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We first reported that the Hippo-YAP signaling pathway plays a critical role in the
pathogenesis of endometriosis (EMS). Autophagy is also related to the invasion ability
of endometrial cells and is involved in the pathogenesis of EMS through multi-levels.
However, the precise regulatory mechanism of YAP on autophagy in the eutopic
endometrial stromal cells (ESCs) is still unclear. Primary eutopic ESCs of EMS patients
(n = 12) and control patients without EMS (n = 9) were isolated and cultured to investigate
the expressions of YAP and mTOR, the role of YAP in autophagy, and the effect of the
YAP-autophagy signal on the decidualization of the eutopic ESCs. Endometriosis-related
sequencing data (GSE51981) in the GEO database were used to find the genes
significantly correlated with YAP. We found 155 genes with significant differences in the
interaction with YAP in EMS from the dataset, and the autophagy pathway was
significantly enriched. Following on from our previous studies of YAP knockdown,
overexpression of YAP resulted in an increased expression of mTOR and decreased
ratio of LC3-II/LC3-I and autophagy markers, in the eutopic ESCs; transmission electron
microscope observation also showed fewer autophagosomes compared with the control
cells. Furthermore, ESCs of the Rapamycin-treated group showed significant decidual-
like changes with significantly increased decidual prolactin level at 72 h after in vitro
decidualization. These results demonstrate that the increased YAP inhibited the level of
autophagy by upregulating the mTOR signal in the eutopic ESCs of endometriosis. The
YAP-autophagy signal plays an important role in the pathogenesis of endometriosis-
associated infertility.

Keywords: endometriosis, Yes-associated protein (YAP), autophagy, eutopic endometrial stromal cells (eutopic
ESCs), mammalian target of rapamycin (mTOR), decidualization
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INTRODUCTION

Endometriosis (EMS) is a chronic inflammatory hormone-
dependent disease, characterized by the growth of the
endometrium outside the uterus, affecting more than 190
million women worldwide and up to 10% of women of
reproductive age (1–3). Chronic pelvic pain and infertility
caused by the disease seriously affect women’s reproductive
health and quality of life. According to statistics, about 25%–
50% of infertile women suffer from EMS, while 30%–50% of
patients with EMS suffer from infertility (4–6). Before a definitive
diagnosis is made, women often endure symptoms for years with
negative effects on wellbeing and quality of life (3). EMS is
invasive and recurrent, so effective and thorough treatment and
reduction of disease recurrence have become one of the most
urgent and difficult problems in clinical practice.

The influence of EMS on women’s fertility is mainly related to
the abnormalities of pelvic anatomical structure, changes of
abdominal microenvironment, ovarian function abnormalities,
and endometrial receptivity abnormalities (7). The receptivity of
endometrium is one of the important factors affecting women’s
fecundity. The endometrium is a complex tissue with periodic
changes, which is regulated by ovarian steroids, autocrine/
paracrine, and signaling pathways. During the secretion period,
endometrial stromal cells undergo decidualization under the
action of estrogens, which plays a crucial role in the
establishment and maintenance of pregnancy. At present,
endometrial receptivity abnormalities in EMS are considered to
include defects in the proliferative phase, reduction of integrin
avb3 and its direct transcriptional regulator HOXA10, and
progesterone resistance (8–10). In addition, many studies have
found that some signaling pathways play an important role in
endometriosis, such as the over-activated MAPK pathway and
PI3K/AKT pathway, which affect the role of progesterone and
block the decidualization of endometrial stromal cells (ESCs)
(11). In a word, abnormal regulation of endometrial signaling
pathways, local inflammation, stromal differentiation, and
improper endometrial reconstruction in EMS may lead to a
condition of endometrium that is unacceptable for implanting
embryos (8, 12).

As one of the core effector components of the Hippo signaling
pathway, Yes-associated protein (YAP) is a molecule closely
related to organ formation and malignancy. When the
phosphorylation of YAP occurs because of intracellular and
extracellular signals mediated by upstream regulatory
molecules and core molecules, the phosphorylated YAP
protein accumulates in the cytoplasm or degrades through the
ubiquitination pathway, at which time the regulatory function of
the Hippo pathway is inhibited, whereas when YAP protein is
not phosphorylated, it will enter the nucleus and bind to TEA
domain transcription factor, jointly regulating the expression of
downstream target genes, cell proliferation, migration, and
survival (13). It is currently believed that the Hippo pathway
can integrate the functions of multiple signaling pathways to
form a complex signaling network. YAP and its downstream
transcription factors determine cell behavior in a coordinated
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manner and play an important role in organ development,
tumor genesis and development, epithelial–mesenchymal
transformation, and other cell biological behaviors (14).
Abnormal programmed cell apoptosis and reduced apoptotic
susceptibility play a key role in the development and invasion of
EMS. Our group first reported in 2016 (15) that YAP knockdown
in the eutopic ESCs decreased cell proliferation and enhanced
cell apoptosis, while overexpression of YAP resulted in increased
proliferation and decreased apoptosis of ESCs. We also found
that after treatment with Verteporfin in the EMS animal model
of nude mice, the size of endometriotic lesions was significantly
reduced. It hints that the Hippo-YAP signaling pathway plays a
critical role in the pathogenesis of EMS.

