality measures for each cancer type when evaluated against the NCI’s GDC

dataset in Table 7. For example, WLR correctly predicted 80% of prostate-related genes with

reference to NCI’s GDC using eigenvector centrality, while the precision values of ConvKB

and KGED were 66.7% and 53.3%, respectively.

Prostate cancer case study and comparison with recent approaches

In this section, we used another ground truth data for prostate cancer (the Prostate Gene Data-

Base (PGDB)) as the benchmark for evaluating the results inferred by KGED. PGDB is a

curated repository of genes related to human prostate cancer. It consists of 165 unique genes,

of which 129 are validated by evidence from Medline abstracts, and 36 are supported by

Table 6. A comparison for the precision values of the top 15 ranked genes related to each cancer type by each centrality measure and against MalaCards and by each

approach.

Closeness Betweenness Degree Eigenvector

Prostate Cancer

WLR [13] 53.3 86.7 80 66.7

WKLR [13] 46.7 80 86.7 66.7

ConvKB [22] 93.3 100 100 93.3

KGED 100 100 100 86.7

Breast Cancer

WLR [13] 80 86.7 93.3 93.3

WKLR [13] 46.7 100 100 86.7

ConvKB [22] 100 100 100 100

KGED 100 100 100 100

Lung Cancer

WLR [13] 73.3 80 86.7 93.3

WKLR [13] 60 86.7 86.7 86.7

ConvKB [22] 93.3 93.3 93.3 93.3

KGED 93.3 93.3 93.3 93.3

https://doi.org/10.1371/journal.pone.0258626.t006
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expression data. We evaluated the quality of our system by comparing it with recent

approaches [13, 14, 24, 25].

• CGDA [14]: CGDA infers disease-gene associations from biomedical literature using depen-

dency parsing and support vector machines. It constructs a prostate cancer-specific gene-

interaction network from genes known to be related to prostate cancer from predicted dis-

ease-gene associations. It then uses centrality measures to identify central genes in the

network.

• EDC-EDC [24]: EDC-EDC predicts disease-gene associations from biological texts by apply-

ing novel linguistic computational techniques. This is called a hybrid constituency-depen-

dency parser, which overcomes the limitations of current constituency and dependency

parsers. It constructs a disease-specific gene interaction network and infers the gene-disease

associations by using centrality measures.

• MCforGN [25]: MCforGN identifies functionally related genes on the basis of their co-

occurrences in PubMed abstracts. Using these related genes, it builds a disease-specific

genetic network and detects disease-gene associations by employing centrality measures.

• Rare-event classifier [13]: Rare-event classifiers predict gene-gene interactions based on

their co-occurrence frequency in PubMed abstracts using their linear and nonlinear rare-

event classification models. It constructs a genetic co-occurrence network for the entire

human genome to extract disease-related subnetworks, and uses centrality measures to iden-

tify new candidate genes that could be connected directly to the disease.

To conduct the prostate case study, we first followed the same procedure described in the

previous subsection. This included the inference of human gene-gene interactions by applying

KGED, in addition to constructing a prostate cancer-related gene-interaction subnetwork

using 18 prostate cancer seed genes downloaded from OMIM. We then evaluated the perfor-

mance of KGED when detecting prostate cancer-related genes. This was done by comparing

its performance with that of recent approaches, as aforementioned. We used the ground truth

data PGDB as the benchmark. We applied closeness, betweenness, and degree centrality

Table 7. A comparison for the precision values of the top 15 ranked genes related to each cancer type by each centrality measure and against NCI’s GDC and by

each approach.

Closeness Betweenness Degree Eigenvector

Prostate Cancer

WLR [13] 80 60 66.7 80

WKLR [13] 33.3 60 60 60

ConvKB [22] 66.7 66.7 66.7 66.7

KGED 66.7 66.7 66.7 53.3

Breast Cancer

WLR [13] 73.3 40 53.3 86.7

WKLR [13] 46.7 66.7 66.7 80

ConvKB [22] 53.3 60 53.3 60

KGED 53.3 60 60 60

Lung Cancer

WLR [13] 20 20 33.3 86.7

WKLR [13] 40 40 40 60

ConvKB [22] 46.7 40 40 40

KGED 46.7 40 40 40

https://doi.org/10.1371/journal.pone.0258626.t007

PLOS ONE Convolutional neural network-based model by embedding a biological knowledge graph with entity descriptions

