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Abstract: Intraocular pressure (IOP) is an important measurement that needs to be taken during
ophthalmic examinations, especially in ocular hypertension subjects, glaucoma patients and in
patients with risk factors for developing glaucoma. The gold standard technique in measuring IOP is
still Goldmann applanation tonometry (GAT); however, this procedure requires local anesthetics, can
be difficult in patients with scarce compliance, surgical patients and children, and is influenced by
several corneal parameters. Numerous tonometers have been proposed in the past to address the
problems related to GAT. The authors review the various devices currently in use for the measurement
of intraocular pressure (IOP), highlighting the main advantages and limits of the various tools. The
continuous monitoring of IOP, which is still under evaluation, will be an important step for a more
complete and reliable management of patients affected by glaucoma.

Keywords: intraocular pressure (IOP); tonometry; Goldmann applanation tonometer (GAT); central
corneal thickness (CCT); ocular hypertension; glaucoma

1. Introduction

Intraocular pressure (IOP) is an important measurement, which should be taken
in every patient over the age of 40 that undergoes a complete ophthalmic examination
and in all patients with ocular hypertension (OHT) or with risk factors for developing
primary open-angle glaucoma (POAG) (i.e., family history, myopia, increased cup-to-disc
ratio, etc.). IOP measurement is obviously a fundamental tool in subjects with diagnosed
ocular hypertension or glaucoma. Even if the IOP measurement in vivo is only an estimate
of the true IOP (which is only possible with invasive manometry), this value, rightly or
wrongly, is often taken as an indicator of the efficacy of any treatment for glaucoma and
to assess glaucoma severity and progression in patient management. It is thus of great
importance to acquire accurate and precise IOP measurements in clinical practice.

Numerous instruments, called tonometers, have been proposed since the 19th century to
obtain IOP measurements [1–3]. Based on the operating principle, these instruments can be
differentiated into two main groups: (1) indentation tonometers; (2) applanation tonometers.

2. Indentation Tonometry

The prototype of the indentation tonometers is the Schiøtz tonometer that was intro-
duced many years ago [4] and is no longer currently used (Figure 1).

Using this instrument, the cornea is indented by a plunger loaded with different
weights. The IOP is based on the depth of indentation. The values are shown on a scale
ranging from 0 to 20 units, in which the protrusion of the plunger of 0.05 mm represents
each unit of measurement. The value indicated on the handle needs to be converted
in mmHg using a conversion scale. The coefficient of ocular rigidity, which can differ
amongst eyes, should be taken into consideration to obtain corrected measurements of
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IOP. The Schiøtz tonometer is a simple and relatively inexpensive instrument. It is still
sometimes used in developing countries [5,6] and in children under general anesthesia [7].
This tonometer, however, is subject to several sources of error, which include improper
positioning on the eye, defective or dirty instruments, high variability in comparison with
other devices and measurements influenced by individual ocular rigidity [8]. Moreover,
patients must be in a supine position when taking measurements with this tonometer.

Figure 1. Schiøtz tonometer with different weights.

3. Applanation Tonometry

Applanation tonometers are currently considered the most reliable instruments for an
accurate IOP measurement. Such tonometers use the Imbert–Fick law: P = F/S, in which P
is pressure, S represents the surface of the flattened area, and F is the force needed to flatten
a fixed corneal area. Apart from the tonometer by Maklakoff and several other instruments
that are no longer currently in use, in which the force is provided by the weight of the
tonometer itself, applanation tonometry is based on the area of flattened cornea that is
calculated and converted in mmHg [2]. In almost all instruments of this type, the F value
is varied to get the proper corneal applanation for a predetermined area. The Goldmann
applanation tonometer (GAT) was first invented in 1948 by Hans Goldmann [9] and is still
considered the gold standard to date. The tonometer needs to be positioned on a slit lamp.

A truncated cone, with a 7.35 mm2 surface area and a dimeter of 3.06 mm, illuminated
by a blue light, is pushed on the center of the anaesthetized cornea. A doubling prism
embedded in the cone divides the circular meniscus on the surface of the flattened cornea
e into two arcs, which need to be aligned in order to obtain a precise and standardized
applanation (Figure 2).

The force used needed to flatten the corresponding surface of the cornea is directly
proportional to the IOP, expressed in mmHg that can be directly read in the scale of the
measuring drum or in the posterior window for the digital version (Figure 3A,B).