Autophagy, as a highly effective subcellular degradation
pathway, can remove chromosomes with gene mutation
damage and abnormal structure and aging or damaged
organelles, carry out subcellular level reconstruction of cells,
provide energy for cells, maintain intracellular material
anabolism, and maintain homeostasis of the intracellular
environment. In the menstrual cycle, spontaneous and periodic
apoptosis of normal endometrium is an important factor to
maintain its normal structure and function, and autophagy plays
a key regulatory role in the apoptosis of endometrium cells in
different phases of the human endometrium cycle (16).

In recent years, basic studies on EMS have shown that
abnormal regulation of signaling pathways plays an important
role in the occurrence and development of EMS (17). The
mammalian target of rapamycin (mTOR) in the PI3K/AKT/
mTOR pathway is a serine/threonine protein kinase, which is
also the confluence point of the upstream pathway to regulate
cell growth, proliferation, movement, survival, etc. Currently, it
has been clarified that mTOR is a negative regulator of
autophagy and participates in the regulatory mechanism of
autophagy. Oncology studies have found that mTOR, as
the junction point of the signal pathway, regulates the
phosphorylation of YAP so that phosphorylated YAP remains
in the cytoplasm and cannot bind to TEAD in the nucleus, thus
participating in the regulation of cell metabolism and autophagy
(18). Other studies have reported that MST1/2 (Hippo key
enzyme) maintains autophagy through autophagy marker
protein (LC3), suggesting that there may be a precise dialogue
between Hippo signal and autophagy (19).

Many studies have shown that autophagy achieves the
regulation of EMS through the interference of multiple
pathways at multiple levels, and promotes the occurrence,
development, and invasion of EMS (20–22). In 2015, Zhang
et al. (15) found that autophagy gene Beclin-1 mRNA and
protein expression in ESCs in EMS diseases decreased and
were negatively correlated with CA125 level and pain. Choi
et al. (23) reported that autophagy and apoptosis are
simultaneously involved in the pathological process of EMS,
and this process is mediated by mTOR, and the abnormal mTOR
activity affects the change of autophagy activity. Rat model
studies have shown that there is an autophagy downregulation
in both the eutopic and ectopic of endometrium, and the
autophagy flow inhibitor hydroxychloroquine (HCQ) can
January 2022 | Volume 13 | Article 813165
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effectively shrink and destroy the ectopic lesions, which is
expected to be a new target for the treatment of EMS (21).
Recently, we reported that increased expression of YAP is
associated with decreased cell autophagy in the eutopic ESCs
of EMS (24). Although there is a downregulation of autophagy in
EMS, the precise regulation of autophagy in endometrial stromal
cells in EMS remains unclear, which may involve multiple
signaling pathways.

In recent years, studies on the interaction and regulation of
YAP and mTOR/autophagy have been one of the hotspots in the
study of tumor cell mechanisms. In 2019, it was reported (25)
that YAP is highly expressed in ovarian cancer, and silencing
YAP may significantly inhibit the malignant behavior of ovarian
cancer cells by regulating the PI3K/Akt/mTOR pathway. Zhou
et al. (26) found that YAP promoted multi-drug resistance of
liver cancer cells and inhibited autophagy-related cell death.
However, there have been no reports on the regulatory
relationship between YAP and autophagy, the role of YAP and
autophagy in the pathogenesis of EMS, and their effects on
endometrial receptivity. Therefore, the objective of this study is
to explore the role of YAP in the regulation of cell autophagy in
the eutopic ESCs from a subset of women with endometriosis
and to understand the effect of the YAP-autophagy signal on the
decidualization of the eutopic ESCs.
MATERIALS AND METHODS

Participants
This study was approved by the Ethics Committee of West China
Second University Hospital of Sichuan University. Written
informed consent was obtained from each patient. All
participants aged 20–35 years, with regular menstrual cycles
and no history of hormonal treatment for at least 3 months
before surgery, were included in the study between September
2017 and August 2018. Those who suffered from infertility
associated with factors of fallopian, tube, ovary or uterine, or
abnormal semen were excluded from the study. Endometrial
samples were collected during hysteroscopy and determined by
endometrial pathological dating to be in the mid-secretory phase.
Twelve women were laparoscopically diagnosed with
endometriosis. Another 9 women with hysteroscopic normal
uterine cavity and who were laparoscopically endometriosis-free
were treated as controls. Samples of the eutopic endometrium
that showed endometrial lesions through pathological
examinations were excluded. All samples were immediately
transferred to the laboratory for primary cell culture or stored
in nitrogen for further analysis.

Data Collection
The gene expression profile of GSE51981 was downloaded from
the Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/). We selected 111 samples from the GSE51981
dataset, containing a total of 77 endometriosis samples (different
menstrual cycle phases and different stages of disease) and 34 non-
endometriosis samples without uterine pelvic pathology (27). To
find gene sets and pathways significantly correlated with YAP in
Frontiers in Endocrinology | www.frontiersin.org 3
this research and to understand the signal pathways and
functional modules related to YAP in EMS, we used the
processed data to filter differentially expressed genes (DEGs)
and conducted gene enrichment analysis.

