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Objectives: Previous studies have reported a potential association of

polyunsaturated fatty acids (PUFAs) levels with allergic disease risk and the

possible benefit of PUFAs supplementation on allergic disease prevention.

This study was performed to estimate the genetic association between PUFAs

and allergic diseases using the method of both univariable and multivariable

two-sample Mendelian randomization (MR).

Methods: As indicators of the PUFAs levels, we included the omega-3,

omega-6, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), linoleic

acid (LA), and the ratio of omega-6 to omega-3 (omega-6:3). Summarized

statistics of genome-wide association studies (GWASs) for these PUFAs were

obtained from the United Kingdom Biobank and the Twins United Kingdom

cohort. Genetic data relating to allergic diseases, including atopic dermatitis

(AD), allergic rhinitis (AR), allergic conjunctivitis (AC), allergic urticaria (AU) and

asthma, were accessed from the FinnGen biobank analysis. Odds ratios and

95% CIs were used to express the impact.

Results: The MR results denoted a genetic association between the genetically

determined increase in omega-3 levels and the decreased risk of some allergic

diseases including AD (OR: 0.863; 95% CI: 0.785 to 0.949; p = 3.86E-03), AC

(OR:0.720; 95% CI: 0.547 to 0.947; p = 1.87E-02) and AU (OR:0.821; 95% CI:

0.684 to 0.985; p = 3.42E-02), while omega-6 and DHA level was only found

to have negatively correlation with risk of AC with ORs of 0.655 (95% CI:

0.445 to 0.964; p = 3.18E-02) and 0.671 (95% CI 0.490 to 0.918; p = 1.25E-

02), respectively. Omega-6:3 were causally significantly associated with the

increased risk of AD (OR:1.171; 95% CI: 1.045 to 1.312; p = 6.46E-03) and AC

(IVW: OR:1.341; 95% CI: 1.032 to 1.743; p = 2.83E-02). After adjustment of age,

economic level, BMI, smoking and alcohol behaviors in the multivariable MR

analysis, a direct causal protective effect of omega-3 on AD and AC, as well as

a direct causal association between DHA and AD were observed. Omega-6:3
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was also found to be directly associated with an increased risk of AD and AC.

No association was found of EPA or LA with allergic diseases.

Conclusion: Higher PUFA concentrations (omega-3, omega-6, DHA) and

lower omega-6:3 ratios were genetically associated with a lower risk of some

allergic diseases.

KEYWORDS

polyunsaturated fatty acids, omega-3, omega-6, allergic diseases, Mendelian
randomization study

Introduction

Allergic diseases may involve the respiratory, digestive,
skin or other systems and include common conditions such
as eczema/atopic dermatitis (AD), allergic asthma, allergic
rhino-conjunctivitis (AR/AC)/hay fever/seasonal allergies and
allergic urticaria (AU) (1). It is also widely accepted that
AD comorbidities extend beyond other allergic conditions,
such as AA, AR, AC, and eosinophilic esophagitis, and that
allergic diseases follow time-based sequences, suggesting both
cutaneous and systemic immune activation (1–3). There has
been a noticeable increase in the incidence of allergic disease,
which now affects an estimated 20% of the population, making
it a public health concern (2, 4, 5). Some allergic conditions
with childhood-onset resolve with age, whereas others may
persist throughout the lifetime (6), leading to an increased
burden on families, society, and healthcare services (7). The
rapid escalation of allergic diseases may not be attributed to
either genetic or environmental factors (such as lifestyle and
diets) alone, and mixed etiology is not fully understood (8).
The association between genetic factors and allergic diseases has
been extensively studied and some shared susceptibility loci have
been identified (9). Large-scale genome-wide association studies
(GWAS) and studies of causal roles of genetic susceptibility loci
are expected to improve understanding of the prevention and
treatment of atopic diseases.

