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MHD flow of time‑fractional Casson 
nanofluid using generalized Fourier 
and Fick’s laws over an inclined 
channel with applications of gold 
nanoparticles
Jamal Shah1, Farhad Ali1*, Naveed Khan1, Zubair Ahmad1, Saqib Murtaza1, Ilyas Khan2 & 
Omar Mahmoud3

Gold nanoparticles are commonly used as a tracer in laboratories. They are biocompatible and 
can transport heat energy to tumor cells via a variety of clinical techniques. As cancer cells 
are tiny, properly sized nanoparticles were introduced into the circulation for invasion. As a 
result, gold nanoparticles are highly effective. Therefore, the current research investigates the 
magnetohydrodynamic free convection flow of Casson nanofluid in an inclined channel. The blood is 
considered as a base fluid, and gold nanoparticles are assumed to be uniformly dispersed in it. The 
above flow regime is formulated in terms of partial differential equations. The system of derived 
equations with imposed boundary conditions is non-dimensionalized using appropriate dimensionless 
variables. Fourier’s and Fick’s laws are used to fractionalize the classical dimensionless model. The 
Laplace and Fourier sine transformations with a new transformation are used for the closed-form 
solutions of the considered problem. Finally, the results are expressed in terms of a specific function 
known as the Mittag-Leffler function. Various figures and tables present the effect of various physical 
parameters on the achieved results. Graphical results conclude that the fractional Casson fluid model 
described a more realistic aspect of the fluid velocity profile, temperature, and concentration profile 
than the classical Casson fluid model. The heat transfer rate and Sherwood number are calculated 
and presented in tabular form. It is worth noting that increasing the volume percentage of gold 
nanoparticles from 0 to 0.04 percent resulted in an increase of up to 3.825% in the heat transfer rate.

Abbreviations
u	� Velocity
µnf eij	� The 

(

i, j
)

th component of deformation rate
π = eij .eij	� The product of component of rate itself
πC	� The critical value of this product based on the non-Newtonian fluid
β	� Casson parameter
Gr	� Thermal Grashof number
Gm	� Mass Grashof number
M	� Hartman number
Pr	� Prandtl number
Sc	� Schmidt number
µf 	� Viscosity of the base fluid 

(

Kgm−1s−1
)

Kf 	� Thermal conductivity of the base fluid 
(

Wm−1K−1
)

Knf 	� Thermal conductivity of nanofluids 
(

Wm−1K−1
)

Ks	� Thermal conductivity of nanoparticles 
(

Wm−1K−1
)
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µnf 	� Dynamic viscosity of nanofluids 
(

Kgm−1s−1
)

σf 	� Electrical conductivity of base fluid 
(

s3A2m−1kg−1
)

σnf 	� Electrical conductivity of nanofluids 
(

s3A2m−1kg−1
)

σs	� Electrical conductivity of nanoparticles 
(

s3A2m−1kg−1
)

α	� Fractional parameter
ρs	� Density of the solid particles 

(

kgm−3
)

ρf 	� Density of the fluid 
(

kgm−3
)

ρnf 	� Density of nanofluids 
(

kgm−3
)

φ	� Nanoparticles volume fraction
cp	� Specific heat capacity
T	� Temperature (K)
βnf 	� Thermal expansion coefficient
βf 	� Thermal expansion coefficient of base fluid (K)
βs	� Thermal expansion coefficient of nanoparticles 

(

K−1
)

;