Differentially Expressed Genes
Gene differential analysis was conducted using the limma R
package between EMS samples and non-EMS/normal uterus
samples. We considered DEGs as |log2fold change (FC)| > 1
and adjusted p-value < 0.05. Heatmap and Volcano Plot were
generated by pheatmap package and ggplot package, respectively.

PPI Network Construction
Protein–protein interaction network analysis provides much
valuable information for researchers to understand cell
function and biological processes. Many studies have shown
that neighboring proteins always have some common
characteristics in PPI networks (28). We used Search Tool for
the Retrieval of Interacting Genes Database (STRING) [https://
www.string-db.org/, (9606.protein.links.v9.1) (29)] to assess PPI
information (30). To explore the possible protein interaction and
relationship between DEGs and YAP in EMS, we used the
STRING analysis and converted the results visually by using
Cytoscape software. Protein–protein interaction score > 0.4 was
set as significant (30).

GO Term and KEGG Pathway Enrichment
Analyses of DEGs
To explore the signaling pathway and biological function most
closely related to YAP in EMS, we conducted GO functional
annotation analysis and KEGG pathway enrichment analysis on
the DEGs with the most significant interaction with YAP obtained
from the previous PPI analysis. KEGG is a comprehensive
database that integrates information on genome, chemistry,
and system functions. GO is a comprehensive database
describing the function of genes, which can be divided into
three categories: biological process and cellular component
molecular function. The pathway enrichment analysis and
functional enrichment analysis of DEGs were analyzed and
visualized by Clusterprofiler R package. The standard setting of
KEGG pathway enrichment with statistical significance was p <
0.05 and enrichment score >2.0. The criteria with statistical
significance for GO functional annotation were p < 0.05 and
enrichment score >1.0.

Immunofluorescence
When ESCs were passaged to the third passage and cell fusion to
90%, cell suspension after passage was added into the 24-well
plate according to the cell density of 50% per well and incubated
overnight in an incubator (37°C, 5% CO2). The next day, ESCs
on chamber slides were washed two times with PBS and fixed in
4% paraformaldehyde for 10 min and then cells were washed
with PBS again two times. Cells were permeabilized with 0.2%
Triton X-100 (Sigma) for 30 min at room temperature when
individual cells and cell clusters were observed under the
microscope. After blocking with 5% BSA for 15 min, slides
were incubated overnight at 4°C with monoclonal rabbit
January 2022 | Volume 13 | Article 813165
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antihuman YAP (1:200, ab52771, Abcam) and monoclonal
rabbit antihuman mTOR (1:300, CST#2983S, Abcam). Primary
antibodies were detected by incubation with corresponding IgG
secondary antibodies conjugated with Alexa Fluor 594 (red) and
488 (green) (1:500, Invitrogen, Eugene, Oregon, USA) for 1 h.
Nuclei of the cells were counterstained with 6-diamino-2-
phenylindole (DAPI; Sigma-Aldrich, USA).

Cell Culture and Transfection
The ESCs were isolated from the eutopic endometrium of the
endometriosis and control group, cultured in Dulbecco’s
modified Eagle’s medium (DMEM)/F12 (1:1) supplemented
with 10% fetal bovine serum (life technologies) and 100 U/ml
penicillin/streptomycin at 37°C under a 5% CO2 condition.
Construction and production of YAP-overexpression (OE)
plasmid was made by Shandong Vigene Biosciences Co., Ltd.
When cells reached 80% confluence, they were digested, seeded
at 1 × 105 cells per six-well plate, cultured to 30% to 40%
confluency, and then transfected with the YAP-OE plasmid (1
mg) and empty plasmid using Lipofectamine 3000 transfection
reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s
protocol. After transfection for 72 h, cells were harvested for further
analysis. The transfection efficiency of YAP was measured by qPCR
and Western blotting.

RNA Isolation, cDNA Synthesis, and
Real-Time PCR
Total RNA was isolated from all ESCs using the TRIzol (Life
Technologies, Carlsbad, CA) reagent according to the
manufacturer’s protocol. RNA quantification and purification
were performed using a NanoVue Plus spectrophotometer
(Healthcare Bio-Science AB, Uppsala, Sweden). The nucleotide:
protein ratios (A260:A280) of all the samples were within the
range 1.9–2.1. cDNA was synthesized using a PrimeScript RT
Frontiers in Endocrinology | www.frontiersin.org 4
reagent kit (Takara Biomedical Technology Co., Ltd., Beijing,
China) and was diluted 8-fold for PCR amplification.
Amplification and detection via qPCR were performed in a
total reaction volume of 10 ml, consisting of diluted cDNA
(3 ml), SYBR Green real-time PCR Master Mix (Applied
Biosystems, Carlsbad, CA) (5 ml), forward primer (1 ml), and
reverse primer (1 ml), using a CFX96 Realtime PCR system
(Bio-Rad Laboratories), and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was used as an internal control. The
PCR cycle was 20 s at 95°C, then 40 cycles of 10 s at 95°C and 20 s
at 60°C. The specificity of PCR products was confirmed by
analysis of the dissociation curve. Relative gene expression was
calculated using the 2−DDCT method. The sequence-specific
primers used to amplify the gene products are shown in
Table 1. Samples were examined in triplicate, and all
experiments were repeated three times.

