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The Candida genus comprises opportunistic fungi that can become pathogenic when
the immune system of the host fails. Candida albicans is the most important and
prevalent species. Polyenes, fluoropyrimidines, echinocandins, and azoles are used as
commercial antifungal agents to treat candidiasis. However, the presence of intrinsic
and developed resistance against azole antifungals has been extensively documented
among several Candida species. The advent of original and re-emergence of classical
fungal diseases have occurred as a consequence of the development of the antifungal
resistance phenomenon. In this way, the development of new satisfactory therapy for
fungal diseases persists as a major challenge of present-day medicine. The design
of original drugs from traditional medicines provides new promises in the modern
clinic. The urgent need includes the development of alternative drugs that are more
efficient and tolerant than those traditional already in use. The identification of new
substances with potential antifungal effect at low concentrations or in combination is
also a possibility. The present review briefly examines the infections caused by Candida
species and focuses on the mechanisms of action associated with the traditional
agents used to treat those infections, as well as the current understanding of the
molecular basis of resistance development in these fungal species. In addition, this
review describes some of the promising alternative molecules and/or substances that
could be used as anticandidal agents, their mechanisms of action, and their use in
combination with traditional drugs.
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INTRODUCTION

Candida species, opportunistic pathogens, are a major cause of morbidity and mortality worldwide
and thus represents a serious threat to public health (Pfaller et al., 2014; Matthaiou et al., 2015;
Pappas et al., 2016). Further, Candida species can cause vaginitis, oral candidiasis, cutaneous
candidiasis, candidemia, and systemic infections (Wächtler et al., 2012). Candidemia is the most
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frequent hospital infection accounting for up to 15% of
bloodstream infections, and Candida species are the main
causative agents in 50–70% of systemic fungal infections (Cornely
et al., 2012; Lionakis and Netea, 2013; Barchiesi et al., 2016).

Candida albicans is the pathogenic species most frequently
isolated. However, other species such as C. glabrata, C. tropicalis,
C. parapsilosis, C. krusei, C. famata, C. guilliermondii, and
C. lusitaniae have been increasingly isolated, mainly in human
immunodeficiency virus (HIV)-infected individuals (Brunke and
Hube, 2013; Ferreira et al., 2013; Mayer et al., 2013; Patil et al.,
2015; Barchiesi et al., 2016).

The pathogenesis of Candida species is poorly understood,
and the rate of infections is increasing rapidly. Further, a steady
increment in resistance to traditional antifungal has resulted in
the need to control Candida infections through early diagnosis
and prevention of candidiasis.

Among the available antifungal agents, azoles are the preferred
and most frequently used drugs for treatment of Candida
infections. Depending on the type of infection, the anatomical
site in which it occurs and the sensitivity profile of species, other
antifungals can also be used. Among these, there are polyenes,
echinocandins, nucleoside analogs and allylamines (Pfaller et al.,
2010a, 2013; Pappas et al., 2016). Fluconazole (FLZ), a type of
azole, is often preferred in treatments of Candida infections
because of its low cost and toxicity, in addition to availability
in varied formulations (Pfaller et al., 2010b). However, there are
many reports in the literature on the development of resistance
among Candida species, especially in relation to azoles, which
is essential for the determination of resistance mechanisms
presented by fungi with the objective of developing new classes
of antifungal for treatment of Candida infections.

The need of the hour includes the development of a more
effective therapy, since the phenomenon of resistance caused the
appearance of new fungal infections, in addition to facilitating
the resurgence of the existing ones. In this way, the control of
Candida infections is a challenge in the modern clinic. The design
of new drugs from the traditional ones used in the clinic and
the identification of new molecules with antifungal potential for
the manufacture of new drugs, more effective and less toxic, are
fundamental to face the challenge.

The present review examines infections caused by Candida
species and describes our current understanding of the molecular
basis of resistance development in these fungal species. In
addition, this review describes some of the promising alternative
molecules and/or substances that are effective pharmaceuticals
for treating fungal infections and could be used as anticandidal
agents, as well as their mechanisms of action.

CANDIDA INFECTIONS

Fungal infections are considered a serious health problem,
especially in people with some impairment in the immune
system and are a main cause of morbidity and mortality
worldwide (Vallabhaneni et al., 2016). In the last two decades,
fungal infections have shown a significant increment. This high
incidence has been related to factors such as the increase in

the number of patients with compromised immune system,
(Ortega et al., 2010; Junqueira et al., 2012; Li et al., 2013;
Terças A.L.G. et al., 2017), the increasing number of patients
receiving hyperalimentation through catheters or probes and use
of broad-spectrum antibiotics (Bouza and Munoz, 2008). The
rising number of patients requiring organ transplantations, as
well as those with leukemia and diabetes also contributes to this
phenomenon (Razzaghi-Abyaneh et al., 2014).

The most frequent fungal disease affecting populations in
the world is candidiasis (Lewis et al., 2012; Ferreira et al.,
2013; Kwamin et al., 2013; Mayer et al., 2013; Tsai et al.,
2013; Vázquez-González et al., 2013). There are several types
of candidiasis as mucosal candidiasis, cutaneous candidiasis,
onychomycosis and systemic candidiasis (Calderone and Fonzi,
2001; Kim and Sudbery, 2011; Wächtler et al., 2012). An
important fact is that candidiasis is an infection that can
affect both immunocompromised and healthy people (Li et al.,
2006; Raman et al., 2013). Candidemia is another infection
due Candida spp. and is the most relevant and prevalent
nosocomial fungal infection associated with a high mortality
rate (up to 49%) in patients with a compromised immune
system (Pfaller and Diekema, 2007; Sardi et al., 2013). The
association of Candida with bloodstream infections depends
on patient’s condition, age, and geographic region. Candidemia
is such an important infection that in 10–40% of cases it is
associated with sepsis or septic shock while Candida species
as main agent of sepsis or septic shock are responsible for
no more than 5% of the total number of cases (Guery et al.,
2009).

Many species recovered from human samples have
been identified as belonging to the genus Candida that
almost half has implicated in serious infections. C. albicans
continues to be the most prevalent species, representing
the majority of isolates of fungal infections (Delgado et al.,
2009; Hise et al., 2009; Junqueira et al., 2012; Li et al.,
2013; Terças A.L.G. et al., 2017). However, the prevalence
of other Candida species has increase substantially. These
species are C. parapsilosis, C. tropicalis, C. krusei, C. glabrata,
C. guilliermondii, C. orthopsilosis, C. metapsilosis, C. famata, and
C. lusitaniae (Sant’Ana Pde et al., 2002; Li et al., 2013; Kaur et al.,
2016).

Candida albicans is a species that presents high degree of
flexibility, being able to grow in extremely different environments
regarding to the availability of nutrients, temperature variation,
pH, osmolarity, and amount of available oxygen (Paramythiotou
et al., 2014). This fact associated with the high resistance capacity
of the species to antifungals, their virulent features, capability of
forming biofilms with other species (Álvares et al., 2007; Shoham
and Marr, 2012) make the genus Candida a serious risk to human
health (Soll, 2008). Thus, Candida species are highly adaptable
and possess numerous strategies to survive favors that might
affect their overgrowth and change their susceptibility profiles.

In addition, it is difficult to identify specific Candida
species, which may delay the use of precise therapeutics. For
instance, microbiological tests using specific culture media do
not differentiate many species of Candida. Often, it takes several
days to obtain antifungal susceptibility information for Candida
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species (Clancy and Nguyen, 2013). Although there are newer
molecular techniques available for rapid yeast detection, such
as fluorescence in situ hybridization (PNA-FISH), commercially
available equipment for analysis does not differentiate between
C. albicans and C. parapsilosis, C. glabrata, or C. krusei. These
facts are relevant because increased mortality rate is associated
with delays in initiating adequate antifungal therapy (Garey et al.,
2006; Bassetti et al., 2014).

TRADITIONAL AGENTS AND
MECHANISMS OF ACTION

Fungal cells, like human cells, are eukaryotic; both cell types are
targeted by antifungal compounds, resulting in considerable side
effects in patients and fewer available targets for drug action.
Since the 1990s, there has been an increasing, but limited,
discovery of antifungal agents (Sardi et al., 2013; Paramythiotou
et al., 2014). These drugs include azoles, that inhibit ergosterol
biosynthesis [FLZ, itraconazole (ITC), ketoconazole (KTC),
miconazole and clotrimazole]; polyenes [amphotericin B (AMB)
and nystatin]; allylamines; thiocarbamates; morpholines; 5-
fluorocytosine, a deoxyribonucleic acid (DNA) analog; and
echinocandins (for instance, caspofungins) (Pappas et al., 2009;
Spampinato and Leonardi, 2013). Three cellular components of
fungi are targeted by these drugs. In endoplasmic reticulum of the
fungal cell, azoles inhibit ergosterol biosynthesis by interfering
with the enzyme lanosterol 14-α-demethylase, involved in the
transformation of lanosterol into ergosterol, component that is
part of the plasma membrane structure of the fungus (Figure 1).
Thus, accumulation of 14-α-methyl-3, 6-diol, a toxic compound,
will occur. As the concentration of ergosterol is reduced, the cell
membrane structure is altered, thereby inhibiting fungal growth
(Sanguinetti et al., 2015).

Azoles comprise a 5-member azole ring containing two
(imidazole) or three nitrogen atoms (triazole) attached to a
complex side chain (Georgopapadakou, 1998; Groll et al., 2003).
The azole family of compounds includes the imidazoles (KTC,
miconazole, econazole and clotrimazole) and triazoles (FLZ, ITC,
and voriconazole, which is a synthetic triazole derivative of FLZ
of second-generation), and posaconazole (hydroxylated analog
of itraconazole) (Kontoyiannis et al., 2003; Maubon et al., 2014).
Ergosterol is similar to cholesterol present in plasma membrane
of animal cells; however, most antimycotic agents that target
ergosterol binding or synthesis do not cross-react with host
cells because of sufficient structural differences between these
molecules (Spampinato and Leonardi, 2013).

Amphotericin B and others polyenes act in fungal membrane
by binding to ergosterol and causing disruption of the membrane
structure, which promotes extravasation of intracellular
constituents such as potassium, magnesium, and sugars and,
consequently, cell death (Perman et al., 2009; Mesa-Arango et al.,
2012; Figure 1).

Flucytosine (5-FC) is a pyrimidine analog with fungistatic
properties that enters the fungal cell through cytosine permease
and inhibits the thymidylate-synthetase enzyme interfering with
DNA. 5-FC can also be converted to 5-fluorouracil which in turn

can be phosphorylated to 5-fluorodeoxyuridine monophosphate.
This one being also phosphorylated can be incorporated into
RNA molecules, thus interfering with the cell translation process
(Cuenca-Estrella, 2010; Spampinato and Leonardi, 2013; Maubon
et al., 2014; Figure 1). Further, 5-fluorodeoxyuridine is associated
with considerable toxicity (Patil et al., 2015). Clinical use of 5-
FC is preferred in association with AMB (Sanglard et al., 2009;
Nett and Andes, 2016; Prasad et al., 2016), since the use of 5-FC
alone induces stronger side-effects, such as hepatic impairment,
interference with bone marrow function, and rapid occurrence of
resistance especially among Candida species (Groll et al., 1998;
Nett and Andes, 2016; Prasad et al., 2016).

According to the type of infection and the
sensitivity/resistance profile of the isolates, as well as the
site of origin of the samples all antifungal agents may be used
with varying efficiency (Pfaller et al., 2010a). AMB is considered
the gold standard drug for most mycoses that affect patients at
risk (Mesa-Arango et al., 2012). However, AMB has high toxicity,
which limits its use. Nephrotoxicity is a main effect resulting from
AMB administration (Mesa-Arango et al., 2012; Nett and Andes,
2016). To minimize this problem and to increase the effectiveness
of treatment, some formulations have been developed. Liposomal
AMB (Ambisome R©) allows for lower absorption of AMB by the
reticuloendothelial system, which results in greater permanence
in the bloodstream. A lipid complex of AMB (Abelcet R©)
comprises 50% AMB and 50% lipid compound and AMB in
a colloidal dispersion (Amphocil R©/Amphotech R©, formed by a
stable complex with cholesterol sulfate). However, the high cost
of these formulations has limited their use (Kontoyiannis et al.,
2003; Mesa-Arango et al., 2012; Paramythiotou et al., 2014; Nett
and Andes, 2016).