Over the last decade, nanotechnology has been a hot topic. Material science and biomedicine are the two signifi-
cant areas of nanoparticle application. Researchers are working on the rapidly growing subject of nanotechnology 
to understand how to modify matter at the molecular and atomic levels. Research in nanomedicine has become 
one of the most significant areas of nanotechnology. Since it is indisputably advantageous to modern medicine1–3. 
It is presently concentrating on developing novel technologies to prevent, diagnose, and treat various diseases. 
Nanomaterials are very effective in killing cancer cells and are now undergoing clinical trials. Nanomaterials 
are very effective in killing cancer cells and are now undergoing clinical trials. The results are so promising that 
nanomaterials may become a viable alternative to traditional cancer therapy, especially their capacity to target 
cancer cells directly and give detailed imaging of tissues, simplifying subsequent therapy planning. Gold metal-
lic nanoparticles are useful in various biomedical applications because of their microscopic size and stability. 
Bhatti et al4 investigated hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic 
effects. They found that magnetic parameter enhances the flow distribution. Saeed Dinarvand et al5 examined 
the stagnation-point boundary layer flow of cuO-Ag/water hybrid nanofluid. In this study, he found that the 
thermal characteristic of hybrid nanofluid is higher in comparison to the base fluid and fluid containing single 
nanoparticles. Mousavi et al6 investigated the two-dimensional Casson fluid flow of hybrid nanofluids over 
a stretching sheet. The magnetic field was observed to be normal to the sheet up the velocity profile into the 
hydrodynamic boundary layer. Dinarvand et al7 examined hybrid nanofluid, implying a spinning disk with low 
to high non-alignments. Their study observed that the second nanoparticle’s mass enhancement results in the 
amplification of heat transfer.

Gold nanoparticles (GNPs) are a good choice for the treatment of different cancerous cells. Gold nanopar-
ticles are the most significant light-shedding substance in biomedical sciences. The study of gold nanoparticles 
has recently gotten much attention from researchers because of their structure, form, low toxicity, and excellent 
compatibility with the human body. Cancer cells were stymied and killed using a unique form of a nanopar-
ticle. Among them, the gold nanoparticle had a particular job. A special type of nanoparticle was utilized to 
stumble and kill cancer cells. Imtiaz et al8 investigated blood flow with a suspension of gold nanoparticles in a 
vertical tube. During their study, when compared to normal blood, the addition of 0.04-unit gold nanoparticles 
increased the heat transmission rate by 4%. Aman et al9 investigated the effect of gold nanoparticles on mixed 
convection flow with MHD. Alam et al10 studied heat transfer of blood with gold nanoparticles in the presence 
of magnetic dipole. It was observed that velocity and temperature decrease when ferromagnetic parameter and 
Prandtl number increase.

The study of the non-Newtonian fluids model has acquired much interest in recent decades because of its 
applications in industries, engineering, and medicine. Non-Newtonian fluids, such as mud, blood, paint, and 
polymer solutions are all examples. Due to the complexity of non-Newtonian fluid mechanics, no one model 
has been able to capture all of its features. A non-Newtonian fluid is the Casson fluid. In the Casson Model, 
shear thinning, yield stress, and high shear viscosity are all properties of a fluid model11. Gowda et al12 studied 
the dynamics of thermal Marangoni stagination point flow in dusty Casson nanofluids. Jyothi et al13 explored 
the squeezing flow of Casson hybrid nanofluids between parallel plates. Shankaralingappa et al14 described the 
influence of sodium Alginate-based Casson nanofluids over a stretching sheet. The modelling and theoretical 
investigation of Casson nanofluids flow with the influence of magnetic field and chemical reaction explicated 
by Rivi Kumar15. Bhatti et al16 investigated natural convection non-Newtonian EMHD dissipative flow through 
a micro channel. Bhatti et al17 studied numerically the flow of hybrid nanofluid through a porous medium. 
They have chosen water as a base fluid and studied the effect of Cobalt oxide (Co3O4) and Graphene (Go) . Qing 
et al18 discussed the thermal assessment of sutterby nanofluid over an axially starched cylinder and obtained the 
numerical solutions using the shooting method of the involved equations.

Heat transmission is essential in a wide range of biological applications. In the last several decades, there has 
been a tremendous increase in thermal treatment. Temperature is a critical factor in tissue contact and hyper-
thermia in living beings. The therapy of hyperthermia involves the application of heat energy to harm cancer19–22. 
Zhao et al23 discussed heat and entropy generation in a fluid flow between two rotating disks. Andreozzi et al24 
proposed hyperthermia therapy via heat transfer. They believed that by employing hyperthermia, tumoral cells 
would be killed while healthy cells would be saved.