Protein Extraction and Western Blotting
Total cellular protein was isolated from ESCs using RIPA buffer
with 1% PMSF (Beyotime Biotechnology, Shanghai, China) and
protease inhibitors on ice, and protein concentration was
determined using the BCA protein assay kit (Beyotime,
Biotechnology, Shanghai, China). Equal amounts of protein
extracts (50–100 mg) were separated through 6%, 8%, and 15%
polyacrylamide gels containing sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE), respectively,
and transferred to 0.45 mm polyvinylidene difluoride (PVDF)
membranes (Bio-Rad Laboratories Inc., Hercules, CA, USA).
Membranes were blocked in 5% milk for 1 h at room temperature
and then were washed and incubated with primary antibodies:
rabbit monoclonal anti-YAP (Abcam, USA; 1:1,000 dilution), rabbit
monoclonal anti- mTOR (CST, USA; 1:500 dilution), rabbit
polyclonal anti-LC-3B (Abcam, USA; 1:500 dilution), rabbit anti-
GAPDH (Sigma-Aldrich, USA; 1:3,000 dilution), and rabbit
anti-beta Actin (Abcam, USA; 1:1,000 dilution) (Table 2).
Following the overnight incubation, membranes were washed
thrice with 0.1% Tween in Tris-buffered saline (TBST) and
incubated with a DyLight 800-conjugated goat anti-rabbit IgG
secondary antibodies (Thermo Scientific, USA; 1:10,000 dilution)
for 2 h. Protein bands were imaged on an infrared imaging
system using a Double color infrared laser imaging system
(Odyssey, LI-COR, USA), and quantified by Quantity One
TABLE 1 | Primer sequences used in quantitative real-time PCR.

Gene The sequence-specific primers

YAP1 Forward primer: 5′-CACAGCATGTTCGAGCTCAT-3′
Reverse primer: 5′-GATGCTGAGCTGTGGGTGTA-3′

GAPDH Forward primer: 5′-TGCACCACCAACTGCTTAGC-3′
Reverse primer: 5′-GGCATGGACTGTGGTCATGAG-3′
TABLE 2 | Antibodies used in this study.

Peptide/Protein Target Antibody Name Manufacturer, Catalog No. Species Raised in;
Monoclonal or Polyclonal

Dilution Used RRID

YAP1
Human

YAP1 antibody Abcam, #ab52771 Rabbit; monoclonal
Rabbit;

1:1,000 AB_2219141

mTOR
Human, Mouse, Rat,

mTOR (7C10) Rabbit mAb antibody CST,
2983S

monoclonal 1:500 AB_2105622

LC-3B
Mouse, Human

LC3B antibody Abcam, #ab51520 Rabbit;
polyclonal

1:500 AB_881429

GAPDH
Rat, Mouse, Human,

GAPDH antibody Sigma-Aldrich, #G9545 Rabbit; polyclonal 1:3,000 AB_796208

Rabbit IgG Goat anti-rabbit IgG secondary antibodies Thermo Fisher Scientific,
SA5-10036

Goat; polyclonal 1:10,000 AB_2556616
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software (Bio-Rad Laboratories). Protein levels were normalized
to that of the internal control GAPDH and b-actin.

Transmission Electron
Microscope Observation
To observe the autophagy and ultrastructural changes of the
eutopic ESCs after YAP-OE transfection, we performed a TEM
observation. Transfected cells were digested and centrifuged, the
supernatant was discarded, the precipitate was kept, and fixed in
3% glutaraldehyde. After washing in 0.1 M phosphate buffer, the
samples were postfixed with 1% osmium tetroxide in the same
buffer for 1 h at 4 °C. Then, the samples were dehydrated with a
series of the graded acetone solution, and the samples were next
embedded in Epon. Ultrathin sections (~50 nm) were obtained
by an ultramicrotome (Leica Ultracut UCT, Germany). Ultrathin
sections were double stained with uranyl acetate and lead citrate,
and they were examined in a TEM (JEM-1400PLUS, Japan) to
detect autophagosomes.

In Vitro Decidualization
To explore the effect of YAP-mTOR signal on the decidualization
of the eutopic ESCs, we performed an in vitro decidualization
induction of the eutopic ESCs after interfering with the YAP
function by YAP-TEAD inhibitor Verteporfin (S1786,
Selleckchem, USA) (1 mM, 18 h) and blocking the mTOR
signal by Rapamycin (S1039, Selleckchem, USA) (100 nM, 4 h)
which also can induce autophagy. Verteporfin and Rapamycin
treatments were described previously (24). DMSO is the negative
control group. Decidualization was induced in ESCs at 70% to
80% confluence after Verteporfin and Rapamycin treatments in
10% charcoal-stripped phenol red-free medium for 24 h. The
medium was then replaced, and the cells were cultured with 2%
charcoal-stripped phenol red-free medium supplemented with
0.5 mM 8-Br-cAMP (Abcam, Cambridge, MA) and 1 mM
medroxyprogesterone acetate (MPA) (Sigma-Aldrich, St. Louis,
Frontiers in Endocrinology | www.frontiersin.org 5
MO) for 72 h. The culture medium was collected every 24 h, and
the supernatants were incubated at −20°C to detect decidual
prolactin (dPRL). dPRL protein levels in the supernatants, which
are a representative marker of decidual cells, were determined
using a commercially available ELISA kit (Cusabio Biotech,
Wuhan, China). The ESCs were observed under an inverted
microscope every 24 h to study their morphological changes.