Azoles represent the class of antifungals with the highest
number of drugs. Azoles have fungistatic properties that affect
cell growth and proliferation; a large amount of accumulated
toxic sterols can eventually lead to fungal cell death (Shapiro
et al., 2011; Prasad et al., 2016). Such agents are preferred in
the treatment of candidemia (Spampinato and Leonardi, 2013;
Maubon et al., 2014) and candidiasis. Among azoles, miconazole
and KTC (imidazoles) first emerged and were the only drugs
available for systemic use, with KTC being the first alternative to
AMB (Groll et al., 1998; Seyedmousavi et al., 2017). Then triazoles
as itraconazole and FLZ have emerged, more effective and better
tolerated than KTC (Dismukes, 2000).

Fluconazole is the drug of choice for most Candida infections
(Pfaller et al., 2010b; Patil et al., 2015) and is the most
recommended antifungal agent, attributable to its low cost, for
use in invasive candidiasis in patients who have not previously
been medicated with azole antifungal agents (Shoham and Marr,
2012; Paramythiotou et al., 2014).

Azole antifungals have limitations to their use, although they
are generally well-tolerated. Limitations include adverse effects
such as hepatotoxicity and the emergence of resistance among
fungal isolates (Carrillo-Muñoz et al., 2006). Azoles can be toxic
because they act as substrates or inhibitors of several enzymes
such as cytochrome P450 enzymes. Further, these limitations
provide motivation for improving this class of antifungal agents
(Nett and Andes, 2016).
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FIGURE 1 | Mechanisms of action of traditional antifungal agents on cellular targets. Azoles inhibit the ergosterol synthesis in the endoplasmic reticulum of the fungal
cell. They act by interfering with the enzyme lanosterol 14-α-demethylase, involved in the transformation of lanosterol into ergosterol. Polyenes act in the fungal
membrane by binding to ergosterol and causing disruption of the membrane structure promoting extravasation of intracellular constituents and, consequently, cell
death. Flucytosine inhibits the thymidylate-synthetase enzyme interfering with DNA. Echinocandins inhibit (1,3) β-D-glucan synthase, thereby preventing glucan
synthesis, which is present in the cell membrane of fungi. Allylamines and thiocarbamates inhibit the enzyme squalene-epoxidase, which participates in the synthesis
of ergosterol. Griseofulvin acts by disrupting spindle and cytoplasmic microtubule production, thereby, inhibiting fungal mitosis.

Alterations in triazole molecule gave rise to voriconazole
(structurally related to FLZ) and posaconazole (related to ITC), a
second generation of antifungals. Both are available for systemic
therapy and have been shown to have better specificity and
antifungal potency than that of first generation triazoles (Nett and
Andes, 2016).

A new class of drugs, the echinocandins, has been shown to
have fungicidal effects in all Candida species (Nett and Andes,
2016). The echinocandins include caspofungin, micafungin, and
anidulafungin (Grossman et al., 2014; Koehler et al., 2014;
Paramythiotou et al., 2014). Echinocandins inhibit (1,3) β-D-
glucan synthase, thereby preventing glucan synthesis, which is
present in the cell membrane of fungi (Figure 1). β-D-Glucan
synthase inhibition depletes glucan polymers in fungal cells,
resulting in an abnormal cell wall that is weak and unable to resist
osmotic stress (Chen and Sorrel, 2007; Kuse et al., 2007). This
class of drugs has certain advantages attributable to its effects on
the fungal cell wall, including a lower risk of side effects since
animal cells do not have this structure. Further, echinocandins
can be used in cases of azole-antifungal resistance (Spampinato
and Leonardi, 2013; Grossman et al., 2014; Maubon et al., 2014;
Paramythiotou et al., 2014).

Allylamines (terbinafine and naftifine) and thiocarbamates
inhibit the enzyme squalene-epoxidase, which participates in
the synthesis of ergosterol and is encoded by the ERG1 gene
(Figure 1). Inhibition of squalene-epoxidase leads to membrane
rupture and accumulation of squalene. Allylamines effects can
also prevent the production of other sterol derivatives.

Another antifungal is the tricyclic spirodiketone griseofulvin
that acts by interfering the cytoplasmic microtubule production,
disrupting spindle formation and, thereby inhibiting fungal

mitosis (Figure 1). Griseofulvin was isolated from Penicillium
griseofulvum, (Francois et al., 2005).

Certain pharmacological strategies have been developed
to minimize toxicity and resistance. Development and use
of new antifungal formulas (liposomal AMB, AMB lipid
complexes, AMB colloidal dispersions, and AMB lipid
nanosphere formulations), itraconazole, and β-cyclodextrin
itraconazole is one strategy. Others include combination
therapies of antifungal compounds (for example, AMB + 5-FC,
FLZ + 5-FC, AMB + FLZ, caspofungin + liposomal AMB,
and caspofungin + FLZ) (Table 1) and nanostructuring of
conventional antifungal agents (Amaral and Felipe, 2013;
Spampinato and Leonardi, 2013; Stiufiuc et al., 2015; Souza and
Amaral, 2017).

Chaturvedi et al. (2011) evaluated the sensitivity profile
of reference and clinical samples of C. albicans, C. glabrata,
and C. parapsilosis in relation to antifungals like azoles and
equinocandinas. They found that despites clinical isolates had
relatively high azole and echinocandin MICs, some synergistic
combinations were found for AMB- posaconazole against
C. glabrata and AMB- anidulafungin and AMB- caspofungin
against C. parapsilosis by both visual and spectrophotometric
readings. Chen et al. (2013) a potential therapeutic applicability
for posaconazole and caspofungin combinations in the future.
Their studies reported that posaconazole exhibits in vitro and
in vivo synergy with caspofungin against drug susceptible or
resistant C. albicans strains (derived echinocandin-resistant
mutants).

Pappas et al. (2016) drew attention to the fact that a
combination of liposomal AmB, 5 mg/kg daily, and flucytosine,
25 mg/kg 4 times daily, may be considered as salvage therapy
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TABLE 1 | Various regimes of combinatorial antifungal therapy showing better
efficacy in combination than that of independent drugs.

Combination of
antifungals

Target Reference

AMP B + Posaconazole
AMP B + Caspofungin

Candida biofilms Bink et al., 2011;
Rodrigues et al., 2014.

Micafungin + Fluconazole
Micafungin + Voriconazole
Micafungin + AMP B

Candida infections Serena et al., 2005;
Espinel-Ingroff, 2009.

Flucytosine + Voriconazole Candida infections Bink et al., 2011

Minocycline + Fluconazole Candida albicans
biofilms

Bink et al., 2011

Posaconazole + Caspofungin Candida infections Chaturvedi et al., 2011;
Chen et al., 2013

Terbinafine + Azole Candida growth Barchiesi et al., 1997;
Perea et al., 2002a

Echinocandin + Azole Invasive candidiasis Cui et al., 2015

AMP B + Flucytosine Invasive candidiasis Pappas et al., 2016

AMP B, amphotericin B.

in patients who have not had a clinical response to initial AmB
therapy in cases of central nervous system infections by fungus in
neonates.

Examples of some others publications on combination therapy
between different antifungal drugs are shown in Table 1.

However, among traditional antimycotic drugs, none has
all the qualities required for an ideal agent (Wong et al.,
2014). All drugs have at least one of the following restrictions:
they do not have a broad spectrum of action, some are
fungistatic, and others have high toxicity and low bioavailability
with significant side effects in patients undergoing therapeutic
regimens (Petrikkos and Skiada, 2007; Safdar et al., 2010; Lewis
et al., 2012; Vollenbroich et al., 2014; Bayhan et al., 2015).
Therefore, limitations of treatment and drug resistance (Canuto
and Rodero, 2002; Petrikkos and Skiada, 2007; Mukherjee et al.,
2011; Tscherner et al., 2011) associated with pathogenicity of the
clinical isolates support the urgent need to identify substances
that are more effective, with new mechanisms of action in the
fight against Candida infections.

MECHANISMS OF CELLULAR AND
MOLECULAR ANTIFUNGAL
RESISTANCE

There are three types of antifungal resistance, including a primary
or intrinsic form that exists prior to antifungal exposure. The
second type is an acquired form that occurs after antifungal
exposure and may be reversible, attributable to transient or non-
reversible adaptation resulting from several genetic alterations.
A clinical form refers to unfavorable outcomes in patients despite
antifungal therapy and is directly linked to primary or secondary
resistance (Cowen et al., 2015).

Populations are increasingly at risk of fungal infections,
resulting in an increased use of antifungal agents. Consequently,
higher minimum inhibitory concentrations (MIC) for antifungals

against C. albicans strains have been observed and may
be related to therapeutic failures. In addition, some non-
albicans Candida (NAC) species have inherent resistance to
azoles (Oxman et al., 2010; Lortholary et al., 2011; Fothergill
et al., 2014). Low-dose prophylactic administration of azole
derivatives, such as FLZ, for prolonged periods to prevent the
occurrence of opportunistic infections in immunosuppressed
patients also results in resistant phenotypes (Siikala et al.,
2010; Rautemaa and Ramage, 2011). These facts are likely
to collaborate to the increased incidence of fungal infections.
Resistance to polyenes (AMB) in C. albicans is less common
and is associated with the substitution of ergosterol with a
precursor molecule or a general reduction of sterols in the plasma
membrane (Kanafani and Perfect, 2008) (Figure 2). Enzymes
such as 15,6-desaturase, encoded by ERG3 gene, and C-8 sterol
isomerase, encoded by ERG2 gene participate in ergosterol
biosynthesis and have the main alterations related to AMB
resistance. These enzymes influence the amount of ergosterol
required for the action of polyenes because the mutations are
responsible for modifications in sterol content (Sheikh et al.,
2013). For instance, 15,6-desaturase when mutated converts
fecosterol to episterol which has low affinity for AMB. Another
likely AMB-resistant mechanism is the reduction of oxidative
damage via enhanced catalase activity (Kanafani and Perfect,
2008).

Possible mechanisms for cellular and molecular resistance to
FLZ in C. albicans are described. The first is related to induction
of multi-drug pumps, which decrease the concentration of
drug available for the target enzyme, 14-α-demethylase, in
fungal cells (Kanafani and Perfect, 2008) (Figure 2). There
are two types of active transporters in C. albicans, including
those encoded by the Candida drug resistance-CDR genes
(Cdr1 and Cdr2) and those encoded by the multidrug
resistance-MDR1 genes. Cdr1- and Cdr2-type pumps are
ATP-binding cassette (ABC) transporters, and Mdr1 is a major
facilitator superfamily (MFS)-type pump that transports solutes
from different sides of the fungal cell plasma membrane.
Overexpression of transporters encoded by CDR genes confers
cross-resistance to various azole-derived compounds, while
overexpression of those transporters encoded by MDR1
genes is responsible for FLZ resistance. Superexpression of
these transporters prevents accumulation of the drug in the
intracellular compartment (Kanafani and Perfect, 2008; Pfaller,
2012) (Figure 2).

A second mechanism of resistance involves modification of
the target enzyme encoded by the ERG11 gene, also known as
cytochrome P450 lanosterol 14 α-demethylase (Cyp51) (Figure 2).
Mutations in this gene prevent azoles from binding to enzyme
sites (Marichal et al., 1999; Flowers et al., 2015). Another
mechanism of resistance to azoles is related to substitution of
ergosterol by another sterol. Mutations in the ERG3 gene does not
convert 14-α-methylfecosterol into 14-α-methyl-3,6-diol. This
substitution causes azoles to have no fungistatic effects on the
fungal cell membrane (Sanguinetti et al., 2015).

Two possible mechanisms of resistance to echinocandins have
been reported. The first deals with point mutations in gene that
encodes the major subunit of the glucan synthase enzyme (Fks
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FIGURE 2 | Different mechanisms of multidrug resistance adopted by fungal cells. The main mechanisms of drug resistance against azoles, polyenes,
echinocandins, and flucytosine include: (a) alteration of the enzyme target (genes encoding ergosterol biosynthetic pathway enzymes – AZOLES, glucan synthases –
ECHINOCANDINS, cytosine deaminase or uracil phosphoribosyltransferase – FLUCYTOSINE) leading to poor binding of toxic drugs to its enzyme target sites, (b)
overexpression of drug efflux proteins leading to increased efflux – AZOLES, (c) changes in membrane property/composition affecting normal drug import –
FLUCYTOSINE, (d) Reduction of sterols in plasma membrane – POLYENES. Colored balls mean antifungal molecules.

subunit) (Figure 2). These mutations occur only in two regions of
the gene (known as “hot-spot”), are dominants and can provide
resistance to all echinocandin (Perlin, 2015). The consequence
is that these mutations lead to the production of high MIC
values. For instance, C. parapsilosis and C. guilliermondii present
MIC values 4- to 100-fold greater compared to those observed
for C. albicans. The FKS1 mechanism extends to other NAC
species such as C. tropicalis, C. parapsilosis, C. glabrata, C. krusei,
C. guilliermondii, and C. dubliniensis that show the same
mutations as those of C. albicans (Katiyar et al., 2006; Perlin,
2011). In that way, FKS1-mediated resistance mechanisms can be
pervasive in the fungal kingdom because it is suggested that it can
be responsible for a reduced inherit sensitivity of certain Candida
species and molds (Perlin, 2007).