The thought of fractional calculus emerged in 1695. After that, many researchers have given unique definitions 
of a fractional derivative. Classical derivatives cannot explain some physical and natural phenomena. To depict 
such a phenomenon, fractional calculus is the best tool to solve these problems. This idea has taken an unusual 
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turn in engineering, biophysics, electrochemistry, mechatronics, and mathematical biology. Different definitions 
in this field have been suggested by mathematicians, including Rieman-Liouville, Caputo, Atangana-Baleanu, 
and Caputo-Fabrizio25–33. Each definition has its relevance as well as flaws. Many researchers have worked in 
this field, producing more realistic and generic solutions. Many mathematicians and researchers contributed 
to the development of derivatives in engineering and mathematical sciences and fractional calculus. The frac-
tional derivative has various practical applications, including geotechnical engineering34, quantum physics35, 
and chaotic systems36,37. Sheikh et al38 studied unsteady MHD flow of Casson fluid in a vertical channel with 
heat and mass transfer. Their study found that Casson fluid behaves like a Newtonian fluid by increasing the 
value of the Casson parameter. Ahmad et al39 Jeffery nanofluid with joint effects of mass and heat transfer in a 
horizontal channel. They considered engine oil as a base fluid, and the exact solution was obtained using Laplace 
and Fourier transform. They concluded that the engine oil efficiency had been improved by 28.24% by adding 
nanoparticles. Tavazoei et al40 discussed the applications of fractional calculus to the propagation of ultrasonic 
vibrations in human cancellous bone. Ali et al41 used the Caputo-Fabrizio time-fractional derivative to analyze 
the Couette flow of couple stress nanofluids. Magin et al42 clarified numerous fractional calculus applications for 
Bio-Engineers. Moreover, the time-fractional derivative was employed to investigate the tumor dealing model43.

Magnetohydrodynamics refers to the study of fluids that conduct electricity in the existence of a magnetic 
field (MHD). A wide range of bioengineering and medicinal applications are possible with MHD44. As the first to 
discover the field of MHD in 1970, Alfven was awarded the Nobel Prize in Physics for his efforts. The magnetic 
field has broad applications in the field of medical sciences. There are many ways that magnetohydrodynamics 
(MHD) can be used in biomedical imaging, from the natural magnetization of tissue to fluids that act as contrast 
enhancers in MTI, CT/X-ray, and optical coherence tomography imaging. Several commercial contrast agents are 
currently in widespread usage. They also enable better diagnostic imaging (MRI, CT, OCT) and better therapies 
(targeted drug delivery). Despite the technological hurdles, various medication delivery systems for lung, cancer, 
and cardiovascular illnesses have been created. Magnetic drug targeting and adjusting blood flow during surgery 
are examples of these applications45,46. Ardahaie et al47 investigated the effect of GNPs on blood in the existence 
of a magnetic field. They calculated the final result using a numerical technique, namely the RK-4 method, and 
have also shown the impact of several parameters on blood flow. Nazeer et al48 investigated the theoretical study 
of MHD fluid of third-grade fluid in micro channel.

Based on the existing literature, Casson nanofluid flow in an inclined channel with heat and mass transfer has 
not been studied yet. Therefore, this article aims to make such an attempt. More exactly, in this work, we have 
considered the Casson nanofluid flow in an inclined channel and the flow is generated due to the oscillation of 
the plate at y = d . The governing equations are transformed to fractional partial differential equations utiliz-
ing the Caputo time-fractional derivative definition using extended Fourier and Fick’s laws. The Laplace and 
Fourier sine transforms are used simultaneously to solve the energy and concentration equations, transformed 
by a newly developed transformation. The resulting general solutions meet all of the requirements imposed on 
the boundaries, which demonstrates the obtained general solution’s validity.