Polyunsaturated fatty acids (PUFAs) of the omega-3
and omega-6 series have been identified by laboratory and
epidemiological evidence as having anti-inflammatory and
anti-allergy effects (10–13). Especially for omega-3, systematic
reviews and meta-analyses have shown the impact of the fish oil-
derived omega-3 PUFAs in the primary prevention of allergic
disease (14, 15). Indeed, the omega-3 PUFA, docosahexaenoic
acid (DHA), and eicosapentaenoic acid (EPA) have been shown
to have anti-inflammatory and immunoregulatory properties
(13). On the contrast, linoleic acid (LA), one type of omega-6
acid, was found to be linked to increased specific IgE and pro-
inflammatory responses among infants (16–18). The ratios of
omega-6 to omega-3 PUFAs in some Western diets are found

to arise from an equal balance of 1:1 to an unbalanced level
of nearly 30:1. The significant changes in PUFAs consumption
seem to be paralleled by the increase in the prevalence of
atopic and allergic diseases (19), indicating a potential causal
relationship between PUFA intake and allergic diseases.

PUFA supplementation has been proposed to prevent
allergic disease, and genetic evidence must be considered in
establishing the causal effects (20). The current study employed
Mendelian randomization (MR) analysis, using instrumental
variables (IVs) to explore a causal association of exposure factors
with outcomes (21–23). The theory of random distribution
of genetic variants within the population, which mimics the
randomization process in the assortment of meiosis genetic
variants, underpins the approach. An analogy between MR and
RCTs may be drawn, with the former less likely to be affected
by confounders and reverse causality (24). Two-sample MR
analysis relies on genetic effect estimates from two independent
summary sets of GWAS to the inference of causal association
by comparison with one-sample MR (25). Multivariable MR
(MVMR) is an extension of univariable MR and can take the
pleiotropy in multiple traits into account. The assumptions
of MVMR include the possible effects of genetic variants on
multiple measured exposures and the extension of the exclusion
restriction and exchangeability assumption (26). Therefore,
MVMR can provide a consistent estimator of the direct effect
of the primary exposure on the outcome that does not work
via the mediator, even when a secondary exposure act as a
mediator in the relationship. The current study aimed to infer
causal associations between PUFAs (using genetic IVs as proxy)
and with risk of atopic disease through a two-sample MR
analysis (27).

Materials and methods

The overview flowchart of the hypothesis and schematic
design is shown in Figure 1. Three principal assumptions
were made (Figure 1A) (28): (1) genetic variants were strongly
associated with exposure; (2) genetic variants were only
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associated with the outcome through exposure, and (3) this
association was independent of any potential confounders.
Publicly available data were used, and no additional informed
consent or ethical approval was required. Genetic data were
obtained from two large GWAS and, after removing outliers and
harmonizing alleles, MR analysis with six different methods and
sensitivity analysis was applied to identify causal associations
between PUFAs and allergic diseases.

Data source and selection of genetic
instrumental variables

Single-nucleotide polymorphisms (SNPs) were identified
and used as IVs from eligible datasets in GWAS Catalog,
IEU openGWAS and NealELab. Only GWAS conducted on
individuals of European ancestry were included to limit the
bias resulting from ethnic confounders. Six main dietary
PUFAs indexes were considered in the present study: SNPs for
circulating omega-3, omega-6, DHA, EPA, and LA levels, as well
as the ratio of omega-6 to omega-3 fatty acids (omega-6:3), were
also obtained as instrumental variables of exposure. Genetic risk
variants of exposure including omega-3, omega-6, DHA, LA,
and omega-6:3 were identified from the Metabolic biomarkers
in the United Kingdom Biobank (Nightingale Health 2020).
Circulating omega-3 and omega-6 fatty acids, as well as DHA
and LA concentrations, were measured from randomly selected
EDTA plasma samples by using a targeted high-throughput
nuclear magnetic resonance (NMR) metabolomics platform
(Nightingale Health Ltd; biomarker quantification version 2020)
(29). In total, 121,577 samples were retained for analyses
after removing duplicates and observations not passing quality
control in the non-fasting plasma samples collected at baseline,
and 114,999 samples were retained in the final. Details for
measurement technology and applications for the epidemiology
of this platform have been previously reviewed (30–32). For the
EPA level, it was obtained from the Twins United Kingdom
cohort (33), which is an adult twin British registry composed
of mostly women recruited from the general United Kingdom
population through national media, and the EPA level was
measurable in blood using the Metabolon platform. The detailed
information was described in the previous studies (34–36).
Genetic data relating to AD, AC, AR, AU, and asthma were
accessed from the FinnGen biobank analysis (round 5), and
diagnoses were based on ICD-10 (Figure 1B).

