Li et al. BMC Evolutionary Biology (2016) 16:186
DOI 10.1186/512862-016-0756-3

Phylogeography of Diptychus maculatus

BMC Evolutionary Biology

@ CrossMark

(Cyprinidae) endemic to the northern
margin of the QTP and Tien Shan region

Guogang Li'*? Yongtao Tang'? Renyi Zhang'** and Kai Zhao'*"

Abstract

Background: Phylogeography and historical demography of the cyprinid fish Diptychus maculatus (subfamily
Schizothoracinae) are evaluated across three river systems in the Northern Qinghai-Tibetan Plateau (QTP) and Tien

Shan range: the Indus River, Tarim River and Ili River.

Results: Results from both mtDNA (16S rRNA, Cyt b and D-loop) and nucDNA (RAG-2) resolved four reciprocally
monophyletic clades, representing populations from Indus River, South Tarim River, North Tarim River and lli River,
respectively. The divergence times was estimated to be 1.5-2.5 Mya. It is consistent with the hypothesis that the
split of four clades is the consequence of vicariance resulting from both the intensive uplift of QTP and Tien Shan
as well as the resultant expansion of the Taklimakan Desert. Several lines of evidences indicate dynamic
demographic histories for the populations, with late Pleistocene and Holocene population bottlenecks and

expansions except the Indus River.

Conclusions: Our results clearly depicted the phylogenetic relationship of D. maculatus from Indus River, Tarim
River and Ili River. The analyses implicated the relationship among the distribution of D. maculatus, paleo-drainages
and geographic events, and implied the existence of the South Tarim River in history.

Keywords: Phylogeography, Mitochondrial and nuclear markers, Diptychus maculatus, Tienshan Mountains, Qinghai-

Tibetan Plateau

Background

Tibetan Movement was the most important geological
event in the Quaternary period, causing a series of large
geomorphological adjustments and producing the present
geomorphic, hydrologic as well as tectonic configurations
[1]. According to Li [1], this significant movement in-
cluded A, B and C phases occurring at 3.6, 2.5 and 1.7 Ma
respectively. The Phase C marked the beginning of a new
era of “World Ridge” development [2]. Especially between
1.1 and 0.6 Ma, the so-called the Kunlun-Yellow River
Movement elevated Qinghai-Tibetan Plateau (QTP) rap-
idly to an average height of 3000 m with mountains up to
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over than 4000 m [3, 4]. Followed by Tibetan Movement,
the Tien Shan area elevated again and reached the current
height and formed the modern geomorphologic pattern of
the northwestern China [5]. Meanwhile, the QTP blocked
the sea winds of the Indian Ocean from going fur-
ther into northern China, causing the development of
the eastern monsoon and the formation of an arid
and semi-arid climate in this area. The direct out-
come of the dryness was the development and spread
of Taklimakan Desert, the second largest shifting
sand desert in the world, which covered the Tarim
Basin surrounded by QTP and Tien Shan [2, 6, 7].
The expansion of Taklimakan Desert led to the
change of watercourses, which deteriorated the eco-
system in the area [8].

The theories of modern phylogeography are based
on the assumption that the biological evolution and
geographical changes are synchronized [9]. Since the
geographic changes will result in spatial segregation
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[10], characterizing the current distribution of the en-
demic fauna of on QTP may help us to explore the
geological histories of these mountain-river systems
within and around the region. It is well accepted that
the evolution and distribution patterns of native
freshwater fishes reflect the paleogeographical com-
plexity of rivers [11-13]. The evolution and distribu-
tion patterns of schizothoracine cyprinids reflects the
paleogeographical history of the QTP and adjacent re-
gions [14], especially the evolution of paleo-drainage
systems, of the area [15].

Diptychus maculatus is the species in a monotypical
genus of the subfamily Schizothoracinae (Cyprinidae),
which is well adapted to high-mountain streams with
low temperature and hypoxia on QTP and Tien Shan
[16, 17]. It is mainly distributed in the Indus River sys-
tem, the Tarim River Basin and the Ili River-Balkhash
Lake Basin. These big river systems were originated
from the surrounding mountains. The Tarim Basin, the
largest endorheic basin on our planet (Fig. 1), is bor-
dered by the Tien Shan Mountain in the north and by
Karakoram-West Kunlun Mountain in the south, which
is also at the north edge of the QTP. From the north
slope of Tien Shan, the Ili River flows northward into
the Lake Balkhash. The Indus River flows southward
to the Indian Ocean, which was originated in the
Karakoram Mountain. The current Tarim River system
has a five-source-one-mainstream pattern of which all
tributaries originate in the south slope of Tien Shan
and the north slope of West Kunlun Mountain. They
flow into the Tarim Basin, across the desert from west
to east, and converge on in the final destination in
Lop Nur. Due to the uplift of QTP and Tien Shan in
Quaternary period, the geographical and natural envi-
ronments varied dramatically in the three river basins,
especially in Tarim River, which is quite different from
its paleo-pattern (Additional file 1: Figure S1). D.
maculatus, as the endemic fishes, experienced all the
environmental and geographic changes, hence, we
hypothesize that the present distribution of D. macu-
latus is the consequence of a series of geomorpho-
logical adjustments in the region.