Mathematical modelling
In the present work, an unsteady blood flow as a Casson nanofluid in an inclined channel is considered. The 
flow is considered to be in the x-direction. The magnetic field is applied transversely to the flow Bo . Both the 
fluid and plates are at rest when t ≤ 0 with ambient temperature T1 and constant concentration C1 . However, 
after a short interval of time t = 0+ , the right plate oscillates with the velocity U  and frequency ω , and its tem-
perature and concentration are increased to variable temperatures T1 + (T − T1)At and variable concentration 
C1 + (C − C1)At , respectively as shown in Fig. 1.

In an incompressible Casson fluid, the rheological equation is50.

The velocity field’s continuity equation may be approximated using Boussinesq’s approximation. 
−→
V = (u(y, t), 0, 0) 

is governed by the partial differential equations given below51,52.

(1)τij =







2
�

µγ + py√
2π

�

eij, π > πc ,

2
�

µγ + py√
2π c

�

eij, πc < π

(2)
ρnf

∂u(y, t)

∂t
=µnf

(

1+
1

β

)

∂2u(y, t)

∂y2
− σnf B

2
0u(y, t)

+ (ρβT )nf g(T − T1) cos γ + (ρβC)nf g(C − C1) cos γ ,

(3)(ρCp)nf
∂T

∂t
= −

∂m(y, t)

∂y
,

(4)m(y, t) = −knf
∂T(y, t)

∂y

(5)
∂C

∂t
= −

∂n(y, t)

∂y
,
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Initial and boundary conditions for the problem are specified as:

Following are the nanofluid correlations53,54.

Here u(y, t) is the fluid velocity, T(y, t) and C(y, t) are fluid temperature and concentration, respectively, β is a 
Casson parameter, where ρnf  denotes the nanofluid’s density. The dynamic viscosity of a nanofluid is represented 
by µnf  , while the thermal expansion coefficient and the concentration coefficient are represented by (βT )nf
,(βC)nf  . B0 is the magnetic field,σnf  signifies the electrical conductivity of nanofluid. (cp)nf  denotes the specific 
heat capacity of nanofluid. The thermal conductivity is shown by knf  , while the mass diffusivity is represented 
by Dnf  . A is constant with dimensions of inverse of t .

Introducing the following non-dimensional variables:

(6)n(y, t) = −Dnf
∂C(y, t)

∂y
.

(7)

u(y, 0) = 0, T(y, 0) = 0, C(y, 0) = 0, for t = 0,

u(0, t) = 0, T(0, t) = T1, C(0, t) = C1, for t > 0,

u(d, t) = UH(t) cosωt,

T(d, t) = T1 + (T2 − T1)At, C(d, t) = C1 + (C2 − C1)At for t > 0



















(8)

ρnf =ρf

�

(1− φ)+
ρs

ρf

�

, µnf = µf

�

1

(1− φ)2.5

�

, (ρβT )nf = (ρβT )f

�

(1− φ)+
(ρβT )s

(ρβT )f

�

,

(ρβC)nf =(1− φ)

�

(1− φ)+
(ρβC)s

(ρβC)f

�

, (ρcp)nf = (ρcp)f

�

(1− φ)+
(ρcp)s

(ρcp)f

�

,

σnf =σf

�

1+
3(σ − 1)φ

(σ − 2)− (σ − 1)φ

�

, knf = kf

�

ks + 2kf − 2φ(kf − ks)

ks + 2kf + φ(kf − ks)

�

,

σ =
σs

σf
,Dnf = (1− φ)Df
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Figure 1.   Geometry of the problem.
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Equations (2–7) transform to:

where,

The following fractional model is constructed using generalized Fick’s and Fourier’s laws:

In the above equations C℘1−α
τ {.} is the time-fractional Caputo derivative delineated by

The singular power-law kernel is Kα(t) = t−α

Ŵ(1−α)
.

Likewise,

The Laplace transform is denoted by L{.} . The transform parameter is denoted by s , whereas the Dirac’s delta 
distribution is represented by δ(.) . It is simple to demonstrate this.

(9)
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u

U
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y

d
, τ =
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d2
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1

β
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,
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(15)
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(19)
C℘α

t r(y, t) =
1
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We arrived at the following by using Eqs. (11), (13), (17), and (18), as well as Caputo time fractional operator 
is defined in Eq. (25).