Summarized statistics of PUFA-related SNPs with genome-
wide significance (p < 5 × 10−8) were designated as
alternate IVs. Linkage disequilibrium (LD) was tested within
the condition of the clumping algorithm with r2 = 0.001
and kb = 10,000 to reduce the effect of strong LD. F
statistics were used to assess the risk of weak instrumental
bias with at least 10 being a sufficient level for MR analysis
(36, 37). Based on the merged dataset of exposure-outcome,

harmonization of effect alleles and subsequent analyses were
conducted. Detailed information regarding IVs is presented in
Supplementary Tables 1–6.

Two-sample Mendelian randomization

Primary MR analysis was performed using the inverse-
variance weighted (IVW) model, combining Wald estimates of
causality for each IV with the assumption of invalid genetic
instruments (e.g., a balanced pleiotropy) (38, 39). MR-Egger
regression analysis and weighted-median estimator were used to
examine any violation of MR assumptions caused by directional
pleiotropy (40, 41). The MR-Egger intercept estimates the effect
of pleiotropy across genetic variants and provides a relatively
robust estimate with the independence of IV validity and an
adjusted result via the regression slope (38, 40). A consistent
valid estimate could be inferred by a weighted-median estimator
if over 50% of instrumental variables were valid (40, 41).
The weighted mode-based method infers robust overall causal
estimates on the condition that individual estimates were mostly
obtained from valid IVs (42). MR-Robust Adjusted Profile
Score (MRAPS) was used to derive a more accurate assessment
of causal association with ideal independence of IVs (43).
In addition, MR pleiotropy residual sum and outlier (MR-
PRESSO) was used to detect and correct horizontal pleiotropy
by the removal of outliers with p < 0.05 and to give a
corrected causal effect (44). Cochran’s Q-statistic was used to
assess heterogeneity, and a random-effect model was used for
subsequent analyses with p < 0.05 as a level of significant
heterogeneity (45). In MR-PRESSO analysis, heterogeneity and
pleiotropy in causal effect estimates were reduced by removing
outliers and reassessing causal estimates. If heterogeneity
was still significant after removing outliers, all SNPs with a
p-value < 1 in the MR-PRESSO outlier test were removed. The
MR analysis was re-performed with results from the random-
effect IVW model being adopted. The number of distributions in
the MR-PRESSO analysis was set to 1,000. Additional sensitivity
analyses were performed by the exclusion of IVs one at a time
(46). Other statistical tools were used to complement IVW
and produced wider confidence intervals (CIs) (47). Therefore,
IVW results were prioritized, and the MR-Egger was adopted
for significant pleiotropy and the MR-PRESSO to detect final
outliers. The flow chart of analytical methods used in this MR
analysis is shown in Supplementary Figure 1.

In additional analyses, to investigate the direct effects of
PUFAs on allergic diseases, MVMR analysis was also performed
as an extension of univariable MR allowing the joint detection
of causal effects of multiple risk factors (26, 48). Genetic
associations between SNPs and age, average total household
income, body mass index (BMI), smoking, and alcohol were
obtained from a recent GWAS using a United Kingdom Biobank
sample of 2,336,260 to 1,3586,591 individuals of European
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FIGURE 1

The overview flowchart of hypothesis and schematic design (A) Mendelian randomization key hypothesis Diagram. SNPs associated with PUFAs
levels/ratios were used as the genetic instruments for investigating the causal effect of PUFA on allergic diseases. Line with arrows indicates that
the genetic instruments (SNPs) are associated with the exposure and can only affect the outcome via the exposure. Dashed lines indicate that
the genetic instruments (SNPs) are independent of confounders between the results. (B) Schematic design for the mendelian randomization
analysis.

descent. MVMR takes into account the relationships among
PUFAs, age, income, BMI, smoking, and alcohol drinking, and
the fact that the SNPs selected in the MR analyses are often
associated with several phenotypes. Therefore, MVMR was used

to evaluate the direct effects of PUFAs independent of the
effects of age, income, BMI, smoking, and alcohol assumptions
on allergic diseases. The clumping window of r2 = 0.001 and
kb = 10,000 was also used to reduce the effect of strong LD in all
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mediators. The combination of all GWAS-significant SNPs with
a P-value less than 5 × 10−8 were extracted from each exposure
and were clump for avoiding LD under a window of r2 = 0.001
and kb = 10,000. Selected IVs were further analyzed in the multi-
variable IVW and MR-Egger models, and a P-value < 0.05 was
considered independently significant in the MVMR analysis. It
should be noted that both IVW and MR-Egger methods could
reveal heterogeneity in the analysis, and the results of MR-Egger
would be applied when there was pleiotropy detected (26, 49).