The previous researches on the D. maculatus focused
on two aspects. One was the correlation between
phenotypic variation (scale and grill rake numbers) and
river systems, implying the species were adapted to the
local aquatic environments by morphological changes
[16, 18]. The other is the discovery of phylogeographic
structure of this species [19, 20]. However, these studies
were largely questioned and unable to uncover the en-
tire evolutionary relationship between the fish and the
mountain-river systems because of the inadequate sam-
ples size, incomplete geographic coverage (for example,
no Indus River), and only mtDNA, the matrilineal
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marker, were used [15, 21-23]. To overcome these is-
sues, we reconstructed the phylogeographic histoy of D.
maculatus by applying both mtDNA and nucDNA
markers together with the intensive sampling covering
all the habitats. In the current study, we successfully
describe the phylogeography and evolutionary history
of the species. Meanwhile, our analyses supported the
association among the uplift of QTP and Tien Shan,
the paleodrainage systems as well as the present distri-
bution of D. maculatus.

Results

Sequence data

Three mtDNA and one nucDNA markers of D. macula-
tus were sequenced: the aligned 16S rRNA sequences
(1118 bp) with 47 variable sites and 40 parsimony-
informative sites; the Cytochrome b (Cyt b) sequence (total
length of 1140 bp) with 135 variable sites and 127
parsimony-informative sites; the D-loop sequences (708 bp)
with 63 variable sites and 61 parsimony-informative and
two insertion/deletion sites; the segment from RAG-2
(1250 bp) with six variable sites.

We detected seven RAG-2 haplotypes from all 261
samples of D. maculate. Among the combined mito-
chondrial sequences (2966 bp) from all individuals, 70
unique haplotypes in total were identified (Table 1 and
Additional file 2: Table S1). The mean divergence among
mtDNA haplotypes was 2.19 %.

Phylogenetic analyses

Based on the combined mtDNA data, the same topolo-
gies were recovered by both the Bayesian and ML trees
(Fig. 2). The result showed a phylogeographic structure
in which four distinct haplogroups corresponded well
to four independent evolutionary clades, representing
populations from South Tarim River, North Tarim
River, Indus River and Ili River (Figs. 1 and 2). The
Taklimakan Desert separates the South and North
Tarim River; while the Ili River and the North Tarim
River are separated by Tien Shan; as the northwest
edge of QTP, Karakoram Mountain separates the Indus
River and the South Tarim River (Figs. 1 and 2). Within
North Tarim River clade, three subdivisions (Kashgar,
Aksu and Weigan River)were further classified, in a
good agreement with three main tributaries of the
North Tarim River (Fig. 2; Additional file 2: Table S1).
Within South Tarim River clade, two subdivisions (Yarkand
and Hotan River) were corresponded with two tributar-
ies (Fig. 2; Additional file 2: Table S1). Moreover, the
haplotype network for the Yarkand subclade contained
two clusters of haplogroups that were separated by 14
mutations (Fig. 2). No haplotypes were shared between
clades or subclades.
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Fig. 1 Geographic location of Diptychus maculatus in the Tien Shan and Qinghai-Tibetan Plateau. Locality codes correspond with those in Table 1
- J

The haplotype network of the nucDNA marker,
RAG-2 was inconsistent with the phylogenetic results
of the mtDNA data (Figs. 2 and 3). The Ili River col-
lection (N=47) and Indus River collection (N =34)
were monomorphic for haplotypes R6 and R7 respect-
ively. Also, within the North Tarim River, haplotype
R1 was monomorphic in the Weigan River collection
(N =34). In the Kashgar River collection (N =4), three
of them were monomorphic for haplotype R3, and
the remaining one shared haplotype R2 with the Aksu
River collection (N =23). Additionally, within the