Contrary to what Hans Goldmann believed, corneal thickness may show a significant
effect on IOP measurements. Thin corneas can give rise to an underestimation of the IOP
and vice versa. Several authors have tried to address this problem by proposing a number
of correction formulae [10–14]; however, none have been shown to be of widespread use.
Several corneal biomechanical properties, which are not all completely known, may be
involved, thus rendering the proposed correction factors misleading and limiting their
clinical use [15–17]. Studies have reported that a thin cornea can be a factor of risk for
developing glaucoma [18], in addition to the underestimated IOP with GAT.
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Figure 2. Goldmann applanation tonometer positioned on the slit lamp (A) with its cone prism (B)
(on the top right); the two arcs appear correctly aligned (B) (on the bottom right).

Figure 3. (A) Scale with IOP values in the Goldmann tonometer; (B) digital Goldmann tonometer
(posterior view).

GAT it is still the tonometer most commonly used in clinics, thanks to the ease of use,
accuracy, reproducibility and affordability. There are, however, several drawbacks that
should be kept in mind, as recently reported by Gazzard et al. [19]. GAT is affected by
parameters of the cornea, which include central corneal thickness when this is far from the
average (540 microns) [14,15], in addition to corneal curvature, axial length, hysteresis, etc.
Moreover, GAT measurements are subjective and can depend on the physician experience.
Studies have reported that even for the same physician, clinically significant differences can
be found with a 95% repeatability coefficient of ±2 mmHg [20]. Other possible errors and
drawbacks are due to the tear film with too little or too much fluorescein or an irregular or
scarred cornea. GAT needs to be positioned on a slit lamp, and the subject must be in an
upright position [21]. It is also important to remember that topic anesthesia is needed and
that GAT should be periodically calibrated to provide good precision [22].
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Portable handheld versions, such as the Perkins and Draeger tonometers (Figure 4),
allow for measurements of IOP to also be taken supine and can be particularly useful in
bedridden subjects and patients under general anesthesia.

Figure 4. Handheld Perkins tonometer.

Other applanation instruments that use the same principle have been introduced
several years ago. The Tono-Pen and the more recent Tono-Pen Avia (Reichert Ophthalmic
Instruments, Depew, NY, USA) are portable lightweight battery-powered devices, which
use the principles of applanation and indentation (Figure 5A,B). The reliability of each
measurement is reported on a small display based on the standard deviation of the average
of 10 readings. A disposable latex cap is used for each patient, which helps to reduces the
risk of infection between patients.

Figure 5. (A) Tono-Pen; (B) Tono-Pen Avia.

Numerous studies have reported the usefulness of these devices in clinics in com-
parison with GAT [23–26], but the repeatability coefficients for intra-session repeated
measurement have been shown to be quite high (±4.3 mmHg) [27]. Clinical studies have
shown that Tono-Pen can be significantly affected by CCT [28]. This tonometry, however,
seems to provide better accuracy in edematous corneas in comparison with GAT and
dynamic contour tonometry [29]. It is important to note that different tonometers cannot
be used interchangeably [30,31].

The advantages of Tono-Pen include portability and instrumentation that does not
require a slit lamp or electricity. IOP readings can be measured in both supine and upright
positions. Topo-Pen can be especially useful in patients with eye scarring or irregular
corneas, and in children and bedridden subjects.

Studies have shown the clinical limits of this instrument. Tono-pen was found to
consistently underestimate IOP, with a significant error for IOP values >30 mmHg [32].
Several concerns still remain regarding the reproducibility of measurements when used in
a routine clinical setting, considering that significant variations from Goldmann readings
may occur in some patients.
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4. Non-Contact Tonometry (Air-Puff Tonometry)

Non-contact tonometry (NCT) was first designed by Zeiss and developed by Grolman
in 1972 [33]. Several models have been proposed in the past few decades that use a pulse
of air to flatten the cornea without the need for touching the eye (Figure 6); such models,
therefore, do not require anesthesia or fluorescein drops. In the Pulsair tonometer, a light
beam is used in combination with a sensor that stops the production of air and measures
the force used at the moment of corneal flattening.

Figure 6. Pulsair EasyEye handheld (A) and Pulsair desktop (B) non-contact tonometers.

Numerous studies have examined the differences in IOP measured with various types
of NCT instruments and other non-conventional tonometers compared to GAT [34,35].
Demirci et al. showed that IOP measurements with NCT were significantly higher
than those obtained with both GAT and rebound tonometry, with significant differences
(p < 0.001) in all age groups [36]. A recent study confirmed that NCT tends to overestimate
IOP GAT measurements in patients with IOP > 16 mmHg, which was more evident when
IOP > 20 mmHg [37], showing a decrease in accuracy at higher values.