Statistical analysis

Odds ratios and 95% CIs were used to express the impact
on allergic disease risk caused by a corresponding unit change
in absolute levels of the circulating omega-3, omega-6 and
DHA and the ratio omega-6:3. According to the rules of
Bonferroni correction for reduction of false positives by
multiple tests, a two-sided p-value < 0.0083 was considered
statistically significant but p-values ≥ 0.0083 and < 0.05 were
only suggestive of statistical significance. MR analyses were
performed using the “TwoSampleMR.” package (version 0.5.6)
and Mendelian Randomization (50) (version 0.5.0) packages
in R software (version 4.1.2), R Foundation for Statistical
Computing, Vienna, Austria). All study results are reported
according to STROBE-MR (Strengthening the Reporting
of Observational Studies in Epidemiology—Mendelian
Randomization) guidelines (51).

Results

Data regarding SNPs relating to omega-3, omega-6, DHA,
LA, EPA, and omega-6:3 exposure are given in Supplementary
Tables 1–6. F-statistics for all selected IVs are almost >10,
indicating no weak IVs. Details of sensitivity analysis and
outliers are shown in Table 1.

Causal effects of omega-3/omega-6
on allergic diseases

The association of omega-3 with AD risk showed no
evidence of directional pleiotropy but significant heterogeneity,
according to Cochran’s Q test (Q = 79.029; p = 0.002),
but the removal of 3 outliers abolished heterogeneity. The
genetically determined per unit increase in circulating omega-
3 was associated with decreased risk of AD (outlier-corrected:
OR: 0.863; 95% CI: 0.785 to 0.949; p = 3.86E-03).

No directional pleiotropy or heterogeneity was found for
the association of circulating omega-3 on AC, AR or AU.
A genetically determined increase in plasma omega-3 levels
produced a trend with suggestive significance for decreased

risk of AC (IVW-fixed: OR:0.720; 95% CI: 0.547 to 0.947;
p = 1.87E-02) and AU (IVW-fixed: OR:0.821; 95% CI: 0.684
to 0.985; p = 3.42E-02), but no association was found between
omega-3 and AR. Pleiotropy, assessed by MR-Egger regression
(intercept = −0.014; p = 0.005), and heterogeneity (Q = 127.849;
p = 2.08E-09) were analyzed for the relationship between
circulating omega-3 and asthma, but after removal of six
outliers, there was still no significant association (Figure 2).

No directional pleiotropy or significant heterogeneity was
found for the analysis of circulating omega-6 levels and atopic
diseases. A suggestively significant association emerged between
omega-6 level and AC (IVW-fixed: OR:0.655; 95% CI: 0.445
to 0.964; p = 3.18E-02), but no relationship with other allergic
diseases was found (Figure 3).

Causal effects of docosahexaenoic
acid, eicosapentaenoic acid, and
linoleic acid on allergic diseases

The association between DHA and AD showed
heterogeneity, detected by Cochran’s Q test (Q = 65.374;
p = 0.009), but no directional pleiotropy. The removal of 4
outliers abolished heterogeneity, allowing the adoption of a
fixed-effect model. No genetic association was found between
circulating DHA and AD. No heterogeneity or directional
pleiotropy emerged from the analyses of DHA association with
AC, AR or AU. A suggestively significant association was only
revealed between the DHA level and decreased risk of AC
(IVW-fixed: OR:0.671; 95% CI 0.490 to 0.918; p = 1.25E-02).
Pleiotropy, by MR-Egger regression (intercept = −0.013;
p = 0.004), and heterogeneity (Q = 70.079; p = 0.003) were
assessed in the analysis of DHA and asthma but after removal
of four outliers (rs2394976, rs273912, rs4860987, rs77960347),
no significant association was found (Figure 4). There was no
significant association of LA and EPA with allergic diseases
(Supplementary Figures 2, 3).