PLOS ONE | https://doi.org/10.1371/journal.pone.0258626 October 15, 2021 18 / 27

https://doi.org/10.1371/journal.pone.0258626.t007
https://doi.org/10.1371/journal.pone.0258626


measures to rank the genes in the prostate cancer-related gene-interaction subnetwork. We

then checked how many of top 10 ranked genes by each centrality measure appeared in the

PGDB benchmark dataset, allowing us to calculate the precision of KGED. Note that the same

procedure described above was conducted for ConvKB.

Table 9 shows the precision of the top 10 ranked genes associated with prostate cancer

based on PGDB by each centrality measure by ConvKB and KGED and by N, the number of

gene-gene interactions that comprise the subnetwork. For the top 10 ranked genes by ConvKB,

the highest precision values by closeness, betweenness, and degree were 70%, 70%, and 90%,

respectively, and the balanced performance of ConvKB was obtained when N = 80,000, 85,000,

95,000, 100,000. Moreover, KGED achieved the highest precision values of 90% for closeness,

80% for betweenness, and 90% for degree centrality. For example, Table 10 shows the top 10

genes by degree centrality measure by KGED and ConvKB when N = 40,000. In the table, the

degree represents the degree of the corresponding gene in the subnetwork. In KGED, all genes

but HIP1 were PGDB genes. However, in ConvKB, three genes were not PGDB genes. It

means that the gene-gene interactions in the subnetwork created using KGED have more con-

nections with PGDB genes. Taken as a whole, KGED achieved average precision scores of

67.5% for closeness, 74.5% for betweenness, and 82.5% for degree centrality. These values are

5%, 10.5%, and 8% higher than ConvKB, respectively. The results in Table 9 therefore show

that KGED performed better than ConvKB, and the best performance of KGED for all central-

ity measures was obtained when the number of gene-gene interactions comprising the subnet-

work (N) was set to 40,000.

In S3–S5 Figs, we show the precision-recall (PR) curve of the top n ranked genes according

to each centrality measure obtained using ConvKB (N = 80,000) and KGED (N = 40,000). In

order to draw the PR curve, we calculated a set of precision and recall values for every top n,

where n starts with 10 and increases by 10. Note that the recall measure was computed by

dividing the number of PGDB genes occurring in the top n genes ranked by each centrality

measure over the total number of PGDB genes. As shown in the figures, precision values were

the highest for the top 10 and then decreased as n increased. In contrast, recalls were the lowest

for the top 10 and then increased as n increased. For example, precision and recall for the top

Table 8. A comparison of the precision values of the top 15 ranked genes related to each cancer type by each centrality measure and against both MalaCards and

NCI’s GDC and by each approach.

Closeness Betweenness Degree Eigenvector

Prostate Cancer

WLR [13] 93.3 93.3 93.3 86.7

WKLR [13] 60 86.7 93.3 80

ConvKB [22] 100 100 100 100

KGED 100 100 100 86.7

Breast Cancer

WLR [13] 80 86.7 93.3 93.3

WKLR [13] 53.3 100 100 86.7

ConvKB [22] 100 100 100 100

KGED 100 100 100 100

Lung Cancer

WLR [13] 73.3 80 86.7 100

WKLR [13] 66.7 86.7 86.7 93.3

ConvKB [22] 93.3 93.3 93.3 93.3

KGED 93.3 93.3 93.3 93.3

https://doi.org/10.1371/journal.pone.0258626.t008
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10 genes by closeness were 90% and 11.4% (black bold line) for KGED and 70% and 8.86%

(black dash line) for ConvKB, respectively. For each centrality measure, both precision and

recall values of KGED for genes in high ranks were relatively higher than those of ConvKB and

converged towards each other as the rank n increased. Since the top ranked genes were consid-

ered more important, we concluded that KGED was more suitable than ConvKB for identify-

ing disease-related genes based on the above results.

Table 9. The precision values of the top 10 ranked genes associated with prostate cancer based on PGDB by each centrality measure, by ConvKB and KGED and by

the number of inferred gene-gene interactions that makes up the subnetwork.