Statistical Analysis
All statistical analyses were performed using the software
program SAS version 9.2 (SAS, Institute Inc, USA). The
normally distributed data were analyzed by Student’s t-test.
Data were represented as the mean ± standard deviation (SD).
p < 0.05 was considered statistically significant (two-tailed).
RESULTS

Screening of Differentially
Expressed Genes
The R package “limma” was used to screen DEGs between EMS
and non-endometriosis samples without uterine pelvic pathology
in GSE51981, where a total of 829 DEGs associated with YAP
were screened under the threshold of |log2fold change (FC)| > 1
and adjusted p-value <0.05. All 829 DEGs are listed in
Supplementary Table S1. The Volcano Plot is shown in
Figure 1A. Genes that are upregulated are in red, those that
are downregulated are in blue, and those that are insignificantly
different are in black.

PPI Network Integration
We used the STRING database to find the gene sets significantly
correlated with YAP in EMS. A total of 155 DEGs with
significant differences in the interaction with YAP in EMS
were found from the GSE51981 chip samples through the
A B

FIGURE 1 | Volcano Plot and PPI network of DEGs. In the Volcano Plot, genes that are upregulated are in red, those that are downregulated are in blue, and those
that are insignificantly different are in black (A). Different protein interaction graph with YAP interaction scores greater than 0.4 in GSE51981 samples were shown in
the PPI network. Green indicates downregulated expression and red indicates upregulated expression (B).
January 2022 | Volume 13 | Article 813165
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analysis of the protein interaction network (protein–protein
interaction score > 0.4 was set as significant). The heatmap of
these 155 DEGs with significant differences in the interaction
with YAP is shown in Supplementary Figure S1, and DEGs are
listed in Supplementary Table S2. A PPI network of DEGs was
performed as shown in Figure 1B.

GO Biological Process Analysis and KEGG
Pathway Enrichment of DEGs
GO analysis of genes includes biological processes (BP), cell
composition (CC), and molecular function (MF). In our study,
GO analysis was used to perform the functional process of the
DEGs with significant differences in the interaction with YAP in
EMS. A p-value <0.05 and enrichment score >1.0 were defined to
identify regulated genes in GO functional enrichments. The
results are shown in Figure 2A. GO biological process analysis
found that DEGs were mainly enriched in the regulation of
apoptotic signaling pathway, gland development, epithelial cell
proliferation, urogenital system development, and positive
regulation of apoptotic signaling pathway. In the cell
composition part, the DEGs were involved in the transcription
regulator complex, focal adhesion, cell–substrate junction, and
cell–cell junction. In the molecular function section, the genes
participated in cadherin binding, ubiquitin-like protein ligase
binding, ubiquitin protein ligase binding, and protein C-
terminus binding. These results suggested that DEGs with
significant differences in the interaction with YAP were mostly
involved in cell pathways, cell cycle, cell junction, and binding.
All GO analysis is listed in Supplementary Table S3.

We also performed KEGG pathway analysis. A p-value <0.05
and enrichment fold >2.0 were defined to identify regulated
genes in KEGG pathway analysis enrichments. The results are
shown in Figure 2B. Among these enriched signaling pathways,
the Hippo signaling pathway was the most significantly
associated with YAP interaction DEGs, while other enriched
Frontiers in Endocrinology | www.frontiersin.org 6
signaling pathways included cell cycle and division-related
pathways (cellular senescence, cell cycle, and oocyte meiosis),
liver disease-associated pathways (hepatocellular carcinoma,
hepatitis C, and hepatitis B), multiple cancer-related pathways
(breast cancer, gastric cancer, colorectal cancer, prostate cancer,
and endometrial cancer), and the PI3K-Akt signaling pathway,
which is closely associated with tumor immunity. It is worth
noting that DEGs with significant differences in the interaction
with YAP in EMS are enriched in the autophagy signaling
pathway (p<0.05) (Supplementary Table S4). It suggests that
YAP may be correlated with autophagy in EMS.

The Protein Locations of YAP and mTOR
in the Eutopic ESCs
Our previous study detected the mRNA and protein levels of
YAP and mTOR, negative regulator of autophagy, in the eutopic
ESCs. To explore the protein locations of YAP and mTOR in the
eutopic ESCs, we performed immunofluorescence. The results
showed that YAP was mainly expressed in the nucleus of the
eutopic ESCs and a little in the cytoplasm, whereas in the normal
ESCs, YAP was mainly located in the cytoplasm and slightly
expressed in the nucleus (Figure 3). mTOR was mainly
expressed in the cytoplasm of the eutopic ESCs and a little in
the nucleus, whereas mTOR was expressed in small amounts in
the cytoplasm of normal ESCs, but it was hardly expressed in the
nucleus (Figure 3).