To construct the more appropriate version of Eqs. (22) and (23), we revisit the time-fractional integral operator.

Which is the inverse of the derivative operator C℘α
t (.). We arrived at this conclusion sequentially by applying 

the properties from Eq. (20).

which implies

Moreover, using

We get the fractional differential equations below.

Solution of the problem
To solve the model for the given flow regime, first the energy equation is going to be solved.

Solution of the energy equation.  Using the transformation described below:

Equation (28) takes the following form:

With initial and boundary conditions:

For our transformation, we employ Laplace and Fourier sine transforms.

Now by applying inverse Laplace transform (LT) and Fourier sine transform, we get

(21)

C℘0
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(
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Incorporating Eq. (34) in (30), we get the final closed form solutions in the following form:

Solution of mass equation.  Using the transformation described below

Equation (29) takes the following form

With initial and boundary conditions

For our transformation, we employ Laplace and Fourier sine transforms.

Applying inverse Laplace transform (LT) and Fourier sine transform, we get

Incorporating Eq. (40) in (36), we get the final closed form solutions in the following form:

Velocity profile.  Using Eqs. (10) and (15), the result may be stated as follows using the Laplace and Fourier 
transforms:

Here

Applying inverse Laplace transform (LT) along with Fourier sine transforms, the final solution is obtained:

Limiting case.  For φ,ω and γ → 0 , the obtained general solution (44) is reduced to the solution calculated 
by Sheikh et al38. This shows the validity of the present solutions. For details, please see Eq. (40) in38.

Nusselt number.  The Nusselt number is an important physical quantity, especially for engineers and indus-
trialists, and it is defined as follows:
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∞
∑

n=1

(−1)n sin (nπξ)

nπ

∫ τ

0
(1− τ)Eα,α−1

(

(nπ)2

bo
tα
)

dt,

(36)�(ξ , τ) = �(ξ , τ)− ξg(τ ),

(37)C℘α
τ �(ζ , τ )− ξ℘α

τ g(τ ) =
1

b1‘

∂2�(ζ , τ )

∂ξ2
.

(38)�(ζ , 0) = 0, �(0, τ) = 0, �(1, τ ) = 0.

(39)
−
�
F
(n, s) =

(−1)n

nπ

1

s







sα−1

sα + (nπ)2

b1







.

(40)�(ξ , τ ) = 2

∞
∑

n=1

(−1)n sin (nπξ)

nπ

∫ τ

0
(1− τ)Eα,α−1

(

(nπ)2

b1
tα
)

dt,

(41)�(ξ , τ) = ξg(τ )+ 2

∞
∑

n=1

(−1)n sin (nπξ)

nπ

∫ τ

0
(1− τ )Eα,α−1

(

(nπ)2

b1
tα
)

dt,

(42)
VF(n, s) =

(−1)n+1

nπ

s

s2 + ω2
+

(−1)n

nπ

(

p3

s
+

p2

s + p1

)

−
ω2

s2 + ω2

(

p3

s
+

p2

s + p1

)

+
�3GrθF(n, s) cos γ

s + p1
+

�4Gm�F(n, s) cos γ

s + p1
,

(43)p = 1+
1

β
, p1 = �2M + �1p(nπ)

2, p3 = 1−
�1p(nπ)

2

p1
, p3 =

�1p(nπ)
2

p1

(44)

v(ξ , τ) = ξ cosωτ + 2
�∞

n=1

�

(−1)n

nπ

�

p3 + p2 exp(−p1τ )
�

− ω sinωτ ∗
�

p3 + p2 exp(−p1τ )
�

�

+ 2�3Gr

∞
�

n=1

sin(nπξ) cos γ





(−1)n

nπ
exp(−p1τ ) ∗

τ
�

0

(1− τ)Eα,α−1

�

−
(−nπ)2

b0
tα
�

dt + f (t)