Early studies in 1989 based on the comparisons with GAT, showed that up to 70% of NCT
measurements fell within ± 3 mmHg of readings taken with GAT. When using a screening
criteria of IOP > 21 mmHg, NCT showed a sensitivity of 85% and a specificity of 95% [38].

Similar to GAT and other instruments, NCT is influenced by corneal parameters.
Kyei et al. showed a significant association between CCT and NCT, which is greater
than that reported with GAT [39]. These finding were confirmed in a recent study, which
concluded that GAT measurements are not equivalent and cannot be interchanged with
those obtained by NCT [40].

The pros of NCT are mostly based on the ease of use, non-contact nature and portability
of several devices. Measurements can be taken by non-medical staff and patient compliance
is relatively good in most casesNCT does not require slit-lamp positioning; thus, it is easily
used in cases with elderly individuals, children, disabled patients and patients with limited
collaboration. NCT can be considered for patients that may not tolerate topical anesthetics,
patients with limited collaboration or those at greater risk of infection.

The disadvantages of NCT include the fact that NCT is less accurate when
IOP > 20 mmHg. Studies have shown that NCT results depend on the instrument brand,
unit and model of the device used [41]. Comparison studies between three NTC devices
showed that, when taking GAT as the gold standard and aiming to detect IOP > 21 mmHg,
sensitivities greatly differed from 40%, 48% and 80%, which showed that NCT readings are
device dependent and that devices require regular calibration [38]. Although NCT offers
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a non-contact mode of measuring that limits the risk of infection due to contaminated
drops or Goldmann prisms, the risk of air-borne infection could be greater considering the
air-puff nature, which should be considered in the midst of the recent COVID era [42–45].

NCT could be helpful in a day-to-day clinical setting that involves dealing mostly
with normal patients undergoing routine checkups. This type of tonometry can be ideal as
a screening tool, which can easily be performed by non-medical staff. Although studies
have shown that NCT tends to overestimate GAT measurements, NCT can prove to
be useful for post-operative patients with lid edema, limited collaboration, ocular pain,
discomfort and increased tear film meniscus size, which are all factors that influence proper
GAT measurements. NCT can be a useful screening tool, but should never replace or be
interchanged with GAT, especially in the management of patients with risk factors, ocular
hypertension, suspect patients and glaucoma.

Other types of non-contact tonometers, with new interesting features, have recently
been introduced. In addition to the traditional tonometers, these devices show IOP values
that take CCT and corneal biomechanics into account, claiming to provide more accurate
IOP measurements [19,46].

The Ocular Response Analyzer (Reichert Technologies, Depew, NY, USA) or ORA,
developed in 2005 by Luce et al. [46], is a non-contact air-puff tonometer that provides an
optical electrical device to measure the deformation of the cornea caused by the impact of
the air (Figure 7).

The force of the air makes the cornea move in an inward fashion in a first applanation
state, causing it to take on a slight concave shape, to then move outward in a further
applanation state, and finally to take on a normal configuration state. The electro-optical
applanation detection system registers the curvature of the cornea in a diameter of 3 mm
in the center for 20 msec. The two inward and outward applanation events, which are
delayed by the viscoelastic corneal damping, allow for the calculations of two different
IOP values based on the applanation principle. The instruments provide an average of
these two pressure measurements and supply the so-called Goldmann-correlated IOP
value (IOPg); the corneal hysteresis (CH) parameter is based on the difference between
these two measurements of pressure. The instrument also provides a corneal-compensated
IOP (IOPcc), which is based on the biomechanical properties of the cornea (elasticity and
viscosity), to compensate for the measured IOP values [46,47].

Figure 7. Ocular Response Analyzer (ORA) mod.G3.
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There are several pros and cons to this device. The ORA is a relatively expensive
device, but it is easy to handle, and topical anesthesia and fluorescein are not needed. In
comparison with GAT, ORA has been demonstrated to significantly overestimate the IOP
values, especially at high IOP levels [47,48]. Several authors have demonstrated that the
IOPcc is less affected by corneal properties [48–51] and may better reflect the true IOP after
refractive surgery of the cornea when compared to GAT IOP values [52].