Overexpression of YAP in the
Eutopic ESCs of Endometriosis
Inhibited Autophagy Level
Based on our previous finding that knockdown of YAP in
the eutopic ESCs of EMS increases autophagy level, we
supplemented the YAP-OE experiment to further explore and
clarify the regulatory mechanism of YAP on cell autophagy. The
eutopic ESCs were transfected with a YAP-OE plasmid.
A B

FIGURE 2 | GO and KEGG enrichment analysis of the 155 genes significantly associated with YAP. (A) The abscissa is the percentage of genes under the GO
functional module (ratio); the ordinate is the GO functional module: BP (biological process), CC (cell composition), and MF (molecular function). (B) The x-coordinate
in the figure is the number of DEGs annotated to KEGG pathway/the total number of differentially expressed genes (ratio); the ordinate is the KEGG pathway. The
size of the point represents the number of DEGs annotated to the KEGG pathway.
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The empty plasmid was used as control. qPCR showed that the
expression of YAP mRNA was increased significantly (3.60 ±
0.16 vs. 1.00 ± 0.21; p = 0.0006) after transfection with YAP-OE
plasmid in the eutopic ESCs compared with controls
(Figure 4A). Western blotting revealed that we obtained a high
OE efficiency at the YAP protein level (3.04 vs. 1.00) (Figure 4B).
It combined to suggest that the overexpression of YAP worked.
The expression of mTOR protein (2.11 vs. 1.00) was significantly
increased in the eutopic ESCs compared with controls following
YAP-OE. By contrast, there was a significantly decreased
ratio of the autophagy marker protein LC3-II/LC3-I (0.44 vs.
1.00) (Figure 4C). TEM observation also showed fewer
autophagosomes in the YAP-OE group compared with the
control cells (Figure 5). These data demonstrated that
overexpression of YAP in the eutopic ESCs of endometriosis
inhibited the level of cell autophagy.

Rapamycin Promotes the In Vitro
Decidualization of ESCs
To explore the effect of the YAP-autophagy signal on the in vitro
decidualization of ESCs, we further induced decidualization by
Verteporfin and Rapamycin treatments or negative controls
Frontiers in Endocrinology | www.frontiersin.org 7
(DMSO) exposed to decidual induction in vitro. The results
showed that compared to the cultured control group, the
morphology of most ESCs in the Verteporfin treatment group
had no obvious changes after 24 h, 48 h, and 72 h of in vitro
induction, and a large number of ESCs showed a spindle-like
shape. After only 72 h of induction, a small number of ESCs in
the control group were rounded and enlarged, with slight
decidual-like changes, whereas the ESCs of the Verteporfin
group did not change significantly (Figure 6A). ELISA results
suggested that there was no significant difference in the dPRL
levels of decidualization marker in the culture medium of ESCs
in the groups of Verteporfin and the control group after 24 h, 48 h,
and 72 h of decidualization (p > 0.05) (Figure 6B).

Regarding the Rapamycin group, compared with the control
group, most ESCs in the Rapamycin-treated group were spindle
shaped 24 h after in vitro decidualization. After 48 h of in vitro
induction, some of the ESCs in the Rapamycin-treated and
control groups were rounded and enlarged. Seventy-two hours
after in vitro induction, compared with the control group, the
Rapamycin-treated ESCs showed obvious decidual-like changes,
with a large number of cells becoming round, enlarged, and rich
in cytoplasm (Figure 6C). ELISA results suggested that there was
FIGURE 3 | The protein locations of YAP and mTOR in the eutopic ESCs. The results of immunofluorescence showed that YAP was mainly expressed in the nucleus
of the eutopic ESCs and a little in the cytoplasm, whereas in the normal ESCs, YAP was mainly located in the cytoplasm and slightly expressed in the nucleus. mTOR
was mainly expressed in the cytoplasm of the eutopic ESCs and a little in the nucleus, whereas mTOR was expressed in small amounts in the cytoplasm of normal
ESCs, but it was hardly expressed in the nucleus.
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FIGURE 4 | Overexpression of YAP in the eutopic ESCs of endometriosis inhibited autophagy level. The qPCR showed that the expression of YAP mRNA was
increased significantly (3.60 ± 0.16 vs. 1.00 ± 0.21; P = 0.0006) after transfection with YAP-overexpression plasmid in the eutopic ESCs compared with controls (the
eutopic ESCs transfected with the empty plasmid) (A). Western blotting revealed that we obtained a high OE efficiency at the YAP protein level (3.04 vs. 1.00) (B).
The expression of mTOR protein (2.11 vs. 1.00) was significantly increased in the eutopic ESCs compared with controls following YAP-OE. By contrast, there was a
significantly decreased ratio of the autophagy marker protein LC3-II/LC3-I (0.44 vs. 1.00) (C). ***p = 0.0006.
FIGURE 5 | Transmission electron microscope (TEM) observation of autophagosomes after overexpression of YAP in the eutopic ESCs of endometriosis. TEM
observation showed the fewer autophagosomes in the YAP-OE group compared with the control cells.
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no significant difference in the dPRL level of decidualized marker
between the Rapamycin group and control group after 24 h and
48 h of decidualization (p > 0.05). After 72 h of decidualization,
the dPRL level was significantly increased in the cell culture
medium of the Rapamycin group compared with that of the
control group (p < 0.05) (Figure 6D).
DISCUSSION

In this study, we first found a significant correlation in the YAP
interaction set of 155 genes through bioinformatics analysis,
from the GSE51981 chip samples of endometriosis-associated
research (Endometriosis vs. Non-Endometriosis), analyzed the
GO enrichment analysis and KEGG pathway enrichment, and
found that these genes interact with YAP and the enrichment of
autophagy function significantly; YAP may be correlated with
cell autophagy in EMS.