Causal effects of the ratio of omega-6
to omega-3 on allergic diseases

No heterogeneity or directional pleiotropy was found for
the analyses of omega-6:3 on allergic diseases except for asthma
and AU. Using the fixed-effect IVW model, circulating omega-
6:3 was found to be significantly associated with an increased
risk of AD (IVW-fixed OR:1.171; 95% CI: 1.045 to 1.312;
p = 6.46E-03) and a suggestively significant association with
increased risk of AC (IVW: OR:1.341; 95% CI: 1.032 to
1.743; p = 2.83E-02) was also found. There was no impact
on AR. Significant heterogeneity and pleiotropy were detected
respectively by Cochran’s Q test (Q = 119.740; p = 1.76E-11) and
MR-Egger regression (intercept = 0.014; p = 0.036) for analysis
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TABLE 1 Sensitivity analyses of the raw MR analysis and the adjusted MR analysis (adjusted by excluding all outliers and heterogeneous SNPs identified by the MR-PRESSO test).

Exposure Outcome nIVs Heterogeneity test MR-Egger
pleiotropy test

MR-PRESSO
global test

MR-PRESSO distorted
outlier test

F
statistics

Q (P-value) adjusted Q
(P-value)

Intercept
(P-value)

adjusted
Intercept
(P-value)

RSSobs
(P-value)

adjusted
RSSobs
(P-value)

Outlying
SNPs

Heterogeneous
SNPs

Omega-3 AD 46 79.03 (0.0024) 56.32 (0.1201) 0.0026 (0.7093) 0.0067
(0.2817)

83.5102
(0.010)

54.0308
(0.268)

rs11242109 rs144018203,
rs3129962

281.89

AC 48 54.22 (0.2184) NA 0.0135 (0.4209) NA 55.6056
(0.280)

NA None None 272.84

Asthma 42 127.85 (0.0000) 41.48 (0.4499) −0.0135
(0.0055)

−0.0077
(0.0745)

146.0187
(< 0.001)

43.4303
(0.478)

rs11242109,
rs174564

rs10184054,
rs2394976,
rs4860987,
rs77960347

135.98

AR 48 57.22 (0.1459) NA −0.0118
(0.0367)

NA 62.7635
(0.156)

NA None None 272.84

AU 48 48.10 (0.4279) NA −0.0216
(0.0528)

NA 51.5931
(0.446)

NA None None 272.84

Omega-6 AD 50 53.22 (0.3152) NA 0.0128 (0.1055) NA 55.0880
(0.309)

NA None None 130.06

AC 50 52.05 (0.3560) NA 0.0433 (0.0521) NA 54.6354
(0.334)

NA None None 130.06

Asthma 50 55.46 (0.2444) NA −0.0015
(0.7368)

NA 58.3651
(0.216)

NA None None 130.06

AR 50 57.63 (0.1863) NA −0.0001
(0.9904)

NA 59.4571
(0.196)

NA None None 130.06

AU 50 39.13 (0.8424) NA −0.0122
(0.4298)

NA 41.1063
(0.818)

NA None None 130.06

RO63 AD 35 52.55(0.0220) NA −0.0038(0.6241) NA 55.5381
(0.060)

NA None None 105.22

AC 35 33.3804 (0.4978) NA 0.0140 (0.4342) NA 34.67916
(0.594)

NA None None 105.22

Asthma 29 119.7397 (0.0000) 30.8934 (0.3218) 0.0135 (0.0361) −0.0012
(0.8455)

138.0924
(0.001)

32.6248
(0.347)

rs11242109,
rs11632618,

rs174564

rs2394976,
rs4860987, rs7222755

92.45

AR 35 45.8239 (0.0848) NA 0.0071 (0.3079) NA 48.4527
(0.161)

NA None None 105.22

AU 35 40.0812 (0.2185) NA 0.0288 (0.0311) NA 44.3980
(0.287)

NA None None 105.22

DHA AD 39 65.37 (0.0091) 40.84 (0.3468) 0.0095 (0.2291) 0.0006
(0.9525)

74.2713
(0.032)

42.9112
(0.333)

rs174564 rs182611493,
rs525028

95.32

AC 42 42.95 (0.3876) NA –0.0138 (0.4531) NA 44.5644
(0.451)