2�3Gm

∞
�

n=1

sin(nπξ) cos γ





(−1)n

nπ
exp(−p1τ ) ∗

τ
�

0

(1− τ)Eα,α−1

�

−
(−nπ)2

b1
tα
�

dt + g(t)



.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17364  | https://doi.org/10.1038/s41598-022-21006-9

www.nature.com/scientificreports/

Sherwood number.  The mathematical form of the Sherwood number is defined as follows:

Graphical interpretation and discussion
In this study, the unsteady Casson blood flow with gold nanoparticles between an inclined channel has been dis-
cussed. Using the Caputo time fractional operator, the fractional model is developed by transforming the classical 
model. The exact solutions are achieved by the joint application of the Laplace and Fourier transformations. Some 
physical parameters that influence a velocity, temperature profile, and concentration profile have been studied 
extensively. Fractional order modelling is the generalization of classical/integer order models. It is a best tool to 
include the memory effect, crossover behavior and fractional characteristics. It is also a best tool to best fit the 
theoretical results with the experimental results, real data and field surveys as it gives us many solutions in the 
form of variety of integral curves which make it easy to best fit the theoretical results with one of the integral 
curves with least error. From our graphical results given in Fig. 2, it can be noticed that variation in fractional 
parameter give us different curves which leads us to best fit the experimental results with our theoretical results. 
Figure 3 depicts the variance in the velocity profile over a variety of different values of φ . This figure shows that 
increasing the values of φ decreases its velocity. The reason for the reduction in velocity is that when φ rises, the 
fluid viscosity increases, resulting in the retardation of velocity. Figures 4 and 5 illustrate the effect of the thermal 
Grashof number Gr and the mass Grashof number Gm on the velocity profile. These graphical representations 
demonstrate that velocity is an increasing function of these numbers. This is physically accurate since increasing 
Gr and Gm , increasing buoyant forces, which decrease the fluid’s viscosity, increasing velocity. Figure 6 shows the 
profile of velocity for different values of β (Casson fluid parameter). Raising the material parameter increases the 
velocity profile, which depicts the fluid’s behavior as Newtonian fluid for β → ∞ . It’s easy to observe in Fig. 7 
how the Hartman number influences the velocity profile. It is a relationship between electromagnetic and viscous 
forces. Lorentz (Flow opposing) forces get stronger as M increases, retarding the velocity. Figure 8 depicts the 
variation in the temperature profile as the fractional parameter α values change. This is one of the advantages 
of the fractional derivative; it provides for the analysis of several temperature profiles, as seen in Fig. 2. Figure 9 
shows how the volume fraction φ affects the temperature distribution. It is clear from the figure that heat transfer 
increases as the values of φ increase. Higher values of φ increase the fluid’s absorption capacity, and as a result, 
the fluid temperature increases. The concentration profile with various values of the fractional parameter α is 
presented in Fig. 10. As indicated in Fig. 2, it has been noted that in the case of concentration profiles, it gives 
many concentration profiles for studying fluid behavior. Figure 11 is drawn to show the impact of on the con-
centration profile. The concentration profile is decreased for different values of φ . It may be explained by the 
fact that viscous forces increase when the concentration profile slows down. Figure 12 illustrates the difference 
between our results and those of the published studies of Sheikh et al38. From the figure we have noticed that 
by taking γ = 0 and φ = 0 , our results reduced to the solution of Sheikh et al38. Furthermore, Table 1 Show the 
Thermo-physical properties of base fluid(blood) and gold nanoparticles Tables 2 and 3 show variations in the 
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Figure 2.   Fractional parameter α impact on the velocity profile, when, Gr = 0.5 , Gm = 0.5,φ = 0.01,M = 1 , 
γ = π

4 ,β = 1 , Pr = 22.64 , and Sc = 1.9× 104.
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Nusselt and Sherwood numbers for various values φ . It has been discovered that raising the values of φ by 0.04 
percent results a 3.28% increase in heat transfer rate and a 1.626% reduction in mass distribution.