N Closeness Betweenness Degree

ConvKB KGED ConvKB KGED ConvKB KGED

5000 30 40 70 80 80 80

10000 50 20 70 80 90 80

15000 50 30 70 80 90 80

20000 50 40 70 80 90 90

25000 60 50 60 80 90 90

30000 50 60 60 80 70 90

35000 50 60 60 80 70 90

40000 70 90 60 80 70 90

45000 70 80 60 80 70 80

50000 70 80 60 70 70 80

55000 70 80 60 70 70 80

60000 70 80 60 70 70 80

65000 70 80 60 70 70 80

70000 70 80 60 70 70 80

75000 70 80 60 70 70 80

80000 70 80 70 70 70 80

85000 70 80 70 70 70 80

90000 70 80 60 70 70 80

95000 70 80 70 70 70 80

100000 70 80 70 70 70 80

[Avg.] 62.5 67.5 64 74.5 74.5 82.5

https://doi.org/10.1371/journal.pone.0258626.t009

Table 10. The top 10 ranked genes by degree centrality measure by KGED and ConvKB when N = 40,000. The columns of PGDB represent whether these genes are

PGDB genes or not.

KGED ConvKB

Degree Gene Name PGDB Degree Gene Name PGDB

7168 CDH1 YES 10458 CDH1 YES

5372 MAD1L1 YES 8045 MAD1L1 YES

4235 HIP1 NO 7997 MSR1 NO

4175 AR YES 7569 AR YES

3828 MXI1 YES 7148 MXI1 YES

3501 PTEN YES 7071 HIP1 NO

3347 BRCA2 YES 6439 ZFHX3 NO

2449 KLF6 YES 6205 CD82 YES

2295 CD82 YES 6106 BRCA2 YES

2202 PCAP YES 5747 PTEN YES

https://doi.org/10.1371/journal.pone.0258626.t010
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In Table 11, we also compared the performance of KGED with the existing models for

inferring genes related to prostate cancer on the basis of PGDB. As described in the table, the

performance of KGED is comparable with other models. KGED has correctly predicted 90%

of prostate cancer genes related to PGDB by closeness centrality, which is a performance

improvement of 10% to 20% over all four comparison models. The precision of KGED by

betweenness centrality was 80%, which is relatively lower than CGDA, EDC-EDC, and

MCforGN. Conversely, KGED achieved the best precision score (90%) by degree centrality

compared with all other models. Note that only two models, including KGED and CGDA,

achieved the highest precision (90%). However, KGED detected the global importance of a

node in the network more effectively than CGDA, as closeness centrality is a global topological

characteristic of the network [43]. Overall, our system achieved well-balanced precision scores

via all centrality measures. In particular, closeness and degree centrality measures showed the

best performance.

Additionally, we conducted an experiment to see how the number of prostate cancer-

related seed genes used for constructing the subnetworks affected the precision scores. Since

the seed genes were already known to be related to a specific disease and connected to various

other genes, we assumed that the precision scores would be influenced by the number of seed

genes. Thus, we measured the precision values of the top 10 genes using different numbers of

prostate seed genes, sn = 8, 10, 12, where sn indicates the number of seed genes. For each sn,

we randomly selected prostate seed genes five times since the importance of different genes in

cancers may vary. Using different numbers of seed genes, we analyzed the subnetworks to cal-

culate the precision scores. In S6–S8 Tables, according to the number of seed genes, we

describe the average precision values of the top 10 ranked genes based on PGDB genes by each

centrality measure. Compared with the result using all prostate seed genes shown in Table 9,

smaller the number of seed genes (sn), lower the average precision scores. Seed genes are cen-

tral genes in the subnetwork, meaning that they significantly affect the disease-related subnet-

work. Therefore, based on these results, we concluded that the number of seed genes affected

the precision scores.

Discussion

As shown in Tables 3 and 4, ConvKB and KGED outperformed TransE. The two former mod-

els were based on convolutional neural networks, and the latter was the direct translation

model. Here, we investigated why a standard CNN learning method had benefits for embed-

ding the biological knowledge graph compared with the traditional knowledge graph embed-

ding model. Because CNN is specialized to extract useful localized features from a low-

dimensional vector space, we assumed that the representations of entities in the knowledge

graph trained by ConvKB were different from those trained by TransE. The cosine distance

represented the semantic similarity between two embedding vectors. To identify the

Table 11. A comparison for the precision of the top 10 ranked genes associated with prostate cancer based on PGDB, by each centrality measure and by each existing

model.