NA None None 214.17

Asthma 37 70.08 (0.0031) 35.10 (0.5113) −0.0125
(0.0045)

−0.0043
(0.4359)

90.4094
(0.019)

36.4349
(0.557)

rs174564 rs2394976, rs273912,
rs4860987,
rs77960347

97.74

(Continued)
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TABLE 1 (Continued)

Exposure Outcome nIVs Heterogeneity test MR-Egger
pleiotropy test

MR-PRESSO
global test

MR-PRESSO distorted
outlier test

F
statistics

Q
(P-value)

adjusted Q
(P-value)

Intercept
(P-value)

adjusted
Intercept
(P-value)

RSSobs
(P-value)

adjusted
RSSobs
(P-value)

Outlying
SNPs

Heterogeneous
SNPs

AR 42 49.16
(0.1789)

NA −0.0099
(0.1289)

NA 53.3817
(0.211)

NA None None 214.17

AU 42 46.89
(0.2436)

NA −0.0113
(0.4028)

NA 47.6418
(0.312)

NA None None 214.17

LA AD 40 58.9374
(0.0431)

33.2374 (0.7295) 0.0138
(0.1832)

0.0168
(0.0626)

62.5178
(0.0410)

35.0954
(0.7310)

rs141469619 rs174564, rs4947302 136.62

AC 43 48.5985
(0.2244)

NA 0.0402
(0.1340)

NA 51.8960
(0.1980)

NA None None 138.80

Asthma 40 63.7698
(0.0167)

38.0106 (0.5149) 0.0017
(0.7751)

–0.0026
(0.6079)

68.9051
(0.0140)

40.7977
(0.4960)

rs693 rs77960347,
rs174564

138.80

AR 43 49.1533
(0.2084)

NA −0.0011
(0.9023)

NA 51.2625
(0.2090)

NA None None 138.80

AU 43 43.8677
(0.3923)

NA 0.0000
(0.9982)

NA 46.4538
(0.3920)

NA None None 138.80

EPA AD 7 11.1523
(0.0838)

NA 0.0866
(0.0319)

NA 19.3726
(0.1340)

NA None None 9.91

AC 7 3.7916
(0.7048)

NA 0.0525
(0.5606)

NA 4.6240
(0.7750)

NA None None 9.91

Asthma 7 9.8296
(0.1320)

NA −0.0211
(0.3652)

NA 21.5129
(0.1440)

NA None None 9.91

AR 7 5.1788
(0.5211)

NA 0.0149
(0.6195)

NA 6.4895
(0.6070)

NA None None 9.65

AU 7 4.1837
(0.6518)

NA 0.0592
(0.3644)

NA 5.2409
(0.7160)

NA None None 9.91

As the Supplementary Figure 1 showed, for the process of adjustment, we firstly did a raw MR analysis and got an uncorrected causal evaluation. Then, MR-PRESSO global and Outliers test was performed to find unstable SNPs, and an adjusted MR
analysis was performed again after removing all unstable SNPs, and the heterogeneity, pleiotropy and causal effect values were re-evaluated. MR: Mendelian randomization analysis; nIVs: Number of instrumental variables; NA: Not applicable; AD: atopic
dermatitis; AC: Atopic conjunctivitis; AR: Allergic rhinitis; AU: Allergic urticaria; Omega-3: Omega-3 fatty acids; Omega-6: Omega-6 fatty acids; DHA: Docosahexaenoic acid.
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FIGURE 2

The forest plot of univariable Mendelian randomization analyses exploring associations between omega-3 fatty acids and risk of allergic
diseases using different Mendelian randomization statistical models OR: odds ratio; CIs: confidence intervals.
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FIGURE 3

The forest plot of univariable Mendelian randomization analyses exploring associations between omega-6 fatty acids and risk of allergic
diseases using different Mendelian randomization statistical models OR: odds ratio; CIs: confidence intervals.
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FIGURE 4

The forest plot of univariable Mendelian randomization analyses exploring associations between docosahexaenoic acid and allergic diseases risk
using different Mendelian randomization statistical models OR: odds ratio; CIs: confidence intervals.
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of omega-6:3 and asthma. However, after the removal of six
outliers, no significant association remained between omega-6:3
and asthma. Significant pleiotropy was detected by MR-Egger
regression (intercept = 0.029; p = 0.031) for analysis of omega-
6:3 and AU but the MR-PRESSO global test reported no evident
pleiotropy (RSSobs = 44.398; p = 0.287). Therefore, the negative
association between omega-6:3 with AU (MR-Egger: OR: 0.967;
95% CI: 0.753 to 1.243; p = 7.96E-01) should be interpreted with
caution (Figure 5).