Conclusion
In the study, a fractional initial and boundary values problem is modeled for the flow of human blood with gold 
(Au) nanoparticles over an inclined channel. A new approach is used to developed the fractional model. General-
ized Fourier’s and Fick’s laws are used to fractionalize the model. Closed-form solutions have been obtained by 
utilizing the Joint Laplace and Fourier sine transform. Numerous physical parameters have been used to highlight 
their impact on fluid velocity. The following significant observations have been made from this investigation 
based on the preceding results and discussion.

Figure 3.   Velocity variation for different values of φ , when, α = 0.5 , Gr = 0.5 , Gm = 0.5,M = 1 , γ = π
4  , β = 1 , 

Pr = 22.64 , and Sc = 1.9× 104.

Figure 4.   Thermal Grashof number Gr impact on the velocity distribution, when, α = 0.5 , φ = 0.01 , Gm = 0.5
,M = 1 , γ = π

4 ,β = 1 , Pr = 22.64 , and Sc = 1.9× 104.
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•	 Fick’s and Fourie’s laws are used to transform the time derivative to time-fractional model.
•	 The variations in all the profiles are shown for differen values of α . It is important here to mention that we 

have different lines for one value of time. This effect is showing the memory effect in the fluid, which cannot 
be demonstrated from the integer order derivative.

•	 The used transformation is well suitable for the solution of a fractional model.
•	 The velocity of the Casson fluid is higher for the grater values of β , which shows that the fluid will behave 

like a Newtonian viscous fluid for higher values of β.
•	 By increasing the M the velocity is decreases while increasing Gr and Gm the velocity is increasing.
•	 It is interesting to note that the heat transfer rate of blood is enhanced by 3.825% for gold (Au) nanoparticles.

Figure 5.   Mass Grashof number Gm impact on the velocity profile, when, when, α = 0.5 , Gr = 0.5 , φ = 0.01
,M = 1 , γ = π

4 ,β = 1 , Pr = 22.64 , and Sc = 1.9× 104.

Figure 6.   Velocity variation with material parameter β , when, when, α = 0.5 , Gr = 0.5 , Gm = 0.5,φ = 0.01 , 
M = 1,γ = π

4  , Pr = 22.64 , and Sc = 1.9× 104.
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Figure 7.   Velocity variation with Hartman number M , when, α = 0.5 , Gr = 0.5 , Gm = 0.5,φ = 0.01 , γ = π
4

,β = 1 , Pr = 22.64 , and Sc = 1.9× 104.

Figure 8.   The temperature distribution’s derivation of the distinct value of α, when Gr = 0.5 , Gm = 0.5,M = 1
,φ = 0.01 , γ = π

4 ,β = 1 , Pr = 22.64 , and Sc = 1.9× 104.
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Figure 9.   Impact on temperature profile for different values of φ , when α = 0.5 , Gr = 0.5 , Gm = 0.5,Gm = 0.5 , 
γ = π

4 ,β = 1 , Pr = 22.64 , and Sc = 1.9× 104.

Figure 10.   Variation in a profile of concentration for varying values of α , when Gr = 0.5 , Gm = 0.5,M = 1
,φ = 0.01 , γ = π

4 ,β = 1 , Pr = 22.64 , and Sc = 1.9× 104.
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Figure 11.   Variation in concentration profile for various values of φ , when α = 0.5 , Gr = 0.5 , Gm = 0.5
,M = 1 , γ = π

4 ,β = 1 , Pr = 22.64 , and Sc = 1.9× 104.

Figure 12.   Comparison of obtained results with the results of Sheikh et al38, when φ = 0 and γ = 0.

Table 1.   Thermo-physical properties of base fluid(blood) and gold nanoparticles8,9,49.

Material Symbol ρ(Kg/m3) cp(JK/gK) k(W/mK) Pr

Blood – 1050 3617 0.52 22.64

Gold Au 19,300 129 318 –

Table 2.   Variation in Nusselt number in response to volume fraction of gold nanoparticles.

φ τ Nu %

0 1 0.183 –

0.01 1 0.185 1.092

0.02 1 0.187 2.185

0.03 1 0.188 2.732

0.04 1 0.190 3.825
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