Closeness Betweenness Degree

CGDA [14] 70 90 80

EDC-EDC [24] 77.3 86.4 82.8

MCforGN [25] 78 83 82

Rare-event classifier [13] 80 80 80

KGED 90 80 90

https://doi.org/10.1371/journal.pone.0258626.t011
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differences between the representations of entities trained by TransE and those trained by

ConvKB, we calculated cosine distances between embedding vectors for each head and tail

entity in each training triple, which were trained by TransE and ConvKB, depending on the

window of n rows of embedding.

S1 Fig shows the distribution of cosine distances between the trained embedding vectors of

head and tail entities (ie, h 2 R50�1
and r 2 R50�1

) contained in each set of fact and negative

(or corrupted) triples in the training data when the window size n was 50. In the figure, the red

and gray bars represent the results of TransE and ConvKB, respectively. Additionally, the bold

and dashed bars indicate the results obtained when we used fact and negative triples, respec-

tively. In the graph, the x-axis is a cosine distance range between 0 and 1 with 1 representing

the maximum possible distance, ie, no interdependence, and the y-axis is the ratio of the num-

ber of pairs of the head and tail embedding vectors (n dimension) whose cosine distance

belongs to the corresponding range. As described in the figure, 43.78% of pairs of the head and

tail embedding vectors trained by TransE were located in the cosine distance range between 0

and 0.1, which is 3.7% higher than the result from ConvKB. Similarly, the dashed bar shows

the distribution of cosine distances using negative triples generated during training. In the

negative triples, the head and tail entities are supposed to be semantically unrelated. In the fig-

ure, compared with the results obtained by ConvKB (dashed red bars), the number of pairs of

the head and tail embedding vectors trained by TransE (dashed gray bars) were distributed

more on the right side of the graph, meaning that both head and tail entities in negative triples

were more properly trained because they were semantically unrelated. For the whole embed-

ding vectors, TransE produced better embedding representations for entities in the knowledge

graph than ConvKB.

However, unlike results from the whole embedding vectors, when the same experiments

were performed using trained local embeddings of head and tail entities, results were different,

when n was 3, 4, or 5. For example, we collected each set of 48 local embeddings by sliding the

window (e.g., n = 3) across h 2 R50�1
and r 2 R50�1

. We then calculated cosine distances

between each pair of local embeddings from h and t. S2 Fig shows the average distribution of

cosine distances between trained embeddings vectors of head entities and those of tail entities

contained in each set of fact and negative triples in the training data when n was 3, 4, or 5.

Note that we averaged each distribution for n = 3, 4, or 5 to generate S2 Fig. According to the

figure, more pairs of local embeddings were distributed in the cosine distance range between 0

and 0.1 when we used ConvKB compared with TransE. Thus, from this perspective, ConvKB

produced better local embedding vectors for entities in the knowledge graph. Furthermore,

dashed bars in gray and red showed the distributions resulted by TransE and ConvKB, respec-

tively, when using trained local embeddings of head and tail entities in the negative triples.

Although the head and tail entities in the negative triple were semantically unrelated, the ratio

of the number of pairs of local embeddings in the cosine distance range between 0 and 0.1 was

significantly higher when we used ConvKB than when we used TransE. According to this

experimental result, we assumed that this phenomenon may have improved the performance

of ConvKB and KGED compared with TransE.

In this study, we split the biological dataset into 3,269,465 training triples, 2,500 validation

triples, and 1,250 test triples to derive the results of Tables 3 and 4. The reason why the num-

bers of triples in the validation and test datasets were relatively smaller than those in the train-

ing dataset is that it took a long time to obtain predictions for a single test triple (46.05 seconds

with a GTX TITAN X graphic card). Thus, to add statistical significance to the results, we ran-

domly selected 250 test and 500 validation triples for each relation type 10 times and summa-

rized the statistical analysis results for the performance comparison in Tables 3 and 4.
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Lastly, there are studies suggesting that Markov chains or classical statistical approaches can

show more reliable results than neural networks in the field of biology and medicine [44]. In

this study, our method was developed based on neural networks to incorporate biological

knowledge graph, but it would be interesting to apply other approaches such as the spectral

forecast model [44] instead of neural networks.