The second mechanism of resistance involves the response
to adaptation stress. When there is an inhibition of production
of fungal cell wall component, microorganism is capable of
increasing the production of another one. Some research showed
that many Candida species respond to the inhibition of Fks
synthesis producing high amounts of chitin (Chamilos et al.,
2007; Shields et al., 2011). Chamilos et al. (2007), studying
Candida bloodstream isolates from cancer patients, observed
a process known as the paradoxical effect in some isolates of
Candida, that is, isolates are capable of growing in the presence
of high concentrations of echinocandins (above the MIC). This
phenomenon was strikingly absent in C. glabrata isolates, but was

well evidenced in C. parapsilosis, C. tropicalis, and C. krusei ones
(Chamilos et al., 2007).

Resistance to 5-FC can be of two types: primary, occurring via
cytosine permease (encoded by the FCY2 gene) with decreased
drug uptake (Sanglard and Odds, 2002) (Figure 2); secondary,
related to alterations in cytosine deaminase (encoded by FCY1)
or uracil phosphoribosyltransferase (encoded by FUR1) enzymes
activities. Cytosine permease is responsible by conversion of
5-FC to 5-fluorouridine or to 5-fluorouridine monophosphate (5-
FUMP) (Kontoyiannis and Lewis, 2002; Espinel-Ingroff, 2008)
Resistance is easily developed in fungal isolates from patients
who are receiving the drug. However, most of these mechanisms
have only been observed in others species of Candida, but not
in C. albicans (Papon et al., 2007). Therefore, other molecular
mechanisms related to resistance to 5-CF must exist, playing
relevant role in fungal resistance (Schwarzmuller et al., 2014).

Costa et al. (2015) recently reported a relation between
arginine metabolic enzymes and 5-FC resistance, suggesting that
5-FC resistance requires somehow high arginine production.
Accordingly, L-arginine concentrations in some body fluids in
healthy individuals, as vaginal fluid (Gregoire et al., 1959) or
human plasma (Armengou et al., 2003) can be as high as
0.1 mM. The molecular mechanisms involved in arginine and
5-FC resistance relationship have not been clarified, but the
results obtained by the authors highlight the significance of a new
possibility of fighting resistance to 5-FC.
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Mutations in Genes Associated With
Resistance to Azoles in Candida Species
Studies aimed at elucidating the molecular mechanisms
responsible for developing resistance to Candida species have
predominantly focused on resistance to azoles, as they are the
most commonly used drugs clinically (Cernicka and Subik, 2006;
Gualco et al., 2007). Thus, the main research targets include the
CDR1, CDR2, and MDR1 genes (Puri et al., 1999; Yang and Lo,
2001; Morschhäuser et al., 2007; Tsao et al., 2009). In addition,
mutations in transcription factors associated with the CDR1 and
CDR2 genes (Chen et al., 2004; Coste et al., 2006; Wang et al.,
2006), specific mutations or superexpression of ERG11 genes,
and mutations in the ERG5 or ERG3 genes (also involved in
ergosterol biosynthesis), have been identified. Most of them were
related to FLZ resistance (Sanglard et al., 2003; Lo et al., 2005;
Martel et al., 2010).

Mutations Associated With Efflux Pump
Genes (CDR1, CDR2, and MDR1) and
Transcription Factors
An important and potent mechanism of multi-drug resistance
(MDR) in fungi is the intracellular accumulation of antifungals
by increased efflux of drugs (Prasad and Kapoor, 2005; Prasad
and Rawal, 2014). In C. albicans, overexpression of genes
encoding transporters proteins, mainly CDR1 and CDR2 genes
(encoding Cdr1 and Cdr2, respectively, which are ABC multidrug
transporter proteins) or MDR1 gene (encoding the MFS efflux
pump protein Mdr1) is considered the main mechanism
responsible for antimycotic resistance in Candida isolates (Franz
et al., 1998; Lopez-Ribot et al., 1998; Lyons and White, 2000;
Wirsching et al., 2000; Kusch et al., 2004; Niimi et al., 2004;
Prasad and Kapoor, 2005; Prasad and Rawal, 2014). Increased
production of the Cdr1 transporter is responsible for FLZ, KTC,
and ITC resistance. In contrast, expression of the Candida drug
resistance protein 2 (Cdr2p) is related to FLZ and ketoconazole
resistance, but does not affect resistance to itraconazole (Tsao
et al., 2009). There are related multidrug transporters with MDR
function in NAC species such as those in C. glabrata (CgCdr1,
CgCdr2 and Snq2) (Miyazaki et al., 1998; Sanglard et al., 1999;
Torelli et al., 2008) and in C. krusei (ABC1) (Katiyar and Edlind,
2001).

Azole resistance in C. glabrata probably is also related to
upregulation of homologous transporter genes CgCDR1 and
CgCDR2 (Sanglard et al., 1999, 2001; Bennett et al., 2004), and
genetic evidence has been provided that supports a role for
multidrug transporters in azole resistance in C. glabrata (Sanglard
et al., 1999).

Looi et al. (2005) investigated expression of the C. albicans
and C. glabrata CDR1 and MDR1 genes associated with azole
resistance in patients with vaginitis. There was overexpression
of genes to varying extents in all Candida isolates tested and
this result was correlated with the degree of resistance, as
evidenced by antifungals MICs. The authors also observed that
in one C. albicans resistant isolate there was overexpression
of messenger RNA for Mdr1 after superexpression of Cdr1,
which suggests a synergism between these drug efflux pumps

proteins. DNA sequence analysis of the CDR1 promoter region
also suggests there are several point mutations in resistant clinical
isolates that are not present in susceptible isolates. Thus, this
region is important for binding of transcription factors and
for increasing the affinity of activators responsible by CDR1
expression in drug resistant isolates.

Sanguinetti et al. (2005) evaluated the molecular mechanisms
of resistance in 29 nosocomial isolates of C. glabrata recovered
during 3 years of study; of these, most were resistant to FLZ.
Quantitative real-time PCR analyses provided evidence that azole
resistance in these isolates probably was due the upregulation of
genes CgCDR1, CgCDR2, and CgSNQ2, encoding efflux proteins
in C. glabrata.

Katiyar and Edlind (2001) identified two homologous ABC
transporter genes (ABC1 and ABC2) in C. krusei previously
described for C. albicans. When cultures of C. krusei were exposed
to imidazole and cycloheximide, ABC1 gene was upregulated.
Lamping et al. (2009) showed that ABC1 is involved in the
inherent resistance of C. krusei to azoles. In C. parapsilosis authors
have shown that MRR1 is involved in resistance to FLZ (Souza
et al., 2015; Zhang et al., 2015); however, in C. tropicalis, efflux
pumps genes related to azoles resistance have not yet been
identified (Barchiesi et al., 2000).

Gołąbek et al. (2015) also studied the expression of CDR1,
CDR2, and MDR1 genes in 120 strains of C. albicans (60 resistant
and 60 azole susceptible) obtained from clinical samples and
observed that the expression of Cdr1, Cdr2, and Mdr1 was
higher in azole-resistant strains than that in sensitive strains.
Several transcription factors have been identified as responsible
for upregulating CDR1, CDR2, and MDR1 genes, with several
serving as positive MDR1 regulators (Coste et al., 2004; Wang
et al., 2006) and others as negative MDR1 regulators (Chen et al.,
2009).

Overexpression of the CDR1 and CDR2 genes has been
suggested to influence the relationship between susceptibility and
resistance to azoles and AMB. According to Ren et al. (2014),
azole-resistant strains of C. albicans that overexpress CDR1
and CDR2 are hypersensitive to AMB. In contrast, knockout
strains for the CDR1 and CDR2 genes are resistant to AMB,
suggesting that the ergosterol content determines sensitivity to
both azoles and AMB in C. albicans, and that there is an
inverse susceptibility to these drugs that is directly associated
with Cdr1 and Cdr2 transporters. The authors also suggest a new
therapeutic approach for administering alanine phosphoricin B
in situations of fungal resistance to azoles rather than increasing
the administered dose of the azole agent.

Major facilitator superfamily (MFS) transporters were first
identified in C. albicans and are the second major superfamily
of transporters also related to drug efflux in this species
(Saier et al., 1999; Gaur et al., 2008). MFS proteins consist of
one polypeptide chain two three-dimensional regions with
independent functions (“domains”) having six transmembrane
alpha helical spanners (TMSs). There are two types of MFS
proteins, including DHA1 (drug:HC antiporter-1) with 12 TMSs,
and DHA2, which has 14 TMSs. The main multidrug protein
of C. albicans is MDR1 from the DHA1 subfamily. Homologs
of CaMDR1 were identified in C. glabrata (CgMDR1) and in
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C. dubliniensis (CdMDR1). CgMDR1 is constitutively expressed
and confers specific resistance to FLZ in C. glabrata; therefore,
this phenomenon could explain the intrinsic resistance of this
yeast to triazoles (Moran et al., 1998; Sanglard et al., 1999). In
C. dubliniensis overexpression of CdMDR1 is considered a main
mechanism of FLZ resistance in isolates of this species (Moran
et al., 1998).

Mutations Associated With the ERG11
Gene
In C. albicans, a 1587 bp gene encodes Erg11 protein. Erg11
has 595 amino acids. Up to now, approximately more than a
hundred non-synonymous point mutations have been identified
in clinically resistant isolates (Noel, 2012; Strzelczyk et al.,
2013). Interestingly, most of these substitutions occur in 3
regions ranging from 105 to 165, 266 to 287, and 405 to
488 amino acids (“hot spots”) instead of being randomly
dispersed (Marichal et al., 1999; Wang et al., 2009). However,
many of the identified mutations are not resistant and
are considered genetic polymorphisms occurring in living
organisms. Few of these mutations have been demonstrated
to support azole resistance (Noel, 2012; Strzelczyk et al.,
2013). ERG11 genetic polymorphisms should be considered in
the rational design of novel azole-derived drugs, attributable
to certain polymorphisms identified in the gene that do
not necessarily characterize changes in the amino acids
and three-dimensional structure of proteins, and therefore,
do not reduce the affinity between azolic components and
the protein. Thus, mapping all ERG11 amino acid changes
involved in azole resistance could help in the design of
new azole antifungals with potent activity against resistant
strains.

Recent studies corroborate these facts. For instance, Morio
et al. (2010) investigated the susceptibility of FLZ, ITC
and voriconazole in isolates of C. albicans and verified 23
distinct substitutions, 2 of which were suspected as being
involved in azole resistance. Gołąbek et al. (2015) verified 19
changes in the ERG11 gene sequence and found that five
alterations occurred in azole resistant strains only (A530C,
G622A, G1309A, A1167G, and A1230G). Further, 33% of
azole-resistant strains were characterized by the simultaneous
presence of the A530C, G622A, and A1167G mutations.
Caban et al. (2016) identified 21 specific mutations in the
ERG11 gene, two of which were significantly associated
with drug resistance, including a nucleotide substitution at
position 798, which was related to an increase in drug
resistance, and a silence mutation at position 1440, which
significantly decreased the chance of a strain being resistant to
drugs.

ERG11 mutations conferring azole resistance in C. tropicalis
(Vandeputte et al., 2005; Jiang et al., 2013), C. krusei (Ricardo
et al., 2014), C. dubliniensis (Perea et al., 2002b), and
C. parapsilosis (Grossman et al., 2015) clinical isolates have also
been described; however, there is no relate about these mutations
in C. glabrata (Gonçalves et al., 2016).

In addition to mutations that directly affect the ERG11 gene,
there are changes in transcription factors associated with this

gene that may also affect its expression and, consequently,
the biosynthesis pathway of ergosterol. The C. albicans Upc2p
transcription factor (CAUPC2) gene is among the regulators of
ERG11 gene expression.

Overexpression of ERG11
It is known from the literature that overexpression of ERG11
gene, or maybe its upregulation, are responsible for the resistance
to azole agents. Accordingly, different methods have been used
to measure the level of ERG11 expression by detecting and
quantifying its mRNA. A 3- to 20-fold increase in mRNA
production was observed in resistant strains (Sanguinetti et al.,
2015).