Recent studies have shown that the ORA IOPcc values were superior to the GAT IOP
measurements in predicting rates of glaucoma progression [53,54]. The CH parameter has
been associated with other parameters of damage due to glaucoma, such as high cup-to-
disc ratio and defects in the visual field. Several studies have shown a low CH value to
be an independent predictor of functional damage occurrence or progression in the visual
field in patients affected by ocular hypertension or glaucoma [55–58]. Moreover, the CH
value can help in detecting patients with pathologies of the cornea such as keratoconus [59].
It may also be a useful parameter for patients at risk of developing corneal ectasia after
refractive LASIK surgery [60].

The Corvis ST (Oculus, Wezlar, Germany), a novel non-contact instrument, released
in 2011 [61], is based on the system that causes indentation of the cornea by a jet of air. The
tonometer has a built-in Scheimpflug ultra-high-speed device (Figure 8).

Figure 8. Corvis tonometer.

This instrument provides IOP measurements based on the indentation principle, in
addition to pachymetry taken by on optical device and other biomechanical parameters
of the cornea obtained by registering the surface deformation due to an applied air pulse,
similar to an ORA device. A Scheimpflug camera visualizes an 8.5 mm diameter of the
center of the surface of the cornea and precisely records the corneal deformation induced
by the air-jet and its return to its normal shape with a high resolution and more than
4300 frames per second. A biomechanically corrected IOP value (bIOP), which takes the
individual corneal deformation parameters into account, is also provided by the device.

The Corvis ST precision for the CCT and IOP values has been shown to be excel-
lent; however, it is moderate for the corneal deformation parameters [62–64]. Previous
studies demonstrated that Corvis ST tends to underestimate IOP readings obtained with
GAT [61,62,65,66]. The Corvis ST biomechanically corrected IOP values (bIOP) have been
shown to be less influenced by the CCT and corneal biomechanics and to be more effective
in measuring the IOP in subjects who underwent refractive surgery [67]. Moreover, the
Corvis ST corneal deformation parameters have been shown to be effective in discriminat-
ing between normal and keratoconic eyes [68].
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5. Pneumotonometry

Pneumotonometers are devices based on the applanation principle, which use a
different technology [69,70]: the tonometer probe consists of a hollow central tube flanked
by a side exhaust, and the sensor is air pressure, which is dependent on the resistance of
the exhaust. During the cornea applanation, the pressure within the central tubes increases
to match the force generated by the IOP. A pneumatic electronic transducer converts the
air pressure to a tracer on a strip of paper (Figure 9).

Figure 9. Pneumotonometer.

In several studies, pneumotonometry proved to be quite accurate and reliable in glaucoma
screening and showed a greater reliability compared to GAT after PRK and LASIK [71–73].
Pneumotonometers such as the Pulsatile Ocular Blood Flow (OBF, Figure 10) have been used
in the past to measure the pulse fluctuation and thereby give indirect information regarding
the ocular blood pulse [74–77]. OBF measurements, however, appear to be more influenced
by CCT and more variable than GAT readings, with a significant overestimation [78–80]. The
clinical usefulness of this instrument in clinics still remains controversial.

Figure 10. Langham Ocular Blood Flow pneumotonometer.
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6. Rebound Tonometry

From a clinical point of view, the iCare rebound tonometer, introduced in 2000 by
Kontiola [81], is currently one of the most interesting and widespread instruments used in
practice (Figure 11).

A subtle probe impacts onto the cornea and then rebounds from the eye with a
different velocity, which varies according to the IOP (Figure 12).

Figure 11. iCare rebound tonometer.

Figure 12. Disposable iCare probe.

The movement of the probe causes a voltage in the internal solenoid that is then
amplified and digitally changed by a microprocessor. The IOP value is averaged from
six consecutive measurements. The reliability of the final value is also displayed. The
iCare tonometer is a reliable and precise instrument. It is rapid and easy to use, which is
particularly helpful in busy clinics and with children, considering that there is no need for
topic anesthesia [82–85]. The small surface contact makes it suitable to measure IOP after
keratoplasty and in damaged corneas [85,86]. The iCare PRO version released in 2011 uses
a shorter probe, which can also be used to measure IOP in a supine position. The most
recent versions of this instrument, which are updated versions of the iCare PRO with a
long probe (iCare IC100 and IC200) (Figure 13A,B), provide new features, such as a red
or green light to show if the position of the probe is correct, in addition to providing the
possibility of measuring IOP in a supine position [87,88].
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A simplified version (iCare One, replaced at first by the iCare Home and, recently,
by the iCare Home2 (Figure 14A–C)), which can autonomously be used by patients, has
recently been introduced for at-home auto-tonometry. It can be helpful for detecting IOP
peaks, especially in suspect glaucoma and in normal tension glaucoma subjects, when IOP
measurements appear to be normal during office hours [89–92].