On this basis, in vitro cell experiments showed that the
protein level of the negative regulator of autophagy, mTOR,
was significantly increased in the eutopic endometrial
stromal cells in EMS than in the normal endometrial stromal
cells, while the ratio of autophagy marker protein LC3-II/LC3-I
was significantly decreased in the eutopic ESCs than in the
normal endometrial stromal cells. When autophagy is
forming, cytoplasmic LC3 (LC3-I) will enzymatically degrade a
small polypeptide and transform into membrane-type
autophagosome (LC3-II), which means that LC3-II will
increase significantly in autophagy cells (31). Therefore, the
high expression of negative autophagy regulatory factor mTOR
and the reduced LC3-II/LC3-I ratio in the eutopic endometrial
stromal cells indicated that the autophagy level of the
endometrial stromal cells in EMS was significantly inhibited.
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To the extent of protein locations, our immunofluorescence
showed the protein locations of YAP and mTOR in the
eutopic ESCs from the nucleus to cytoplasm and vice versa. It
suggests that YAP is activated after nuclear localization and is
combined with related transcription factors. At this time, the
Hippo-YAP signaling pathway is activated to exert its regulatory
role on downstream genes. Similarly, the increased expression of
mTOR in the cytoplasm of eutopic ESCs indicates that the
mTOR pathway was active, and the autophagy level was
impaired in the eutopic ESCs. This is consistent with the
results of studies on the decreased level of autophagy in the
eutopic and ectopic endometrium tissues in many cases of EMS
(20, 32). Based on these findings, we speculated that there is
a deeper connection between the Hippo-YAP signaling
pathway and autophagy in EMS, and mTOR may be a key
mediator molecule.

Many oncology studies have shown that YAP is involved in
the regulation of autophagy signals (33–35). For example, YAP
reduces cisplatin-induced apoptosis by activating autophagy in
ovarian cancer cells (33). In undifferentiated pleomorphic
sarcoma cells, YAP inhibits autophagy independently of NF-kB
signaling (35). Studies on gastric cancer have found that the
downregulation of YAP truncates weak mitochondrial
autophagy, leading to the apoptosis of gastric cancer cells (36).
In addition, YAP also promotes multi-drug resistance of liver
cancer cells through the RAC1-Ros-MTOR pathway, thereby
inhibiting autophagy-related cell death (26). So, does the
increased expression of YAP in endometrial stromal cells in
EMS participate in the regulation of the weakened autophagy
signal in endometrial cells? In the following studies, we intend to
conduct in-depth studies on the regulation mechanism of YAP
on autophagy in the eutopic endometrial stromal cells in EMS
and the biological functions involved in both.
A

B D

C

FIGURE 6 | Effects of Verteporfin and Rapamycin treatments on the in vitro decidualization of ESCs. Compared to the cultured control group, the morphology of
ESCs in the Verteporfin treatment group had no obvious decidual changes after 24 h, 48 h, and 72 h of in vitro induction (A). ELISA results suggested that there was
no significant difference in the dPRL levels in the culture medium of ESCs in the groups of Verteporfin and the control group after 24 h, 48 h, and 72 h of
decidualization (p > 0.05) (B). After 24 h and 48 h of in vitro induction, some of the ESCs in the Rapamycin-treated and control groups were rounded and enlarged.
Seventy-two hours after in vitro induction, compared with the control group, the Rapamycin-treated ESCs showed obvious decidual-like changes (C). After 72 h of
decidualization, the dPRL level was significantly increased in the cell culture medium of the Rapamycin group compared with that of the control group (p < 0.05) (D).
*p < 0.05.
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To further clarify the regulatory relationship between YAP
signal and autophagy in EMS, a YAP overexpression experiment
was conducted in endometrial stromal cells in EMS. mTOR and
autophagy levels were detected by direct interference with YAP
expression. The results showed that the mTOR protein level and
lc3-II/LC3-I ratio in the eutopic ESCs increased after the
overexpression of YAP. Since autophagosomes are subcellular
structures, the formation of autophagosomes cannot be observed
under an ordinary light microscope, so direct observation of
autophagosomes requires TEM. As the gold standard for the
detection of autophagy, TEM results showed that the number of
autophagosomes in the ESCs overexpressing YAP was
significantly reduced compared with the control group,
suggesting that the level of autophagy was inhibited. In recent
years, several studies have found that YAP and autophagy are
closely related. For example, the YAP/TAZ-autophagy axis can
control the survival and proliferation of cells (37). As an
upstream transcriptional regulator, YAP activates the mTOR
pathway and inhibits autophagy (38). Our study revealed the
correlation between YAP and autophagy in EMS and opened
new ideas and directions for future basic research on signaling
pathways in EMS and autophagy function. Combined with our
previous finding that the mTOR protein level decreased and the
LC3-II/LC3-I ratio significantly increased after silencing YAP in
the eutopic ESCs, the level of autophagy was enhanced. In
conclusion, this part of the study shows that YAP may be
involved in the regulation process of the decreased autophagy
level of the eutopic ESCs in EMS through the upregulation of the
mTOR pathway, thus participating in the occurrence and
development of EMS.