Two independent mechanisms have been shown to drive
ERG11 overexpression. One is related to a chromosomal
mutation (duplication) of ERG11 gene. This phenomenon was
demonstrated first in C. glabrata isolates (Marichal et al., 1997);
this occurs when an isochromosome is formed in the region
having the ERG11 gene. In that way, this specific region will now
have two copies of the left arm of chromosome 5, duplicating
the chromosome (Selmecki et al., 2006). The second depends on
a transcription factor that regulates the ergosterol biosynthesis
(Upc2p, coded by the CaUPC2 gene) identified in C. albicans.
Upc2p recognizes and is specifically bound to the promoters (the
well-known SRE box, of sterol response element) of different ERG
genes that activate gene transcription (Noel, 2012).

Antifungal drugs, including FLZ, induce the expression of
CaUPC2 gene, and the Upc2p transcription factor upregulates
ERG2 and ERG11 gene expression when C. albicans is grown
under azole drug pressure (Allen et al., 2015). Studies have shown
that strains that have undergone homozygous deletion of the
CaUPC2 gene are hypersensitive to several drugs and accumulate
significantly less cholesterol, suggesting a decrease in ergosterol
in these strains (Silver et al., 2004).

Different strains of C. albicans and probably other Candida
species express different UPC2 alleles encoding for transcription
factors of different strength. In addition, three gain of function
mutations (A643T, A643V, and G648D) have been characterized
in sequential clinical isolates overexpressing ERG11. Upc2
proteins act constitutively and lead to loss of sensitivity to azoles
(Noel, 2012).

ALTERNATIVE AGENTS AS
ANTICANDIDAL AGENTS

Increased drug resistance in fungi is a problem that cannot be
avoided, particularly for FLZ, which is the preferred antifungal
for treating candidiasis in acquired immunodeficiency syndrome
(AIDS) patients (Siikala et al., 2010; Rautemaa and Ramage,
2011). Moreover, there are fungi that have intrinsic resistant to
antifungal agents commonly used in the clinic (Sanglard, 2016).
In addition, biofilms, an ordinary virulence property of fungi,
has as main characteristic the capacity of resistance to drugs
(Chandra et al., 2005; Seneviratne et al., 2008).

Accordingly, the utmost relevance in the health care field
is the development of more safe and effective antimycotic
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agents. Therefore, this topic aimed to address new substances
and/or molecules with potential antifungal activity, their clinical
relevance, and mechanisms of actions. Alternative therapies with
some antifungal potential include the use of synthetic agents,
polymeric materials, active molecules of natural products and
peptides (Table 2).

New Triazoles
New triazoles antifungals are being developed and are under
investigation, due to the limited number and the lack of
effective antifungal. These include ravuconazole, albaconazole,
and isavuconazole (Table 2). Preliminary studies have shown that
these drugs have good pharmacokinetic profiles and low toxicity,
as well as in vitro activity against Candida even in FLZ-resistant
strains, with similar properties to those of FLZ and voriconazole.

Albaconazole, a broad-spectrum antifungal agent with
excellent tolerability (Bartroli and Merlos, 2011), has shown great
activity against Candida spp., both in vitro and in vivo studies,
with better properties than those of FLZ. In fact, a single dose of
albaconazole at a concentration almost 4× lower than that of FLZ

recommended for acute vaginal candidiase has better efficacy
(Pasqualotto and Denning, 2008). In addition, albaconazole
showed low toxicity when administered to volunteer patients
(Girmenia, 2009). Most isolates of C. albicans and C. glabrata are
susceptible to treatment with albaconazole (Pasqualotto et al.,
2010).

Isavuconazole is a new, second-generation triazole that
has also a broad-spectrum antifungal activity. In vitro,
isavuconazole is more active than AMB, ITC, voriconazole,
5-FC, and FLZ (MIC50 = 0.004, 0.5, 0.008, 0.03, 0.125, and
8 µg/ml, respectively) and has lower MIC50 values than
those of voriconazole in the majority of Candida species
(Pasqualotto et al., 2010). Isavuconazole has demonstrated
activity against candidemia and invasive candidiasis, with
an action mechanism similar to that of other triazoles
and with activity in triazole-resistant fungi (Vermes et al.,
2000).

Ravuconazole is structurally similar to isavuconazole and has
demonstrated a good antimycotic action in FLZ resistant isolates.
However, higher MIC values for ravuconazole have been reported

TABLE 2 | Alternative products with reported antifungal activities against Candida species showing promise for antifungal drug development.

Specific source Biological active molecules/substances Activity/putative mechanisms of action

New triazoles Ravuconazole Inhibits ergosterol biosynthesis

Albaconazole Inhibits ergosterol biosynthesis

Isavuconazole Inhibits ergosterol biosynthesis

Peptides Lysozyme Reduces SAP activity and secretion

Lactoferrin Production of cationic antimicrobial peptide
lactoferricin

Defensins Increases membrane permeability

Histatin Inhibition of adhesion

Cathelicidins Increases membrane permeability

Plants (essential oils; terpenoids; saponins;
phenolic compounds; alkaloids; peptides;
proteins)

Curcumin Inhibiting initial cell adhesion, biofilm growth, and
gene expression

Eugenia dysenterica (catechin derivatives and
flavonoids)

Inhibits planktonic growth

Terminalia catappa (hydrolysable tannins (punicalin,
punicalagin), gallic acid, and flavonoid C-glycosides)

Inhibits planktonic growth

Carya illinoensis (gallic acid, ellagic acid,
flavonoids – rutin – and tannins – catechins and
epicatechins)

Inhibits the production of germ tubes

Quercetin, myricetin, kaempferol (flavanols) Inhibits planktonic growth

Syzygium cordatum (gallotannin) Inhibits planktonic growth

Scutellaria baicalensis (baicalein) Induces apoptosis in Candida albicans

Ocotea odorifera (ellagitannins) Potent activity against Candida parapsilosis

Cymbopogon nardus essential oil Inhibits hyphal growth in C. albicans

Artemisia judaica essential oil Inhibits the formation of germination tube and
biofilms in C. albicans

Thymol (terpene) Binds to ergosterol in the membrane resulting in cell
death

Carvacrol (terpene) Alters cellular cytoplasmic membrane and induces
apoptosis

Lannea welwitschii (alkaloids, flavonoids, steroids,
sapogenetic glycosides, tannins)

Wound healing

Lonicera japonica (chlorogenic acid) Antiwound infection, repair, and contraction

SAP, secreted aspartic protease.
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for Candida isolates that display resistance to FLZ than those for
susceptible isolates (Pasqualotto et al., 2010).

Peptides as Antifungal Agents
Some peptides isolate from various sources of body have
antimicrobial properties and are also a promise in the
discovery of new antimycotics. One possibility is to use
molecules with antifungal properties derived from host cells
to prevent or treat fungal infections (Table 2). There are
some small cationic peptides derived from large proteins that
exert antifungal activities (Table 3). The main mechanism
of action related to these peptides is that they intensify the
passage of substances through the fungal membrane favoring
permeabilization. These peptides include lysozyme, lactoferrin,
defensins, histatin, and cathelicidins (Mehra et al., 2012)
(Figure 3).

Lysozyme is an enzyme found in various fluids of the human
body such as saliva and respiratory secretions (Table 3 and
Figure 3). It is classically known for its ability to kill bacteria
through its muramidase activity. Further, lysozyme is active
against numerous clinical isolates of Candida species, as well
as against Aspergillus fumigatus and Penicillium species (Papini
et al., 1982). However, the antifungal mechanisms of action
associated with lysozyme remain subject to speculation. It is
likely that lysozyme acts by reducing secreted aspartic protease
(SAP, involved in Candida virulence) activity and secretion in
C. albicans (Wu et al., 1999); its fungicidal activity at high
concentrations likely results from damage to the cell wall or
plasma membrane, causing loss of osmotic equilibrium (Wu
et al., 1999).

Human lactoferrin (hLF) is a peptide that binds to iron and
has protease action (Table 3 and Figure 3). Lactoferrin is found

TABLE 3 | Predicted amino-acid sequences (single-letter code) of antimicrobial peptides obtained from Protein Data Bank (RCSB-PDB) or from literature reference.

Peptide Origin Amino-acid sequence Accession Number
(UniProtKB)

Reference

LL-37 Human LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES P49913 Tomasinsig and Zanetti, 2005

CRAMP Mouse GLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPE P51437 Tomasinsig and Zanetti, 2005

Lysozyme Human MKALIVLGLVLLSVTVQGKVFERCELARTLKRLGMD
GYRGISLANWMCLAKWESGYNTRATNYNAGDRST
DYGIFQINSRYWCNDGKTPGAVNACHLSCSALLQD
NIADAVACAKRVVRDPQGIRAWVAWRNRCQNRDV
RQYVQGCGV

P61626 Artymiuk and Blake, 1981

Lactoferrin Human MKLVFLVLLFLGALGLCLAGRRRSVQWCAVSQPEA
TKCFQWQRNMRKVRGPPVSCIKRDSPIQCIQAIAE
NRADAVTLDGGFIYEAGLAPYKLRPVAAEVYGTER
QPRTHYYAVAVVKKGGSFQLNELQGLKSCHTGLRRT
AGWNVPIGTLRPFLNWTGPPEPIEAAVARFFSASCV
PGADKGQFPNLCRLCAGTGENKCAFSSQEPYFSY
SGAFKCLRDGAGDVAFIRESTVFEDLSDEAERDEY
ELLCPDNTRKPVDKFKDCHLARVPSHAVVARSVNG
KEDAIWNLLRQAQEKFGKDKSPKFQLFGSPSGQK
DLLFKDSAIGFSRVPPRIDSGLYLGSGYFTAIQNL
RKSEEEVAARRARVVWCAVGEQELRKCNQWSGLSE
GSVTCSSASTTEDCIALVLKGEADAMSLDGGYVYTA
GKCGLVPVLAENYKSQQSSDPDPNCVDRPVEGYL
AVAVVRRSDTSLTWNSVKGKKSCHTAVDRTAGWNI
PMGLLFNQTGSCKFDEYFSQSCAPGSDPRSNLCA
LCIGDEQGENKCVPNSNERYYGYTGAFRCLAENA
GDVAFVKDVTVLQNTDGNNNEAWAKDLKLADFAL
LCLDGKRKPVTEARSCHLAMAPNHAVVSRMDKVE
RLKQVLLHQQAKFGRNGSDCPDKFCLFQSETKNL
LFNDNTECLARLHGKTTYEKYLGPQYVAGITNLK
KCSTSPLLEACEFLRK

P02788 Haridas et al., 1995

HDB-1 Human MRTSYLLLFTLCLLLSEMASGGNFLTGLGHRSDH
YNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK

P60022 Hoover et al., 2001

HDB-2 Human MRVLYLLFSFLFIFLMPLPGVFGGIGDPVTCLKSGAI
CHPVFCPRRYKQIGTCGLPGTKCCKKP

O15263 Hoover et al., 2000

HDB-3 Human MRIHYLLFALLFLFLVPVPGHGGIINTLQKYYCRVR
GGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK

P81534 Schibli et al., 2002

Porcine cathelicidin
peptide PR-39

Pig RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRF
PPRFP-NH2

P80054 Tomasinsig and Zanetti, 2005

Histatin-5 Human DSHAKRHHGYKRKFHEKHHSHRGY P15516 Han et al., 2016

P318 Mouse KIGEKLKKIAQKIKNFFAKLVAQPEQ – Brucker et al., 2014

HsLin06_18 Plant FAYGGAXHYQFPSVKXFXK – Cools et al., 2017

HBD3-C15 Human GKCSTRGRKCCRRKK – Lim et al., 2016
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FIGURE 3 | Representative models of some antifungical peptides showing
alpha-helical, beta-sheet, amphiphilic structural motifs that relate forms and
functions. The three-dimensional structure models of peptides were predicted
using the on-line server Iterative Threading ASSEmbly Refinement (I-TASSER,
Yang Zhang Lab), University of Michigan (Ann Arbor, MI, United States), from
their amino acid sequences.

in saliva and other secretions of human body. It has been found
to be active against C. albicans and C. krusei (Samaranayake et al.,
1997). The mechanisms of action associated with lactoferrin are
likely related to production of a cationic peptide that presents
a broad antimicrobial activity (Orsi, 2004). It was verified that
a synthetic peptide comprising the first cationic domain of
lactoferricin H (released by pepsinolysis of hLF), named hLF1-
11 (Table 3), possesses a high antifungal activity, (Lupetti et al.,
2007), beyond contributing to the clearance of infections, by
stimulating the production of macrophages and dendritic cells
(van der Does et al., 2012). The peptide hLF1-11 also inhibited
C. albicans biofilm formation at early stages, interfering with
biofilm cellular density and metabolic activity and to induce the
down-regulation of biofilm and hyphal-associated genes (Morici
et al., 2016).