Figure 13. (A) iCare 100; (B) iCare 200 version.

Figure 14. (A) iCare One; (B) iCare Home; (C) iCare Home2.

Numerous studies have compared the different versions of iCare with GAT and other
non-conventional tonometers. When compared to gold standard GAT, clinical results report
a good correlation of tonometry readings, with r values greater than 0.8 for low-to-moderate
GAT readings [93]. A recent study showed agreement between GAT readings and iCare to
be good, with a <2 mmHg mean difference for all ranges of IOP [87]. For IOP > 23 mmHg,
rebound tonometry tends to underestimate IOP compared to GAT, showing readings that
are significantly lower [93].

Considering that rebound tonometry may be less traumatic on the cornea compared
to GAT, it could offer a better alternative in post-operative patients to provide information
regarding IOP. It is important to note that GAT measurements tend to be lower than iCare
for post-operative patients with corneal edema [84,94]. The agreement between iCare and
GAT has been reported to be acceptable in lamellar keratoplasty subjects; yet, it has been
reported to be poor for patients with penetrating keratoplasty [84]. Rebound tonometry
surely cannot replace GAT. However, it may prove to be clinically useful in post-operative
eyes with fragile anterior segments, or eyes with increased risk of infection, in which GAT
is impractical or not indicated.
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In comparing the reliability and reproducibility of IOP values with iCare tonome-
try, air tonometry and GAT, Valero et al. reported ICC > 0.85 and low differences with
GAT [95]. Several studies have reported that iCare provides reproducible and reliability
measurements when compared to other tonometers, although it appears to slightly un-
derestimate GAT readings [88,95–101]. The repeatability of iCare has been shown to be
excellent, with ICC > 0.9 [88,99]. Reliability results with iCare compared to GAT have
been shown to be good (ICC > 0.87) for patients with IOP with low-to-moderate mea-
surements; however, such results are moderate (ICC = 0.52) for IOP < 16 mmHg and
>23 mmHg [88]. Studies have reported sensitivity and specificity rates greater than 0.90 for
rebound tonometry [98,99].

IOP readings taken with iCare do not appear to be affected by axial length, refractive
error, age and gender [87,100]. GAT and rebound tonometry, however, are influenced
by corneal characteristics. IOP tends to be overestimated for central corneal thicknesses
greater than 520 microns [82,93,96,99–101]. Rebound tonometry also appears to be affected
by corneal curvature, corneal hysteresis and disease [96,100,101]. Tonometer measurements
tend to be more accurate with iCare for middle levels of IOP, ranging 16–23 mmHg [100].

Rebound tonometry has several advantages, which include having a short learning
curve, being user friendly in nature, being well tolerated, and being safe for staff and patients.
The instruments are portable, self-calibrated, affordable and do not require a slit lamp, topical
anesthesia or fluorescein dye. These iCare instruments can also be used by trained non-
medical staff. Multiple readings can be taken if needed without the fear of corneal abrasion or
other complications [88]. Unlike GAT that uses a prism in contact with the cornea, the minimal
contact and duration with the disposable iCare tips limits the risk of iatrogenic damage and
cross-infection, which is of great importance in the recent COVID era [101]. Moreover,
iCare does not induce IOP reduction caused by ocular massaging that can be observed in
GAT [102]. The iCare home version can be useful in self-twenty-four-hour measurements of
IOP to monitor diurnal variations in IOP, which may assist in treatment decision making and
surgical timing, especially in patients at greater risks of IOP spikes such as pigment dispersion
glaucoma, angle-closure suspects and pseudoexfoliation glaucoma [100].