Conclusion

In this study, we proposed a CNN-based KGED model to infer biological relationships,

because the current knowledge graph-embedding models are optimized for general-purpose

KBs such as FreeBase and WordNet. KGED jointly embeds both the biological triples and

those of textual descriptions for biological entities. To train and evaluate the performance of

KGED, we first collected a large set of biological KBs and their descriptions from well-known

biological public databases. We constructed a total of 3,273,215 biological KBs (or triples)

observed among biological entities such as chemicals, genes, diseases, and symptoms. We also

compared the performance of KGED with that of other existing knowledge graph-embedding

models such as TransE and ConvKB in inferring biological relationships. In this process, we

used the mean rank and Hits@10 measurements as performance metrics. In this comparison,

KGED outperformed both TransE and ConvKB with respect to the average of mean ranks and

Hits@10 score. In particular, our KGED model achieved significant improvement in inferring

gene-gene interactions, with 72.6% and 59.1% performance improvement in the mean rank

compared to that of TransE and ConvKB, respectively. We emphasize that this improvement

is meaningful because identifying undiscovered gene-gene interactions is essential for under-

standing the pathogenesis of various diseases.

We performed additional experiments to further validate how gene-gene interactions

inferred by KGED can address actual biological problems such as finding genes closely related

to human diseases. In the first experiment, we analyzed disease-related subnetworks using dif-

ferent centrality measures. We constructed each cancer-related subnetwork using gene-gene

interactions inferred by ConvKB and KGED, respectively. We then analyzed each network

using different centrality measures to identify the genes that emerge as most important or

more central in the network. We compared the performance of our KGED model with that of

ConvKB and two previous studies (WLR and WKLR) by comparing disease-gene related

benchmarks such as the MalaCards database and the NCI’s GDC with the top 15 ranked genes

based on centrality measures. Compared with the MalaCards and MalaCards+NCI’s GDC

benchmark data, both KGED and ConvKB achieved the highest precision values using most

centrality measures for all cancer types. In the second experiment, we focused on prostate can-

cer as a case study to evaluate the quality of KGED by comparing its performance with those of

recently developed approaches such as CGDA, EDC-EDC, MCforGN, and rare-event classi-

fier. We used another ground-truth dataset for prostate cancer (the Prostate Gene DataBase

(PGDB)) as the benchmark for evaluating the results inferred by KGED. As a result, KGED

showed well-balanced and comparable results, especially with respect to the precision values

obtained by closeness and degree centrality measures. These findings indicate that our pro-

posed method is useful and has the potential to predict candidate genes related to human dis-

eases. Therefore, based on the experimental results, we conclude that new gene-gene

interactions inferred by KGED can be helpful for future research, such as that aimed at under-

standing undiscovered pathogenic mechanisms of human diseases, and contribute to the field

of disease treatment discovery.

PLOS ONE Convolutional neural network-based model by embedding a biological knowledge graph with entity descriptions

PLOS ONE | https://doi.org/10.1371/journal.pone.0258626 October 15, 2021 23 / 27

https://doi.org/10.1371/journal.pone.0258626


Supporting information

S1 Fig. The distribution of cosine distances between the trained embedding vectors of head

entities and those of tail entities contained in each set of fact and negative triples when n = 50.

(TIFF)

S2 Fig. The average distribution of cosine distances between trained embedding vectors of

head entities and those of tail entities contained in each set of fact and negative triples

when n = 3,4,5.

(TIFF)

S3 Fig. The precision and recall of top n ranked genes associated with prostate cancer

based on PGDB by closeness centrality measure, by ConvKB (N = 80,000) and KGED

(N = 40,000). Note that n starts at 10 and increases by 10.

(TIFF)

S4 Fig. The precision and recall of top n ranked genes associated with prostate cancer

based on PGDB by betweenness centrality measure, by ConvKB (N = 80,000) and KGED
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