A forest plot of the causal estimates of PUFAs on allergic
diseases is presented in Figures 2–5. Overall, the consistency of
effect sizes across different methods indicates that confidence
may be put in the results of each analysis. The corresponding
scatter plots for the MR analysis are shown in Supplementary
Figures 4–9.

The leave-one-out stability tests conducted by excluding
a single SNP at a time are detailed in the Supplementary
Figures 10–15. Risk estimates of genetically predicted omega-
6 levels and omega-6:3 ratios for allergic diseases did not
change substantially after excluding one SNP at a time,
indicating that it was unlikely that potential driving SNPs were
causing bias to the causal association. However, the removal of
rs174564 from the two analyses of omega-3 and DHA levels
on risk of AR, caused a distinct change in risk estimates,
indicating that this instrumental variable severely affected the
outcome variable. Therefore, these particular results should be
interpreted with caution.

Multivariable MR analyses

We estimated the independent effects of circulating PUFAs
on allergic diseases using multivariable MR conditioned on age,
income, BMI, alcohol and smoking (Figure 6) and observed
a directly protective effect of omega-3 level on AD (IVW
ORMVMR: 0.841; 95% CI: 0.752 to 0.940; p = 2.00E-03) and AC
(IVW ORMVMR: 0.646; 95% CI: 0.482 to 0.865; p = 3.00E-03). No
significant was observed for omega-6 levels and allergic diseases
after adjustment of age, income, BMI, alcohol, and smoking
behaviors. Genetic risk of DHA was directly associated with
decreased risk of AD (IVW ORMVMR: 0.851; 95% CI: 0.748 to
0.969; p = 1.50E-02). Genetic risk of circulating omega-6:3 was
found to have a significant direct association with increased risk
of AD (IVW ORMVMR:1.192; 95% CI:1.071 to 1.328; p = 1.00E-
03) and AC (IVW ORMVMR:1.384; 95% CI:1.046 to 1.832;
p = 2.30E-02). Similarly, there was no significant association
of LA and EPA with allergic diseases according to the results
of MVMR. Besides, though no significant genetic association
was observed between PUFAs and asthma after adjustment
of age, income, BMI, alcohol, and smoking behaviors, genetic
risk of BMI was found to be associated with a higher risk of
asthma. Detailed results of MVMR analyses were presented in
Supplementary Tables 7-12.

Discussion

The current study explored the association between PUFAs
and allergic disease risk using both univariable and multivariable
two-sample MR. The IVs were used as proxies for PUFAs
assessed both as absolute levels and as ratios to produce
comparable results. In univariable MR results, Omega-3 levels
were found to be likely genetic causal factors associated with
decreased risk of some allergic diseases including AD, AC
and AU. Genetic predisposition to high omega-6 and DHA
levels was suggestively associated with reduced risk of AC.
However, the genetic predisposition to high omega-6:3 showed
a causal association with an increased risk of AD and AC,
and this may constitute a susceptibility factor contributing to
the pathogenesis of AD and AC. According to the results of
MVMR, the independent protective effect of omega-3 and DHA
on AD was identified in our study, as well as omega-3 for AC.
Besides, omega-6:3 was independently associated with AD and
AC. However, those results for asthma should be interpreted
with caution as no specific GWAS data related to allergic asthma
could be accessible and used in the present study.