The rebound tonometers offer numerous advantages; however, several cons should
be noted. A recent study comparing iCare with GAT in 1000 eyes showed larger mean
differences between tonometers in eyes with IOP > 22 mmHg and in the group of glaucoma
patients with medications [103]. The precision and accuracy of iCare can be influenced
by peripheral measurements of the cornea as opposed to proper central positioning of
the tip [104]. Based on the good agreement with GAT for IOP values <21 mmHg, iCare
can be a time-saving and wise alternative in a routine busy clinical screening setting, in
which the majority of healthy patients show low-to-moderate IOP. These instruments can
offer additional helpful information in a community-based setting when used together
with other pertinent screening tools. High IOP readings taken with iCare tonometers
need to be checked and confirmed with gold standard GAT. Rebound tonometry applies
minimal pressure on the cornea; thus, it can be used to provide indicative IOP readings in
first-day post-operative patients, keeping in mind the good, yet limiting, agreement with
GAT readings. The ease of use, portability, rapidity, and use in supine positions make it
an excellent tool for examining children, disabled and/or bedridden patients and patients
with limited collaboration, in which GAT cannot be performed or is impractical.

7. Dynamic Contour Tonometry

The Dynamic Contour Tonometer (PASCAL, DCT) (SMT Swiss Microtechnology AG,
Port, Switzerland) is a relatively new device developed by Kaufmann et al. in 2003 [105]
and implemented by Kanngiesser et al. in 2005 [106]. The DCT, which is not based on
the applanation principle, calculates the IOP using the Pascal principle, according to
which the pressure change is applied to all parts of a fluid in a contained enclosed space.
The tonometer is positioned on the slit-lamp, requires the use of anesthetic drops (no
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fluorescein) and is automatically calibrated. It uses a concave contour tip that is equipped
with a tiny sensor in the center of the contact surface (Figure 15).

Figure 15. Dynamic Contour Pascal (A) with its sensor tip (B).

When the “contour matching” between the surface of the cornea and the tip of the
instrument is reached, the tangential forces of the cornea are cancelled, and the embedded
pressure sensor directly measures the IOP without any cornea deformation and bias related
to corneal factors, at least theoretically [107–110]. The pressure sensor tip is protected
with a thin silicone membrane covered by disposable sensor caps in order to avoid the
risk of infection. The DCT requires about 8-10 s of corneal contact in order to provide
IOP measurements, which are shown on an LCD screen. Quality scores and ocular pulse
amplitude (OPA) values are also provided. The DCT IOP is based on the diastolic IOP,
which should be considered when comparing DCT and GAT IOP measurements. The
OPA provides indirect information regarding perfusion of the choroid, which has been
demonstrated to be important in the onset and progression of glaucoma [111].

The DCT has been shown to be less influenced by the properties of the cornea and
can be therefore helpful in taking IOP readings in subjects with previous photorefractive
surgeries [112–116]. The DCT has shown high precision, with higher reproducibility than
GAT [109,117]. In comparison with GAT, however, the DCT IOP measurements, although
highly correlated, tend to be significantly higher [26].

The principal drawbacks of the DCT include: the need for a slit lamp, anesthetic and
corneal contact; the need for trained staff and highly cooperative patients that can keep a
good head and eye position for at least 8 s, meaning that this tonometer may prove to be
difficult to use and not rapid in busy clinics [118]; and reduced accuracy in the presence of
irregular corneas [119].

8. Applanation Resonance Tonometry

The Applanation Resonance Tonometer (ART), known in the current commercial ver-
sion as BioResonator ARTn (BioResonator AB, Umea, Sweden) (Figure 16), was developed
by Eklund et al. in 2003 [120]. It was released as both a manual and automatic version
in 2012 [121]. This tonometer uses the applanation tonometry principle combined with
the resonance technique. The device needs must be mounted on a slit lamp, requires the
use of local anesthetic drops before IOP measurement and uses a concave surface sensor
tip, which is positioned on the cornea. The sensor tip is manually pushed towards the
cornea in the manual version of the instrument, whereas the automatic version provides a
tiny motor for movement of the tip. A resonance piezoelectric device is found in the tip of
the sensor that generates a shift in frequency which is proportional to the area of contact.
The IOP is based on the contact area and force measurement parameters, which are taken
continuously throughout the test [120,121].
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Figure 16. The BioResonator ART tonometer.

The ART probe must be carefully disinfected before each subject. This tonometer
is self-calibrated and gives the repeated IOP measurement median and a quality index
reflecting the standard deviation of the IOP values. The IOP measurement provided by
the BioResonator ART is claimed to be more accurate than that of GAT considering that it
represents the median of repeated measures; however, the precision of the instrument has
been questioned [122–124].

Previous studies have reported that this tonometer can provide an overestimate in
IOP values when compared to GAT [123–125]. Furthermore, it seems to be affected by CCT
and corneal biomechanics [120,123,126]. Despite some advantages (repeatable and reliable
measurements, no fluorescein is needed), the BioResonator ART has some drawbacks that
may reduce its clinical usefulness, including: the need for a slit lamp, anesthetic and corneal
contact, with sterilization issues; can be affected by various artifacts and measurement
errors; moreover, its accuracy is influenced by the thickness and biomechanics of the cornea.