Histatin-5 is a fragment of salivary protein histatin-3
comprising the N-terminal fragment with 24 amino acids

(Table 3 and Figure 3). The peptide has strong fungicidal
activity, being able to kill both yeast and filamentous forms of
Candida spp. even at low concentrations (15–30 µM); histatin-
5 can also exert its fungicidal activity by binding to a candidate
67 kDa protein and then interfering with non-lytic ATP efflux
(Edgerton and Koshlukova, 2000). Moreover, when histatin-5 is
adsorpted to microtiter plate prior C. albicans biofilm formation
(90 min, 24, 48, and 72 h) it is capable of reducting significantly
C. albicans colonization interfering with biofilm formation.
(Moffa et al., 2015). These data corroborate to those previously
obtained by Vukosavljevic et al. (2012), who demonstrated the
inhibitory effect of histatin-5 when adhered to hydroxyapatite
and polymethylmethacrylate (PMMA) surfaces on C. albicans
colonization.

Human β-defensins (HBD) are small cationic peptides that
belong to the defensins family. There are three types of
human β-defensin with fungicidal activity toward C. albicans
(Krishnakumari et al., 2009; Schroeder et al., 2011; Tomalka et al.,
2015) that function via the same mechanism (Krishnakumari
et al., 2009), including human β-defensin-1 (HBD-1), human
β-defensin-2 (HBD-2), and human β-defensin-3 (HBD-3)
(Table 3 and Figure 3).

Pro-inflammatory molecules such as interferon-γ, bacteria,
or lipopolysaccharide can stimulate the expression of HBD-1
mRNA constitutively in endothelial tissues, by binding to toll-
like receptors (TLR) (Duits et al., 2002). In addition, HBD-1 is
important for control of early mucosal Candida infections and
plays a critical role in HBD-2 expression (Tomalka et al., 2015).
Cytokines, such as tumor necrosis factor, and also the contact
with bacteria and fungi (Harder et al., 1997) and interleukin (IL)-
1 (Sorensen et al., 2005) stimulate the expression of HBD-2 in
epithelial tissue via TLR-2 (Hertz et al., 2003). HBD-3 expression
is induced via binding of TGFα (transforming growth factor
alpha) to its receptor EGFR (epidermal growth factor receptor).
HBD-3 can be found in keratinocytes and airway epithelial cells
(Sorensen et al., 2005). Of the three HBDs, HBD-3 is fungicidal
against C. albicans, showing a minimal fungicidal concentration
(MFC) of 2.5 µM; HBD-2 has a poor activity against fungi, with a
MFC of 8 µM (Krishnakumari et al., 2009). Also, HBD-3 elevates
Xog1 activity, an exoglucanase of C. albicans cell wall, resulting
in reduced adherence of the yeast (Chang et al., 2012). Studies
have shown that at least one mechanism of action associated
with HBD-1, 2, and 3 increases the membrane permeability of
C. albicans (Krishnakumari et al., 2009).

Other small cationic peptides include the cathelicidins
[human LL-37, murine cathelicidin-related antimicrobial peptide
(CRAMP), and porcine PR-39], a group of antimicrobial skin
peptides produced by mast cells and by mucosal and skin
epithelial cells (McCormick and Weinberg, 2000) (Table 3 and
Figure 3). CRAMP is both fungicidal and fungistatic against
C. albicans, with MICs as low as 15 µM. LL-37 also has
fungicidal and fungistatic activity and can be cleaved into shorter
peptides with a higher fungicidal activity against C. albicans.
Assays have shown that LL-37 and RK-31 affect membrane
permeability of Candida cells. LL-37 also inhibits adhesion of
C. albicans to plastics and tissues by interacting with yeast cell
wall carbohydrates (Tsai et al., 2011). When the peptide LL-37
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was tested for their inhibitory effects and antibiofilm properties
against C. albicans strain, using both a crystal violet and an XTT
[2,3-bis- (2-methoxy-4-nitro-5-sulfophenyl) -2H -tetrazolium-
5-carboxanilide] assays showed satisfactory results, mainly in
relation to the prevention of biofilms. Through violet crystal
analysis, LL-37 had significant efficacy both in preventing biofilm
formation and in inhibiting early formed biofilms of C. albicans.
However, by XTT metabolic assay, LL-37 prevented biofilm
formation against C. albicans, even at sub-minimum inhibitory
concentrations (sub-MIC), but did not inhibit early biofilms (Luo
et al., 2017).

Although natural proteins/peptides represent a promising
therapeutic agents, they are usually extracted in small amount
which makes it difficult to perform biological tests (Bondaryk
et al., 2017). Stimulated by these facts, some researchers are
synthetizing or modifying existing natural peptides in order to
obtaining new molecules with enhanced antifungal activity and
reduced toxicity. For instance, a shortened peptide variant of
CRAMP, named P318 (Table 3), was identified by Brucker et al.
(2014) and shared 67% identity with the peptide LL-37. The
peptide was discovered in the islets of Langerhans of the murine
pancreas. P318 showed biofilm-specific activity as it inhibited
C. albicans biofilm formation at 0.15 µM without affecting
planktonic survival at that concentration.

Mollica et al. (2017) synthesized and characterized nine new
cationic peptides, rich in arginine and lysine amino acids to
introduce cationic charges and in phenylalanine and leucine
residues to increase lipophilicity. Four from these peptides
showed a potente antifungal activity against different clinical
isolates of Candida spp. (MIC ranged from 62.5 to 500 µg).

Cools et al. (2017) delineated and identified a linear
HsLin06_18, a 19-mer peptide (Table 3) derived from the
C-terminal part of HsAFP1, an antifungal and antibiofilm
plant defensin isolated from Heuchera sanguinea. Synergistic
combination of HsLin06_18 with caspofungin significantly
reduced in vitro biofilm formation of C. glabrata and
C. albicans on catheters, as well as in vivo biofilm formation of
C. albicans strain. In addition, combination dose (4.6 µM of
HsLin06_18 + 0.01 µM caspofungin) was fungicidal against
planktonic cells of tested strains, killing until 80% of yeast
population. Lim et al. (2016) demonstrated the antifungal and
antibiofilm activities of a synthetic peptide consisting of 15 amino
acids at the C-terminus of human β-defensin 3 (HBD3-C15,
Table 3). They observed that the biofilm of C. albicans on dentin
disks was inhibited by HBD3-C15 in a dose-dependent manner.

Despite promises, much research is still needed on hemolytic
activity, instability, production modes, interaction with high salt
concentrations, anti-virulence activity, and poor ability to cross
physiological barriers of these peptides, which could limit their
use in the clinic.

Plants as a Source for Anti-Candida
Natural Compounds
The use of plants and their bioactive molecules in the treatment of
candidiasis has emerged as a promising alternative to traditional
drugs against resistance which has developed in the Candida
genus. Antifungal substances derived from plants can selectively

act on different targets with fewer side effects. In addition, the
practice of phytotherapy is inexpensive; therefore, floral diversity
has resulted in an increase in potential usage in populations
experiencing economic difficulties. This review comments on
some of the extracts of plants or their metabolites that in vitro and
in vivo studies have already demonstrated a potential antifungal
activity.

There are some families of plants that are more studied than
others as the Combretaceae and Acanthaceae. Studies have shown
that leaves, seeds, fruits, and flowers have the most enriched plant
components. Leaves, as well as the seeds and fruits of plants have
higher levels of phenolic compounds. The concentration of these
compounds also depends on the nature of the chemical used as
solvent in the extraction process as well as on the growth and
storage conditions (Martins et al., 2015a). The most used solvents
in extraction processes are dichloromethane, methanol, ethanol,
ethyl acetate and n-butanol. (Martins et al., 2015a).

Recently, some authors have verified and evaluated the
biological activity of plant products against Candida species.
Lonicera japonica, a medicinal plant of folk medicine of China
used to treat some diseases, was investigated by Chen et al. (2012)
for the in vivo activity of an ethanol extract of its aerial parts.
The extract showed a very strong antimicrobial activity against
C. albicans and C. tropicalis and potent wound healing capacity;
further, enhanced production of anti-inflammatory cytokines
was observed. In this way, the authors suggested that both
activities detected in this extracts act synergistically accelerating
the process of wound healing.

Some properties of Lannea welwitschii and Justicia flava
were investigated by Agyare et al. (2013). Methanolic extract
of Lannea welwitschii leaves was antimicrobial against clinical
strains of C. albicans and other microorganisms. The MIC for
C. albicans was 2.5 mg/mL. Treatment with an extract from
both plants resulted in a significant decrease in wound size and
increase in wound tensile strength. A preliminary phytochemical
screening of extracts revealed tannins, flavonoids, alkaloids, and
glycosides as compounds. These results corroborate the use of
these vegetable extracts in treatment of wounds and infections in
phytotherapy.

Pereira et al. (2014) studied the activity of Pyrostegia
venusta crude flower extracts, fractions, and pure compounds
against isolates of Candida spp. and showed an effective
broad spectrum antifungal activity. Nordin et al. (2014)
reported anticandidal activity in an extract of Piper betle
leaves; in fact, the extract inhibited the growth of all Candida
species tested. Isa et al. (2014) also verified antimicrobial
property of four different extracts of Strychnos spinosa and
their fractions against American Type Culture Collection
(ATCC) strains of C. albicans and C. albicans isolates (MICs
of 0.16 and 0.63 mg/mL, respectively). Otari et al. (2014)
described that silver nanoparticles containing Manilkara
zapota seed extracts showed good activity against Candida
species.

Shahzad et al. (2014) evaluated the antifungal potential of
14 polyphenols against various C. albicans clinical isolates in
terms of planktonic and sessile MICs (PMICs and SMICs,
respectively). Among these, 7 were able to inhibit planktonic
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growth. The most effective was pyrogallol (PMIC50 = 78 µg/mL)
and curcumin (PMIC50 = 100 µg/mL). In addition, curcumin
inhibited adhesion capability of cells and demonstrated anti-
biofilm activity against C. albicans (SMIC50 = 50 µg/mL).

Martins et al. (2015b) evaluated ten different plant extracts
commonly used in folk medicine for antifungal activity
against Candida spp. They verified that hydro-methanolic
extracts of leaves from two of these plants, Juglans regia
and Eucalyptus globulus, demonstrated excellent antimycotic
property against all Candida strains. Goncalves et al. (2015)
described anticandidal activity in a Cynomorium coccineum
methanol extract, which showed excellent action against
C. guilliermondii and C. krusei, showing very low MIC values
(0.025 mg/mL). Moraes et al. (2015) investigated the antimycotic
property of a hydroethanolic extract of Uncaria tomentosa and
some of its fractions against resistant Candida spp. and verified
that the water-insoluble fraction showed significant antifungal
activity.

Akroum (2017) showed antifungal activity in an acetylic
extract of Vicia faba against C. albicans (MIC of 0.010 mg/mL)
in vitro. Further, mortality rates were reduced in mice that
were administered with the extract (20 µg/mL) for treatment of
candidiasis.

Correia et al. (2016) evaluated the antifungal properties
of six plants from Brazilian Cerrado commonly used in folk
medicine (ethanolic and aqueous extracts) against different
Candida reference strains using the disk diffusion method and
determining MICs. Among these plants, the most promising
were Eugenia dysenterica and Pouteria ramiflora. They showed
excellent activity against C. tropicalis, C. famata, C. krusei,
C. guilliermondii, and C. parapsilosis with low MICs values.
A phytochemical screening of active extracts from these plants
disclosed as main components flavonoids and catechins.

Terças A.G. et al. (2017) found antifungal properties in
crude extract and fractions (n-butanolic and ethyl acetate
ones) from Terminalia catappa leaves via the agar diffusion
and microdilution tests when analyzed against Candida spp.;
hydrolysable tannins (punicalin, punicalagin), gallic acid,
and flavonoid C-glycosides are likely the active components.
Todorovic et al. (2017) verified the antifungal activity of
polyphenols (flavanol monomers such as epicatechin and
catechin, and procyanidin oligomers) of alkalized/non-alkalized
Theobroma cacao powders against C. albicans (ATCC 10231)
and determined a MIC value of 5.0 mg/mL using the broth
microdilution method.