YAP is the main effector molecule of the Hippo signaling
pathway. The Hippo signaling pathway has extensive and
complex cross-linking with many other signaling pathways,
and its different effects depend on different cells, different
external environments, different co-activators, and different
feedback of various upstream and downstream factors. Since
YAP has no DNA binding region, it needs to be combined with
TEADs or other transcription factors to participate in the
regulation of downstream gene expression (39). Studies have
found (40) that TEAD binding sites on prolactin (PRL)
promoters play an important role in maintaining the basal
level of PRL promoter activity, and the overexpression of
TEAD1 inhibits the expression of PRL in human decidual
cells, which may be realized through the interaction with other
transcription factors. In 2017, our group found that YAP was
highly expressed in decidual cells and promoted decidualization
of ESCs cultured in vitro, indicating that YAP is involved in the
regulation of normal endometrial stromal cell decidualization
(41). A study published in Hum Reprod (42) found that decidual
induction was performed in immortalized human endometrial
stromal cells, and the level of autophagy marker protein LC3-II
was significantly increased in decidual cells compared with the
control group, indicating that the decidual process of
endometrial stromal cells may be related to cell autophagy.
Therefore, we speculated that the YAP-autophagy signal may
be involved in the regulation of decidualization of the eutopic
Frontiers in Endocrinology | www.frontiersin.org 10
ESCs in endometriosis and play an important role in
embryo implantation.

Previous studies have confirmed that EMS has decreased
receptivity in the endometrium, and numerous molecules and
signal pathways are involved in the regulation of decidualization
of ESCs (11, 43). Local inflammation, stromal differentiation,
and improper endometrial reconstruction of endometrium in
endometriosis all lead to the endometrial condition that embryo
implantation is not acceptable (8, 12). In this study, it has
been found that the decidualization of the eutopic ESCs
after treatment by Verteporfin, a YAP signal inhibitor, has not
affected the decidualization of eutopic ESCs. The decidualization
of the endometrium is a very complex and delicate process,
which is regulated by many factors, including cytokines, immune
cells, and hormones, and accompanied by various epigenetic
changes during decidualization. In addition, the molecular and
biological characteristics of the endometrium in EMS are
fundamentally different from those in non-endometriosis
patients (44–46). Therefore, it is understandable that
Verteporfin does not change the decidual process of ESCs in
endometriosis. As a non-photosensitizer, it inhibits the
transcription and translation of YAP and destroys the complex
formed by YAP and other downstream transcription factors.
However, this blocking effect does not affect or participate in the
decidual regulation process of endometrial stromal cells. Based
on the former part of the negative regulation effect of YAP-
mTOR signals on cell autophagy in the eutopic ESCs, we treated
the eutopic ESCs with mTOR inhibitor Rapamycin (autophagy
inducer), and induced decidual cells in vitro. It is found that
Rapamycin had no significant effect on decidualization of ESCs
after 24-h and 48-h induction, but Rapamycin treatment
promoted the decidualization of the eutopic ESCs after 72 h,
and this difference may be due to the induction of decidual
function caused by delay and cell gradually. At present, there is
no unanimous conclusion on the effect of mTOR autophagy on
endometrial decidualization. Studies have reported (47–49) that
the mTOR pathway plays an important role in the early embryo
implantation process, and the activation of the mTOR pathway
promotes NM23 to regulate the decidualization process of mouse
and human endometrium. It was also found (42) that the
autophagy level was upregulated during decidualization of the
endometrium in mice, which was consistent with our findings. In
other words, after the administration of the autophagy-inducing
agent Rapamycin, decidual changes in the eutopic ESCs were
significant, which may be related to the regulation of Rapamycin
on the autophagy of the eutopic ESCs.

This study preliminarily explored the effect of the YAP-
autophagy signal on the decidualization of the eutopic ESCs
and found that the decidual process of the eutopic ESCs was
promoted after inhibiting mTOR activity and activating
autophagy, suggesting that autophagy may be involved in the
regulation of decidualization of the eutopic ESCs in
endometriosis. However, whether the increased YAP in the
eutopic ESCs of patients with EMS-associated infertility is
directly involved in the regulation of decidualization of the
endometrium, how enhanced autophagy level regulates the
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process of decidualization of the endometrium, and whether
there are other pathways involved are still unknown and need to
be further studied.

There are still some limitations in this study. For example, the
mechanisms of YAP regulation of autophagy in the eutopic ESCs
was explored in vitro only in patients with EMS-associated
infertility, which would be more convincing if validated in an in
vivomodel. In addition, any signaling pathway is not a single one,
and there are extensive crossover and network-like interactions
among them, and a certain pathway cannot explain all the research
problems. In the future, more transcriptomics and proteomics
studies are needed to study the histological and cellular structure
of the endometrium, as well as the interactions between genes,
proteins andmolecules froman overall perspective, so as to provide
new ideas for exploring the pathogenesis of EMS.

Therefore, subsequent studies will continue to explore the
regulatory effects of the YAP-autophagy signal on the decidual
and endometrial receptivity of ESCs, to provide a theoretical
basis for exploring the pathogenesis of EMS and improving
endometrial receptivity and provide new options for the
treatment of endometriosis-associated infertility.
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