9. Continuous IOP Monitoring

All the aforementioned devices can be usefully employed for taking spot IOP measure-
ments during office time. This can be acceptable in a screening setting, but, unfortunately,
undetected elevated IOP spikes tend to occur during the night in many glaucomatous
patients [127]. IOP readings during clinical office hours fail to detect these peaks in more
than 50% of cases with a significant underestimation of IOP [128–131]. Hughes et al. re-
ported that data obtained with continuous monitoring in IOP using a 24 h device had an
influence in therapeutic decisions in 79.3% of enrolled subjects [132]. Keeping these data
in mind, it can be inferred that our current standards in clinics with regard to taking IOP
measurements may not suffice and thus need to be modified [133].

An important step towards a more precise management of patients affected by ocular
hypertension and chronic glaucoma would be the possibility of continuously monitoring IOP
values not only during the day but also in the night, as occurs with the 24 h blood pressure
Holter. This information could be particularly useful in the so-called normal tension glaucoma
patients, which show significant damage progression despite an apparently normalized
IOP. In these cases, an elevated IOP can sometimes be found during the night, especially
early in the morning, outside office hours [134,135]. A number of devices, most of them
only experimental, have been proposed for this purpose over the past 20 years [136–138].
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Some of them need to be surgically inserted into the eye, either during a cataract extraction
procedure, usually embedded in an intraocular lens [139–141], or positioned in the anterior
chamber [142,143], or in the suprachoroidal space [144]. A non-invasive continuous IOP
measurement is also possible using special contact lenses with different types of miniaturized
sensors and a wireless power transmission of data to a recorder.

The contact lens sensor Sensimed Triggerfish (Triggerfish CLS, Sensimed AG, Lau-
sanne, Switzerland) is a miniaturized electromechanical system with a microprocessor
embedded in a disposable silicon contact lens, which transmits a signal to an external
wireless antenna located in the periocular surface (Figures 17 and 18). The data are then
transferred to a portable recorder, for a total of 288 data sets in 24 h. This device can
measure small modifications in the curvature of the cornea believed to be due to variations
of IOP [145–149].

Figure 17. Sensimed Triggerfish.

Figure 18. Schematic view of Triggerfish, wireless antenna and portable recorder.

Triggerfish CLS is usually well tolerated [150–152] and has also been shown to have
high reproducibility [150–155]. The information obtained with these device parameters
might be useful in assessing changes and IOP fluctuations in subjects with pseudoexfoli-
ation syndrome, pigment dispersion, and in predicting the visual field loss progression



J. Clin. Med. 2021, 10, 3860 15 of 24

rate [156,157]. Several studies have shown the usefulness of this contact lens sensor for
assessment of the risk of glaucoma, which may prove to be important in subjects with NTG,
in which IOP tends to be normal with diurnal readings [158–161].

The main problem with this device is that there is no direct correlation between
corneal changes, expressed in millivolt equivalent (mVeq), and IOP values. Studies have
shown that IOP measurements taken with GAT and Triggerfish values tend to have a
high correlation at the beginning, after the insertion of CLS [148]; however, the correlation
becomes poor after 24 h [153,154].

CLS is advantageous because it is not invasive, can be easily removed and disman-
tled [155], readily available [155], accepted and tolerated by patients [150–152], and pro-
vides good reproducibility [151,153,154]. The validity (i.e., considering the estimation
accuracy of IOP readings) and relatively costly equipment of CLS are important drawbacks,
which render the clinical usefulness of this instrument still debatable in literature [153,154].

Other types of devices able to measure IOP, either implantable or non-invasive [162–173],
have been proposed, but almost all are still experimental and need further studies before
being introduced into clinical practice.

10. Conclusions

As shown in Table 1, numerous tonometers have been proposed in the past. It
is important to note that in managing and treating glaucoma patients, it is preferable
and more reliable to measure IOP every time with the same type of equipment for each
individual glaucoma patient. Several instruments have provided specific advantages
compared to Goldmann tonometry. Alternative systems reported in literature, either non-
invasive or implantable, remain experimental. Despite promising preliminary results, none
have obtained widespread use and are adaptable in a routine clinal setting. New is not
always better. The Goldmann tonometer, despite its limitations and a lack of innovative
and novel advancements in the past 70 years, continues to be theoretically more precise
and considered the gold standard tonometer to diagnose and manage patients with ocular
hypertension and glaucoma.
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Table 1. Summary of the characteristics of the various available tonometers.