Phytochemicals present in leaves of Carya illinoensis were first
identified by Bottari et al. (2017), and the antimicrobial activity
of their aqueous and ethanolic extracts was determined. Both
extracts had MIC values against seven Candida reference
strains between 25 mg/mL and 6.25 mg/mL. Phenolic
acids (gallic acid and ellagic acid), flavonoids (rutin), and
tannins (catechins and epicatechins) were likely responsible,
in part, for the activity against Candida strains. Further,
the extracts inhibited the production of C. albicans germ
tubes.

Important biologically active molecules are found in plants
(Martins et al., 2015c). Polyphenols are a kind of substance

most found in plants; they are low molecular weight naturally
occurring organic compounds that contain one or more phenolic
groups (Daglia, 2012; Shahzad et al., 2014). Further, polyphenols
perform various substantial functions in plant physiology and,
therefore, can be found, in lesser or greater quantity, in all
of them. Phenolic acids, flavonoids, tannins, coumarins, are
some examples of phenolic compounds found in and extracted
from medicinal plants (Daglia, 2012). Research has shown
that polyphenols have potentially healthy effects in humans,
working primarily as anticancer, antihypertensive, anti-allergen,
anti-inflammatory, antioxidants, and antimicrobial agents. The
antimicrobial activity of polyphenols has been extensively
investigated mainly against bacteria (Daglia, 2012).

Nevertheless, the antifungal activity of some of the above-
mentioned phenolic compounds remains unknown and
determining the antifungal activity of such compounds remains
an open area of research. Reports of studies of phenolic
compounds against Candida are still scarce. There are few studies
on the mechanism of action of the substance, cytotoxicity,
the synergism with traditional antifungals drugs and their
anti-virulence activities (such as inhibition of biofilm formation,
interference of adhesion capability, interference of hyphal
formation or inhibition of exoenzymes production).

Flavan-3-ols, flavonols, and tannins have received the most
attention among the known polyphenols, attributable to their
large spectrum of efficacy and high antimicrobial property, which
have been shown in many bacteria strains and isolates. Further,
virulence factors of bacteria may be influenced by polyphenols
and also these substances can act in synergism with antibiotics;
consequently, those polyphenols are also the most studied in
relation to their anti-Candida activities. Thus, we reviewed
the antifungal activities related in scientific literature of the
polyphenols considered most actives and their mechanisms of
action.

Flavonoids are a class of natural compounds with several
known protective activities, including antifungal activity. The
flavonoids include subclasses such as chalcones, flavones,
isoflavones, flavonols, flavanols (flavan-3-ol), and anthocyanidins
(Seleem et al., 2017). The activity of flavonols such as quercetin,
myricetin, and kaempferol has been described in C. albicans.
Herrera et al. (2010) showed inhibition of C. albicans growth
with isolated flavonols from propolis using quercetin in an
agar microdilution method, obtained a variation of MIC values
from 197 to 441 µg/mL. These same authors found similar
results for myricetin and kaempferol against Candida species
(Herrera et al., 2010). Other studies have reported antimicrobial
activity (Avila et al., 2008; Batovska et al., 2009) for other
propolis polyphenols such as flavanone (pinocembrin and
pinostrobin) and chalcones (2,4-dihydroxychalcone and 2,4-
dihydroxy-3-methoxychalcone). The flavanols subclass (flavan-
3-ol) and gallotannin, extracted from Syzygium cordatum, also
showed inhibitory properties on the growth of C. albicans, with
a MIC of 0.195 mg/mL in a microdilution test (Mulaudzi et al.,
2012). Serpa et al. (2012) isolated baicalein, belonging to a
subclass of flavones, from Scutellaria baicalensis, and induced
apoptosis in C. albicans, with a MIC value of 26 µg/mL.
Apigenin, a flavone isolated from propolis, had a MIC of
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441 µg/mL against C. albicans, as shown using a microdilution
test.

Tannins are polyphenolic compounds present in various
plant parts, such as the roots, flowers, leaves, fruits, and seeds.
Tannins are divided into ellagitannins (hydrolysable tannins),
proanthocyanidins (condensed tannins) and gallotannins (Duval
and Avérous, 2016). They have the ability to interact with and
precipitate macromolecules such as proteins (dos Santos et al.,
2017), as well as having antimicrobial properties. However, the
mechanisms underlying the antimicrobial action of tannins in
different microorganisms such as bacteria and fungi are still
under investigation (Morey et al., 2016; Xu et al., 2016; dos Santos
et al., 2017).

The knowledge that wood durability could be attributed to
the accumulation of ellagitannins, with the ability to precipitate
proteins and/or withdraw metallic cofactors acting as a microbial
barrier, raised the suspicion that ellagitannins would have
antifungal activity. Accordingly, ellagitannins isolated from
Ocotea odorifera, a plant commonly used in Brazil in folk
medicine, have a very good activity against C. parapsilosis
(Yamaguchi et al., 2011). dos Santos et al. (2017) verified
that encapsulated tannins from Acacia mearnsii have moderate
activity against the filamentous fungi Aspergillus niger (ATCC
9642) and C. albicans (ATCC 34147).

Other phytosubstances reported to be active against yeasts
and fungi include essential oils, which are derived from aromatic
medicinal plants (Reichling et al., 2009; Shahid et al., 2009;
Centeno et al., 2010; Vale-Silva et al., 2010; Pitman et al., 2011;
Sienkiewicz et al., 2011). Essential oils are rich in monoterpenes,
sesquiterpenes, and/or phenylpropanoids, considerate volatile
organic compounds. Essential oils are present in various plant
species. Mondello et al. (2003) proposed that tea tree oil could
be used in antifungal therapy, because it showed efficacy against
multidrug-resistant Candida species in vitro and against mucosal
candidiasis in vivo; they further documented that terpinen-4-ol
was the main substance to contribute to the anticandidal activity.

Several oils have demonstrated activity against Candida
species. Essential oils from Carica papaya have inhibitory effects
against Candida species, as shown via the agar diffusion method
and the microdilution method, with MICs between 4 and
16 mg/mL and MFCs between 16 and 64 µg/mL (Sharma H. et al.,
2016; Sharma Y. et al., 2016; He et al., 2017). Minooeianhaghighi
et al. (2017) tested a combination of essential oils from Cuminum
cyminum and Lavandula binaludensis against C. albicans isolates,
showing growth inhibition at concentrations between 3.90 and
11.71 µg/mL. Essential oils from Cymbopogon nardus have also
shown antimicrobial potential against Candida species, with
MICs between 250 and 1000 µg/mL and with inhibition of
hyphal growth in C. albicans at concentrations between 15.8 and
1000 µg/mL (De Toledo et al., 2016). In addition to inhibiting
biofilm formation (Abu-Darwish et al., 2016), essential oils from
Artemisia judaica have been shown to inhibit the formation
of germination tubes in C. albicans, with 80% inhibition of
filamentation at a concentration of 0.16 µL/mL. Köse et al.
(2016) demonstrated the fungicidal potential of essential oils
from Centaurea baseri against Candida species, with a MIC of
60 µg/mL.

Sharifzadeh et al. (2015) observed that essential oils from
Trachyspermum ammi have anticandidal effects against isolates
of C. albicans, some of which were resistant to FLZ. Gavanji
et al. (2015) have compared the efficiency of herbal essences from
Foeniculum vulgare, Satureja hortensis, C. cyminum, and Zataria
multiflora against C. albicans. Essential oils from Z. multiflora
showed the best anticandidal activity of those tested, with MIC
and MFC values of 34 and 64 µg/mL, respectively.

Among monoterpenes there is thymol (2-isopropyl-5-
methylphenol), (Sánchez et al., 2004). It is the most abundant
constituent in essential oils from Thymus vulgaris (thyme)
(De Lira Mota et al., 2012) and the major component of
essential oils from Origanum vulgare (oregano) (Romero et al.,
2012). Antifungal activity of thymol was investigated by de
Castro et al. (2015) against Candida strains. They verified
fungistatic and fungicidal activity, mechanisms of action and
mode of interactions in combination with nystatin. Thymol had
antifungal properties, with MIC of 39 µg/mL against C. albicans
and C. krusei, and MIC of 78 µg/mL against C. tropicalis.
Antifungal assays also showed an eightfold increase (from 39.0
to 312.5 µg/mL) in thymol MIC values against C. albicans in the
presence of exogenous ergosterol, indicating that thymol binds
to ergosterol in the plasma membrane, thereby increasing ion
permeability and resulting in cell death. Combination of thymol
and nystatin resulted in synergy.

Terpenoids exhibit a very good antimycotic activity against
blastopores and filamentous forms growth of C. albicans at
concentrations that are non-toxic to HeLa cells (Zore et al.,
2011). Accordingly, terpenoids may be useful as a future
antifungal chemotherapeutic agent, in addition to its synergistic
effects with conventional drugs such as FLZ (Zore et al.,
2011). Further, in experiments realized by Fan et al. (2011),
rubiarbonol G, a triterpenoid from Rubia yunnanensis, showed
potent antimicrobial activity against C. albicans, with a MIC of
10.5 µg/mL.

The anti-biofilm activity of terpenes, along with the efficacy
of thymol, geraniol, and carvacrol in the treatment of Candida
infections associated with the use of hospital devices has been
related (Dalleau et al., 2008). Mechanisms underlying the effects
associated with carvacrol include alterations of the cellular
cytoplasmic membrane and induction of apoptosis, as shown in
an in vitro macrodilution study in Candida species (Mulaudzi
et al., 2012).

Phenylpropanoids are other naturally occurring compounds
frequently studied for their anti-Candida properties; they are
categorized as coumarins, phenylpropanoic acid, and lignans
(Lu et al., 2017). Navarro-García et al. (2011) and Raut
et al. (2014), found that a coumarin (scopoletin) and two
phenylpropanoic acids (salicylaldehyde and anisyl alcohol) have
antifungal property against C. albicans, with MICs of 25, 31, and
31 µg/mL, respectively.

Taken together these data show that plants contain molecules
possessing high bioactive potential. However, the process of
discovering bioactive molecules is complex and time-consuming,
involving the isolation, identification, and optimization of
pharmacokinetic and pharmacodynamic properties, as well as the
selection of lead compounds for further drug development.
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Synergistic Effects of Plant Extracts or
Their Phytoconstituents With Traditional
Agents
The knowledge about synergistic effects of plant extracts or their
phytoconstituents with traditional agents is nowadays a type of
study that is indispensable, since some screening assays, most
realized in vitro, have evidenced that plant extracts are less
effective than existing antifungal agents (Newman and Cragg,
2012) and that extracts with MIC of 1000 µg/mL are considered
inefficient (Morales et al., 2008).

The use of drug combinations in treatment of infections by
fungi is a preferred strategy clinically. Although combination
of medications requires a careful evaluation of the synergistic,
antagonistic, and agonist properties of the drugs involved (Lewis
and Kontoyiannis, 2001), it has been used successfully in many
cases of fungal infection (Serena et al., 2005; Espinel-Ingroff,
2009; Bink et al., 2011; Rodrigues et al., 2014) (Table 1). The
synergistic effects of drugs are primarily attributable to cell wall
damage as one antifungal component potentiates the activity of
drugs exactly against some constituent of plasma membrane.
Alternatively, a compromised cell wall has increased permeability
and could facilitate movement of drugs across the cell membrane
to their targets.

Accordingly, the synergistic effect of plant extracts or their
biomolecules in combination with conventional antimicrobial
agents (or with some other different extract or biosubstance)
against clinical multidrug-resistant microorganisms represents
a successful therapeutic approach (Mukherjee et al., 2005).
Advantages of combination therapies include lower doses of
antifungal agent, possible synergistic actions between antifungals,
and less development of drug resistance. The objective of this
strategy is to maximize the antifungal effects. Some examples are
addressed herein.

Tangarife-Castaño et al. (2011) reported synergy between
essential oils or plant extracts associated with antifungal drugs
when used as anti-C. albicans agents. The best synergistic
effects were obtained for combination between itraconazole and
P. bredemeyeri extract [fractional inhibitory concentration index
(FICI) range of 0.09–0.13] against C. albicans.

Chanda et al. (2013) verified a synergistic potential when
methanolic extract of T. catappa leaves was combined with
nystatin or AMB against C. albicans (ATCC 209), C. neoformans
(National Collection of Industrial Microorganisms [NCIM]
3542), C. glabrata (NCIM 3448), C. apicola (NCIM 3367), and
Trichosporon beigelii (NCIM 3404). As such, maximum synergy
was observed against C. apicola.

Santos et al. (2013) related the antimycotic properties of an
ethanol extract of Hyptis martiusii (EEHM) against C. albicans,
C. krusei, and C. tropicalis. They verified synergistic antifungal
activity for EEHM in combination with metronidazole when used
against C. tropicalis.