Health benefits of PUFAs have been documented elsewhere
and omega-3 (including DHA) have been associated with
improvements in cardiovascular health, neurodevelopment and
diabetes (52, 53) with omega-6 implicated in hair growth,
lipid metabolism, and bone health (54–56). However, omega-
3 and omega-6 compete for the same desaturation and
elongation enzymes, and an increased ratio of omega-6 to
omega-3 may reduce the benefits of omega-3 and increase the
probability of inflammatory diseases (57). Inconsistencies have
arisen from epidemiological studies, RCTs and meta-analyses
into the effects of PUFAs intake during pregnancy (15, 58),
biomarker levels (18, 59–64), maternal/individual early life
PUFA supplementation, and impacts on the risk of allergic
diseases in the offspring or during individual later life (12,
14, 15, 65–67). For the association between PUFAs in plasma
and allergic disease, there was evidence showing that higher
levels of total omega-3 fatty acid, DHA and EPA in maternal
and infant plasma were associated with a lower prevalence of
IgE-associated disease (such as eczema) in a dose-dependent
manner (68). Reduced concentration of serum omega-3 fatty
acids was also identified to characterize women with extensive
eczema (69). Previous observational studies mainly provided
evidence for the effects of PUFA composition of maternal and
umbilical cord plasma on infants or early childhood allergic
diseases, while the results in this MR study demonstrated a
direct genetic association of circulating PUFAs with allergic skin
diseases, especially for the protective effects of omega-3 fatty
acid on AD and AC.

Multiple levels of research evidence should be considered
when establishing causal effects but observational research
under different conditions is susceptible to confounding factors
reducing the accuracy of conclusions. Therefore, correlations
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FIGURE 5

The forest plot of univariable Mendelian randomization analyses exploring associations between ratio of omega-6 fatty acids and omega-3 fatty
acids to allergic diseases risk using different Mendelian randomization statistical models OR: odds ratio; CIs: confidence intervals.

reported by observational studies cannot be equated with direct
causal correlation. MR avoids the influence of confounding
factors through genetic instrumental variables and accurate

causal assessments may be made. Caution should also be
exercised in comparing RCTs with MR effects since genetic
susceptibility is considered lifelong, while the effects of dietary
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FIGURE 6

The forest plot of the multivariable Mendelian randomization exploring the associations between genetically determined polyunsaturated fatty
acids and allergic diseases adjusted for confounding traits (body mass index, smoking, alcohol intake, age, and income level) OR: odds ratio;
CIs: confidence intervals; Omega-3: omega-3 fatty acids; Omega-6: omega-6 fatty acids; DHA: docosahexaenoic acid; LA: linoleic acid; EPA:
eicosapentaenoic acid; RO63: ratio of omega-6 fatty acids to omega-3 fatty acids; AD: atopic dermatitis; AC: Atopic conjunctivitis; AR: Allergic
rhinitis; AU: Allergic urticaria.

supplementation in intervention experiments last only for the
duration of the trial. Long-term exposure may be superior, given
the long development period of allergic diseases.

The current study is the first MR analysis of PUFAs and
allergic diseases and has several advantages. Firstly, compared
with the inherent limitations of observational studies, MR
studies are less likely to be affected by reverse causality and
confounding. Secondly, extensive GWAS sample data, two

separate sets of IVs and different methodologies were applied to
causal association assessment to improve reliability. Moreover,
the causal relationship was extended from single PUFA levels
to include the ratio of omega-6 to omega-3. Several limitations
must be acknowledged. Firstly, the present study is limited to
individuals of European ancestry and may not be generalized
to other races. Secondly, inconsistencies in pleiotropy detection
and the occurrence of potential driving SNPs are difficult
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to interpret and may cause bias. Thirdly, the GWAS effect
size is based on circulatory PUFA concentration rather than
membrane concentration, and membrane association may be
more significant given the cell signaling of fatty acid receptors
and immune responses (70, 71). Lastly, some more specific
and targeted GWAS datasets, such as allergic asthma and
eicosapentaenoic acid, were unavailable. However, as genetic
instruments continue to improve, MR studies could shed further
light on the significance of individual PUFA associations with
the risk of specific allergic diseases.

Conclusion

In conclusion, through both univariable and multivariable
MR analyses, our study demonstrated that higher PUFA
concentrations (omega-3, DHA) and lower omega-6:3 ratios
were associated with a lower risk of some allergic diseases (such
as AD and AC). The strongest evidence concerned the protective
effect of omega-3. This signifies the substantial clinical value of
circulating PUFA levels and omega-6:3 on some allergic diseases
and may assist with early diagnosis and enable more efficient
targeting for prevention and therapy.
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