Tonometer Type Production
Year

Working
Principle

Contact/
Noncontact Advantages Disadvantages Clinical

Suitability Cost *

Schioetz tonometer 1905 indentation contact

Simple High variability
still used only in

developing
countries

feasible
Inexpensive Can be used in a supine position only

No need of slit-lam, electricity or charging batteries Affected by various sources of error
Topical anesthesia is needed

Goldmann
applanation
tonometer

(GAT)

1955 applanation contact

Quite simple to use Affected by corneal thickness and other
corneal parameters

good feasible

Accurate and reproducible measurements The accuracy depends on the clinician’s experience
It is currently considered as the gold standard in

IOP measurement Needs to be used with a slit-lamp

Can be used in the upright position only
Topical anesthesia and fluorescein are needed

Perkins tonometer 1965 applanation contact Can be used in a supine position too
Affected by corneal thickness and other

corneal parameters good feasible
Topical anesthesia and fluorescein are needed

TonoPen 1989
indentation/
applanation contact

Lightweight and portable Hight variability and quite poor repeatability

moderate feasible
Quick and simple to use Can underestimate IOP values

Can be used in any position Topical anesthesia is needed
No need of slit-lamp or electricity Influenced by corneal parameters

Self-calibration, provides quality index

Air-puff tonometers 1973 applanation noncontact

Easy and fast to use Need of regular calibration

ideal as a
screening tool medium

No need to touch the cornea Readings are device-dependent
No need of topical anesthesia and fluorescein Possible germs aerosol

Can be used by paramedical staff Influenced by corneal parameters
Less accurate when IOP > 20 mmHg

Ocular Response
Analyzer 2005 applanation noncontact

Simple to use, self-calibration, provides quality index

Possible germs aerosol good expensive

No need of topical anesthesia and fluorescein
Can be used by paramedical staff

Provides additional information (corneal central
thickness and biomechanics)

IOP correction for corneal biomechanical parameters
Useful after corneal refractive surgery

Detection of corneal diseases
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Table 1. Conts.

Tonometer Type Production
Year

Working
Principle

Contact/
Noncontact Advantages Disadvantages Clinical

Suitability Cost *

Corvis ST 2011
indentation/
applanation noncontact

Simple to use, self-calibration, provides quality index

Tends to underestimate the GAT IOP
values

good expensive

No need of fluorescein and topical anesthesia
Can be used by paramedical staff

Provides additional information (corneal central
thickness and biomechanics)

IOP correction for corneal biomechanical parameters
Useful after corneal refractive surgery

Detection of corneal diseases

Pneumotonometers 1969 applanation contact OBF provides information on the ocular blood pulse Affected by corneal thickness
controversial expensive

Overestimates IOP values

iCare tonometer 1997
ballistic
probe

(rebound)

contact

Ease of use with a short learning curve Needs a proper central positioning of the tip

excellent feasible

Portable and self-calibrated Influenced by corneal thickness
No slit-lamp or topical anesthesia or fluorescein

dye required
Can be used by trained non-medical staff

Can be used in supine positions
(iCare PRO and iCare 200)
Minimal corneal trauma

(useful in post-operative patients)
The home version can be useful in

self-twenty-four-hour monitoring of IOP

Dynamic contour
tonometer

(DCT, PASCAL)
2005

contour
matching contact

No need of fluorescein, disposable probes Need of slit lamp and topical anesthesia

poor medium

Self-calibration, provides quality index Difficult to use
Independent from corneal properties Need of highly cooperative patients
Useful after corneal refractive surgery

High precision
Additional information (ocular pulse amplitude)

BioResonator ART 2003 applanation contact

No need of fluorescein Need of slitlamp and local anesthetic

moderate medium
Self-calibration, provides quality index Need of probe disinfection

High reliability
(median of repeated IOP measurements) Required training to use

Affected by corneal properties

Sensimed
Triggerfish 2004

corneal
curvature

monitoring
contact

Continuous measurements over a 24-hour period It does not provide direct IOP values
moderate feasibleGood tolerability IOP estimation accuracy not known

High reproducibility

* feasible: 0–5000 euros; medium range 5000–10,000 euros; expensive: >10,000 euros.
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