Avijgan et al. (2014) reported a synergistic effect between
an Echinophora platyloba ethanolic extract and different azoles
against isolates of C. albicans from vaginal secretions of patients
with recurrent vulvovaginitis. MIC and MFC values ranged from
3.1 to 6.25 mg/mL and 6.2 to 12.5 mg/mL, respectively, showing

potent synergistic effects of the E. platyloba ethanol extract in
combination with itraconazole and FLZ.

Combination between thymol and nystatin was found to have
synergistic effects against Candida species (de Castro et al., 2015),
reducing the MICs of both products by 87.4% and generating a
fractional inhibitory concentration (FIC) index of 0.25.

Synergism between a water insoluble fraction (WIF) from
U. tomentosa (cat’s claw) bark and the agents terbinafine or FLZ
was investigated against seven resistant isolates of C. glabrata and
C. krusei via the checkerboard procedure using a microdilution
technique (Moraes et al., 2015). Synergism was observed between
the U. tomentosa WIF and terbinafine, as well as between the
U. tomentosa WIF and FLZ. The most efficacious synergistic
effects leading to cell damage were unequivocally attributed
to a combination of the U. tomentosa WIF and terbinafine
(1.95:4.0, l g/mL), as well as the U. tomentosa WIF and FLZ
(1.95:8.0, l g/mL). Moraes et al. (2015) also demonstrated,
through differential scanning calorimetry and infrared analysis,
that intermolecular interactions between the U. tomentosa WIF
components and either terbinafine or FLZ occurring outside the
cell wall are likely responsible for synergistic effects observed
between substance. An action on constituents of the cell wall was
suggested, independent of ABC efflux pump mechanisms.

Ngouana et al. (2015) conducted a bioguided screening with
sub-fraction combinations of T. catappa, Terminalia mantaly,
and Monodora tenuifolia against C. albicans, C. glabrata,
C. parapsilosis, and C. neoformans isolates, as well as the
C. albicans NR-29450 reference strain. They observed synergistic
interactions between subfractions combinations. A combination
of M. tenuifolia and T. mantaly (C36/C12) sub-fractions showed
synergistic interactions and fungicidal effects against most tested
strains.

Cavalcanti Filho et al. (2017) verified that the methanolic
extract of Buchenavia tetraphylla is a great source of antimicrobial
compounds that enhance the action of FLZ against different
C. albicans isolates from vaginal secretions as well as azole-
resistant isolates. The extract increased the action of FLZ in most
strains through additive (20% of strains) or synergistic (60% of
strains) effects.

Although many in vitro studies examining synergistic
effects among potential antifungal biomolecules and traditional
antifungal agents have been reported in the literature as described
herein, the mechanisms underlying these synergistic effects
are poorly understood. Several randomized and controlled
analyzes have been performed with the objective of verifying the
efficacy and risks of using traditional antifungal combinations;
however, the high cost, reduced number of clinical cases and
existence of confusing variables have resulted in contradictory
and poor results. Therefore, it is extremely relevant the constant
search for new phytocompounds to examine carefully possible
synergism between them and conventional antifungal agents
in order to obtain more insight. A lack of consensus in
the medical clinical emphasizes the need to conduct further
clinical trials using combinations of antifungals. The experiments
and results addressed herein support further investigation of
new plant constituents with antifungal properties and the
efficacy of combination therapies involving phytocomponents
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and traditional antifungal agents as an important start for the
development of unusual and original antifungal therapies.

CONCLUDING REMARKS

Candida species are highly resistant to existing antifungal
agents and can adapt to different host niches thus
representing a serious risk to human health. The mechanisms
underlying development of antifungal resistance are complex
and involve multiple pathways and genes. Further, these
mechanisms continue to change and evolve, challenging the
medical clinic and exacerbating the need for discovering
original therapies against Candida diseases. In this way,
identification of new bioactive compounds as well as
development of original formulations of antifungals and
combinations involving active biomolecules and conventional

agents represents the possibility for a successful therapeutic
approach.
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(2017). Natural antimicrobial peptides as inspiration for design of a
new generation antifungal compounds. J. Fungi 3:E46. doi: 10.3390/jof3
030046

Bottari, N. B., Lopes, L. Q., Pizzuti, K., Filippi, Dos Santos Alves, C., Corrêa,
M. S., Bolzan, L. P., et al. (2017). Antimicrobial activity and phytochemical
characterization of Carya illinoensis. Microb. Pathog. 104, 190–195. doi: 10.
1016/j.micpath.2017.01.037

Bouza, E., and Munoz, P. (2008). Epidemiology of candidemia in intensive
care units. Int. J. Antimicrob. Agents 32, 87–91. doi: 10.1016/S0924-8579(08)
70006-2

Brucker, K., Delattin, N., Robijns, S., Steenackers, H., Verstraeten, N., Landuyt, B.,
et al. (2014). Derivatives of the mouse cathelicidin-related antimicrobial peptide
(CRAMP) inhibit fungal and bacterial biofilm formation. Antimicrob. Agents
Chemother. 58, 5395–5404. doi: 10.1128/AAC.03045-14

Brunke, S., and Hube, B. (2013). Two unlike cousins: Candida albicans and
Candida glabrata infection strategies. Cell Microbiol. 15, 701–708. doi: 10.1111/
cmi.12091

Caban, M., Strapagiel, D., Dziadek, J., Korycka-Machała, M., and Grzelak, A.
(2016). Principles of a new protocol for prediction of azole resistance in Candida
albicans infections on the basis of ERG11 polymorphisms. Curr. Microbiol. 73,
172–182. doi: 10.1007/s00284-016-1039-3

Frontiers in Microbiology | www.frontiersin.org 16 July 2018 | Volume 9 | Article 1351

https://doi.org/10.1016/j.jep.2016.06.023
https://doi.org/10.1155/2013/632927
https://doi.org/10.1016/j.mycmed.2016.10.004
https://doi.org/10.1016/j.mycmed.2016.10.004
https://doi.org/10.1586/14787210.2015.1032939
https://doi.org/10.1590/S1676-24442007000500004
https://doi.org/10.1590/S1676-24442007000500004
https://doi.org/10.2174/1389203711209070632
https://doi.org/10.1097/01.WCB.0000080651.64357.C6
https://doi.org/10.1016/0022-2836(81)90125-X
https://doi.org/10.1016/j.mycmed.2014.01.116
https://doi.org/10.1016/j.mycmed.2014.01.116
https://doi.org/10.1016/j.bmc.2008.09.064
https://doi.org/10.1186/s12879-016-1704-y
https://doi.org/10.1128/AAC.44.9.2435-2441.2000
https://doi.org/10.1128/AAC.44.9.2435-2441.2000
https://doi.org/10.1007/s00134-014-3310-z
https://doi.org/10.1007/s00134-014-3310-z
https://doi.org/10.1016/j.ejmech.2008.05.010
https://doi.org/10.3109/15569527.2015.1020544
https://doi.org/10.1128/AAC.48.5.1773-1777.2004
https://doi.org/10.2174/1874437001105010029
https://doi.org/10.2174/1874437001105010029
https://doi.org/10.3390/jof3030046
https://doi.org/10.3390/jof3030046
https://doi.org/10.1016/j.micpath.2017.01.037
https://doi.org/10.1016/j.micpath.2017.01.037
https://doi.org/10.1016/S0924-8579(08)70006-2
https://doi.org/10.1016/S0924-8579(08)70006-2
https://doi.org/10.1128/AAC.03045-14
https://doi.org/10.1111/cmi.12091
https://doi.org/10.1111/cmi.12091
https://doi.org/10.1007/s00284-016-1039-3
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01351 July 3, 2018 Time: 12:57 # 17

de Oliveira Santos et al. Candida Infections and Therapeutic Strategies

Calderone, R. A., and Fonzi, W. A. (2001). Virulence factors of Candida albicans.
Trends Microbiol. 9, 327–335. doi: 10.1016/S0966-842X(01)02094-7

Canuto, M., and Rodero, F. G. (2002). Antifungal drug resistance to azoles and
polyenes. Lancet Infect. Dis. 2, 550–563. doi: 10.1016/S1473-3099(02)00371-7

Carrillo-Muñoz, A. J., Giusiano, G., Ezkurra, P. A., and Quindós, G. (2006).
Antifungal agents: mode of action in yeast cells. Rev. Esp. Quimioter. 19,
130–139.

Cavalcanti Filho, J. R., Silva, T. F., Nobre, W. Q., Oliveira de Souza, L. I., Silva, E.,
Silva Figueiredo, C. S., et al. (2017). Antimicrobial activity of Buchenavia
tetraphylla against Candida albicans strains isolated from vaginal secretions.
Pharm. Biol. 55, 1521–1527. doi: 10.1080/13880209.2017.1304427

Centeno, S., Calvo, M. A., Adelantado, C., and Figueroa, S. (2010). Antifungal
activity of Rosmarinus officinalis and Thymus vulgaris against Aspergillus flavus
and A. ochraceus. Pak. J. Biol. Sci. 13, 452–455. doi: 10.3923/pjbs.2010.452.455

Cernicka, J., and Subik, J. (2006). Resistance mechanisms in fluconazole-resistant
Candida albicans isolates from vaginal candidiasis. Int. J. Antimicrob. Agents 27,
403–408. doi: 10.1016/j.ijantimicag.2005.12.005

Chamilos, G., Lewis, R. E., Albert, N., and Kontoyiannis, D. P. (2007).
Paradoxical effect of echinocandins across Candida species in vitro: evidence
for echinocandin-specific and Candida species-related differences. Antimicrob.
Agents Chemother. 51, 2257–2259. doi: 10.1128/AAC.00095-07

Chanda, S., Rakholiya, K., Dholakia, K., and Baravalia, Y. (2013). Antimicrobial,
antioxidant, and synergistic properties of two nutraceutical plants: Terminalia
catappa L. and Colocasia esculenta L. Turk. J. Biol. 37, 81–91. doi: 10.3906/biy-
1203-41

Chandra, J., Zhou, G., and Ghannoum, M. A. (2005). Fungal biofilms and
antimycotics. Curr. Drug Targets 6, 887–894. doi: 10.2174/138945005774912762

Chang, W., Li, Y., Zhang, L., Cheng, A., and Lou, H. (2012). Retigeric acid B
attenuates the virulence of Candida albicans via inhibiting adenylyl cyclase
activity targeted by enhanced farnesol production. PLoS One 7:e41624.
doi: 10.1371/journal.pone.0041624

Chaturvedi, V., Ramani, R., Andes, D., Diekema, D. J., Pfaller, M. A., Ghannoum,
M. A., et al. (2011). Multilaboratory testing of two-drug combinations
of antifungals against Candida albicans, Candida glabrata, and Candida
parapsilosis. Antimicrob. Agents Chemother. 55, 1543–1548. doi: 10.1128/AAC.
01510-09

Chen, C. G., Yang, Y. L., Shih, H. I., Su, C. L., and Lo, H. J. (2004). CaNdt80
is involved in drug resistance in Candida albicans by regulating CDR1.
Antimicrob. Agents Chemother. 48, 4505–4512. doi: 10.1128/AAC.48.12.4505-
4512.2004

Chen, C. G., Yang, Y. L., Tseng, K. Y., Shih, H. I., Liou, C. H., Lin, C. C., et al. (2009).
Rep1p negatively regulating MDR1 efflux pump involved in drug resistance
in Candida albicans. Fungal Genet. Biol. 46, 714–720. doi: 10.1016/j.fgb.2009.
06.003

Chen, S. C. A., and Sorrel, T. C. (2007). Antifungal agents. Med. J. Aust. 187,
404–409.

Chen, W.-C., Liou, S.-S., Tzeng, T.-F., Lee, S. L., and Liu, I. M. (2012). Wound
repair and anti-inflammatory potential of Lonicera japonica in excision wound-
induced rats. BMC Complement. Altern. Med. 12:226. doi: 10.1186/1472-6882-
12-226

Chen, Y. L., Lehman, V. N., Averette, A. F., Perfect, J. R., and Heitman, J. (2013).
Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with
caspofungin or FK506 against Candida albicans. PLoS One 8:e57672. doi: 10.
1371/journal.pone.0057672

Clancy, C. J., and Nguyen, M. H. (2013). Finding the “missing 50%” of
invasive candidiasis: how nonculture diagnostics will improve understanding
of disease spectrum and transform patient care. Clin. Infect. Dis. 56, 1284–1292.
doi: 10.1093/cid/cit006

Cools, T. L., Struyfs, C., Drijfhout, J. W., Kucharíková, S., Lobo Romero, C.,
Van Dijck, P., et al. (2017). A Linear 19-Mer plant defensin-derived peptide
acts synergistically with Caspofungin against Candida albicans biofilms. Front.
Microbiol. 8:2051. doi: 10.3389/fmicb.2017.02051

Cornely, O. A., Bassetti, M., Calandra, T., Garbino, J., Kullberg, B. J., Lortholary, O.,
et al. (2012). ESCMID guideline for the diagnosis and management of Candida
diseases 2012: non-neutropenic adult patients. Clin. Microbiol. Infect. 8, 19–37.
doi: 10.1111/1469-0691.12039

Correia, A. F., Dâmaris Silveira, D., Fonseca-Bazzo, Y. M., Magalhães, P. O., Fagg,
C. W., da Silva, E. C., et al. (2016). Activity of crude extracts from Brazilian

cerrado plants against clinically relevant Candida species. BMC Complement.
Altern. Med. 16:203. doi: 10.1186/s12906-016-1164-3

Costa, C., Ponte, A., Pais, P., Santos, R., Cavalheiro, M., Yaguchi, T., et al.
(2015). New mechanisms of flucytosine resistance in C. glabrata unveiled by
a chemogenomics analysis in S. cerevisiae. PLoS One 10:e0135110. doi: 10.1371/
journal.pone.0135110

Coste, A., Turner, V., Ischer, F., Morschha-User, J., Forche, A., Selmecki, A., et al.
(2006). A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2,
is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal
resistance in Candida albicans. Genetics 172, 2139–2156. doi: 10.1534/genetics.
105.054767

Coste, A. T., Karababa, M., Ischer, F., Bille, J., and Sanglard, D. (2004). TAC 1,
transcriptional activator of CDR genes, is a new transcription factor involved
in the regulation of Candida albicans ABC transporters CDR1 and CDR2.
Eukaryot. Cell 3, 1639–1652. doi: 10.1128/EC.3.6.1639-1652.2004

Cowen, L. E., Sanglard, D., Howard, S. J., Rogers, P. D., and Perli, D. S. (2015).
Mechanisms of antifungal drug resistance. Cold Spring Harb. Perspect. Med.
5:a019752. doi: 10.1101/cshperspect.a019752

Cuenca-Estrella, M. (2010). Antifúngicos en el tratamiento de las infecciones
sistémicas: importancia del mecanismo de acción, espectro de actividad y
resistencias. Rev. Esp. Quimioter. 23, 169–176.

Cui, J., Ren, B., Tong, Y., Dai, H., and Zhang, L. (2015). Synergistic combinations
of antifungals and anti-virulence agents to fight against Candida albicans.
Virulence 6, 362–371. doi: 10.1080/21505594.2015.1039885

Daglia, M. (2012). Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 23,
174–181. doi: 10.1016/j.copbio.2011.08.007

Dalleau, S., Cateau, E., Bergès, T., Berjeaud, J. M., and Imbert, C. (2008). In vitro
activity of terpenes against Candida biofilms. Int. J. Antimicrob. Agents 31,
572–576. doi: 10.1016/j.ijantimicag.2008.01.028

de Castro, R. D., de Souza, T. M. P., Bezerra, L. M., Ferreira, G. L., Costa, E. M.,
and Cavalcanti, A. L. (2015). Antifungal activity and mode of action of Thymol
and its synergism with nystatin against Candida species involved with infections
in the oral cavity: an in vitro study. BMC Complement. Altern. Med. 15:417.
doi: 10.1186/s12906-015-0947-2

De Lira Mota, K. S., de Oliveira Pereira, F., de Oliveira, W. A., Lima, I. O., and
de Oliveira Lima, E. (2012). Antifungal activity of Thymus vulgaris L. essential
oil and its constituent phytochemicals against Rhizopus oryzae: interaction
with ergosterol. Molecules 17, 14418–14433. doi: 10.3390/molecules1712
14418

De Toledo, L. G., Ramos, M. A. D. S., Spósito, L., Castilho, E. M., Pavan, F. R.,
Lopes, É. D. O., et al. (2016). Essential oil of Cymbopogon nardus (L.) Rendle: a
strategy to combat fungal infections caused by Candida species. Int. J. Mol. Sci.
17:E1252. doi: 10.3390/ijms17081252

Delgado, A. C., de Jesus Pedro, R., Aoki, F. H., Resende, M. R., Trabasso, P.,
Colombo, A. L., et al. (2009). Clinical and microbiological assessment of
patients with a long-term diagnosis of human immunodeficiency virus infection
and Candida oral colonization. Clin. Microbiol. Infect. 15, 364–371. doi: 10.
1111/j.1469-0691.2009.02707.x

Dismukes, W. E. (2000). Introduction to antifungal drugs. Clin. Infect. Dis. 30,
653–657. doi: 10.1086/313748

dos Santos, C., Vargas, A., Fronza, N., and Dos Santos, J. H. Z. (2017).
Structural, textural and morphological characteristics of tannins from Acacia
mearnsii encapsulated using sol-gel methods: applications as antimicrobial
agents. Colloids Surf. B Biointerfaces 151, 26–33. doi: 10.1016/j.colsurfb.2016.
11.041

Duits, L. A., Ravensbergen, B., Rademaker, M., Hiemstra, P. S., and Nibbering,
P. H. (2002). Expression of beta-defensin 1 and 2 mRNA by human monocytes,
macrophages and dendritic cells. Immunology 106, 517–525. doi: 10.1046/j.
1365-2567.2002.01430.x

Duval, A., and Avérous, L. (2016). Characterization and physicochemical
properties of condensed tannins from Acacia catechu. J. Agric. Food Chem. 64,
1751–1760. doi: 10.1021/acs.jafc.5b05671

Edgerton, M., and Koshlukova, S. E. (2000). Salivary histatin 5 and its similarities
to the other antimicrobial proteins in human saliva. Adv. Dent. Res. 14, 16–21.
doi: 10.1177/08959374000140010201

Espinel-Ingroff, A. (2008). Mechanisms of resistance to antifungal agents: yeasts
and filamentous fungi. Rev. Iberoam. Micol. 25, 101–106. doi: 10.1016/S1130-
1406(08)70027-5

Frontiers in Microbiology | www.frontiersin.org 17 July 2018 | Volume 9 | Article 1351

https://doi.org/10.1016/S0966-842X(01)02094-7
https://doi.org/10.1016/S1473-3099(02)00371-7
https://doi.org/10.1080/13880209.2017.1304427
https://doi.org/10.3923/pjbs.2010.452.455
https://doi.org/10.1016/j.ijantimicag.2005.12.005
https://doi.org/10.1128/AAC.00095-07
https://doi.org/10.3906/biy-1203-41
https://doi.org/10.3906/biy-1203-41
https://doi.org/10.2174/138945005774912762
https://doi.org/10.1371/journal.pone.0041624
https://doi.org/10.1128/AAC.01510-09
https://doi.org/10.1128/AAC.01510-09
https://doi.org/10.1128/AAC.48.12.4505-4512.2004
https://doi.org/10.1128/AAC.48.12.4505-4512.2004
https://doi.org/10.1016/j.fgb.2009.06.003
https://doi.org/10.1016/j.fgb.2009.06.003
https://doi.org/10.1186/1472-6882-12-226
https://doi.org/10.1186/1472-6882-12-226
https://doi.org/10.1371/journal.pone.0057672
https://doi.org/10.1371/journal.pone.0057672
https://doi.org/10.1093/cid/cit006
https://doi.org/10.3389/fmicb.2017.02051
https://doi.org/10.1111/1469-0691.12039
https://doi.org/10.1186/s12906-016-1164-3
https://doi.org/10.1371/journal.pone.0135110
https://doi.org/10.1371/journal.pone.0135110
https://doi.org/10.1534/genetics.105.054767
https://doi.org/10.1534/genetics.105.054767
https://doi.org/10.1128/EC.3.6.1639-1652.2004
https://doi.org/10.1101/cshperspect.a019752
https://doi.org/10.1080/21505594.2015.1039885
https://doi.org/10.1016/j.copbio.2011.08.007
https://doi.org/10.1016/j.ijantimicag.2008.01.028
https://doi.org/10.1186/s12906-015-0947-2
https://doi.org/10.3390/molecules171214418
https://doi.org/10.3390/molecules171214418
https://doi.org/10.3390/ijms17081252
https://doi.org/10.1111/j.1469-0691.2009.02707.x
https://doi.org/10.1111/j.1469-0691.2009.02707.x
https://doi.org/10.1086/313748
https://doi.org/10.1016/j.colsurfb.2016.11.041
https://doi.org/10.1016/j.colsurfb.2016.11.041
https://doi.org/10.1046/j.1365-2567.2002.01430.x
https://doi.org/10.1046/j.1365-2567.2002.01430.x
https://doi.org/10.1021/acs.jafc.5b05671
https://doi.org/10.1177/08959374000140010201
https://doi.org/10.1016/S1130-1406(08)70027-5
https://doi.org/10.1016/S1130-1406(08)70027-5
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01351 July 3, 2018 Time: 12:57 # 18

de Oliveira Santos et al. Candida Infections and Therapeutic Strategies

Espinel-Ingroff, A. (2009). Novel antifungal agents, targets or therapeutic strategies
for the treatment of invasive fungal diseases: a review of the literature
(2005–2009). Rev. Iberoam. Micol. 26, 15–22. doi: 10.1016/S1130-1406(09)
70004-X

Fan, J. T., Kuang, B., Zeng, G. Z., Zhao, S. M., Ji, C. J., Zhang, Y. M., et al.
(2011). Biologically active arborinane-type triterpenoids and anthraquinones
from Rubia yunnanensis. J. Nat. Prod. 74, 2069–2080. doi: 10.1021/np2002918

Ferreira, A. V., Prado, C. G., Carvalho, R. R., Dias, K. S. T., and Dias, A. L. T. (2013).
Candida albicans and non-C. albicans Candida species: comparison of biofilm
production and metabolic activity in biofilms, and putative virulence properties
of isolates from hospital environments and infections. Mycopathologia 175,
265–272. doi: 10.1007/s11046-013-9638-z

Flowers, S. A., Colón, B., Whaley, S. G., Schuler, M. A., and Rogers, P. D. (2015).
Contribution of clinically derived mutations in ERG11 to azole resistance in
Candida albicans. Antimicrob. Agents Chemother. 59, 450–460. doi: 10.1128/
AAC.03470-14

Fothergill, A. W., Sutton, D. A., McCarthy, D. I., and Wiederhold, N. P. (2014).
Impact of new antifungal breakpoints on antifungal resistance in Candida
species. J. Clin. Microbiol. 52, 994–997. doi: 10.1128/JCM.03044-13

Francois, I. E., Aerts, A. M., Cammue, B. P., and Thevissen, K. (2005). Currently
used antimycotics: spectrum, mode of action and resistance occurrence. Curr.
Drug Targets 6, 895–907. doi: 10.2174/138945005774912744

Franz, R., Kelly, S. L., Lamb, D. C., Kelly, D. E., Ruhnke, M., and Morschhauser, J.
(1998). Multiple molecular mechanisms contribute to a stepwise development
of fluconazole resistance in clinical Candida albicans strains. Antimicrob. Agents
Chemother. 42, 3065–3072.

Garey, K. W., Rege, M., Pai, M. P., Mingo, D. E., Suda, K. J., Turpin, R. S., et al.
(2006). Time to initiation of fluconazole therapy impacts mortality in patients
with candidemia: a multi-institutional study. Clin. Infect. Dis. 43, 25–31.
doi: 10.1086/504810

Gaur, M., Puri, N., Manoharlal, R., Rai, V., Mukhopadhayay, G., Choudhury, D.,
et al. (2008). MFS transportome of the human pathogenic yeast Candida
albicans. BMC Genomics 9:579. doi: 10.1186/1471-2164-9-579

Gavanji, S., Zaker, S. R., Nejad, Z. G., Bakhtari, A., Bidabadi, E. S., and Larki, B.
(2015). Comparative efficacy of herbal essences with amphotricin B and
ketoconazole on Candida albicans in the in vitro condition. Integr. Med. Res.
4, 112–118. doi: 10.1016/j.imr.2015.01.003

Georgopapadakou, N. H. (1998). Antifungals: mechanism of action and resistance,
established and novel drugs. Curr. Opin. Microbiol. 1, 547–557. doi: 10.1016/
S1369-5274(98)80087-8

Girmenia, C. (2009). New generation azole antifungals in clinical investigation.
Exp. Opin. Invest. Drugs 18, 1279–1295. doi: 10.1517/13543780903176407
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