South Tarim River and the Yarkand River collection
(N =57), 52 samples were monomorphic for haplotype
R4, and the remaining five shared the same haplotype
R5 with the Hotan River collection (N=8) both
(Fig. 3; Additional file 2: Table S1). The nucDNA
marker indicated that Weigan River population (haplo-
type R1) was genetically closer to South Tarim popula-
tion (haplotype R5) with only one mutation than to
North Tarim population (haplotype R2) with at least
three mutations, which was quite different from the
mtDNA analysis.
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Table 1 The sampling locations, number of specimens (N), and river systems for the samples of Diptychus maculatus used in this

study. The location codes correspond to those in Fig. 1
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Clade/subclade Location code Coordinate Altitude (m) Sampling location N
Ili River 1 83°09'45.10"E /43°47'52.65"N 1465 Kashi River, Nilka 16
li River 2 84°37'32.04"E/43°15'16.21"N 2028 Kunes River, Kunes 23
Ili River 3 83°15'49.60"E/43°31"10.00"N 981 Kunes River, Musi 8
Indus River 4 79°07'00.64"E/34°19'57.10"N 4810 Chang-chenmo River, Rutog 24
Indus River 5 79°59'26.02"E/34°29'14.12"N 5164 Qiangchenmo River, Rutog 10
North Tarim River/Weigan River 6 82°07'27.64"E/41°58'29.79"N 1514 Karasu River, Baicheng 45
North Tarim River/weigan River 7 81°38'21.17"E/42°03'44.28"N 1818 Taileweigiuke River, Baicheng 43
North Tarim River/Aksu River 8 78°48'56.09"E/41°00'51.11"N 1747 Aksu River, Akqi 7
North Tarim River/Aksu River 9 78°21'45.60"E/40°54'31.82"N 2029 Aksu River, Akgi 16
North Tarim River/Kashgar River 10 74°25'53.67"E/39°48'09.72"N 2452 Kezi River, Wugia 1
North Tarim River/Kashgar River 11 74°20"29.91"E/39°50'07.43"N 2490 Kezi River, Wugia 3
South Tarim River/Yarkand River 12 75°14'07.59"E/37°47'33.90"N 3067 Tashkurgan River, Tashkurgan 6
South Tarim River/Yarkand River 13 77°29'54.90"E/36°26'35.50"N 4002 Yarkand River, Yecheng 34
South Tarim River/Yarkand River 14 76°53'49.20"E/37°02'52.30"N 2459 Tizinapu River, Yecheng 17
South Tarim River/Hotan River 15 78°01'42.60"E/36°21'02.40"N 3669 Karakash River, Pishan 4
South Tarim River/Hotan River 16 77°59'56.10"E/36°21'40.00"N 3642 Karakash River, Pishan 4

Nucleotide diversity and genetic structure

The total haplotype (%) and nucleotide (1) diversities
were significantly high for all the four clades
(Table 2). However, the nucleotide diversity was very
different for among clades, higher in the South Tarim
clade (0.6996 % +0.3469) and North Tarim clade
(0.9799 % +0.4779) than quite low in the Ili River
clade (r=0.0806 % *0.0495) and Indus River clade
(1 =0.0943 % + 0.0568) (Table 2).

To clarify the phylogenetic structure, analyses of mo-
lecular variance (AMOVA) was conducted based on
the combined mtDNA data. The result showed that
four clades accounted for most of variation (65.77 %),
rather than three clades (39.51 %) (Table 3). Distrib-
uted respectively among the groups of the North Tarim
River and the South Tarim River, 96.28 and 87.92 % of
total variation were observed, with only 0.04 and
4.85 % of the variation among populations within the
groups (Table 3).

As suggested by the phylogenetic inferences (Fig. 2), the
highest and most significant values of pairwise compari-
sons of the genetic differentiation (Fst) were detected be-
tween all the four clades averaging more than 0.962, also
between all the subclades averaging more than 0.940
(Table 4 and Additional file 3: Table S2). The values of
Fst within the clades were high and significant except
in the Indus River clades. In contrast, the values of Fgt
within the subclades were very low and not significant
except that within Yarkand River. Mean divergence
values between populations also strongly supported
four clades inferences (Additional file 4: Table S3).

Demographic history

The estimated time to the most recent common ances-
tor (TMRCA) with 95 % highest posterior density (HPD)
was showed in Additional file 5: Figure S2. The
TMRCA of the in-group was estimated around
2.07 Ma with a 95 % HPD range from 1.71 to 2.45, in-
dicated Early Pliocene divergences. The separation of
Indus River and Tarim River clades occurred at
1.87 Ma with a 95 % HPD ranging from 1.55 to 2.19.
The divergence time of North and South Tarim River
clades by Taklimakan Desert was 1.77 Ma with a 95 %
HPD ranging from 1.47 to 2.09.

Historical demography for the clades Tarim, Ili and
Indus River provided the independent evolutionary
process of D. maculatus from different drainages
(Fig. 4; Table 2). The Tajima’s D values and Fu’s Fs
values indicated the population experienced a quick
expansion in all clades and subclades except in the
Indus River clade. Correspondingly, the star-like
structure of haplotype networks within the eight
clades and subclades also suggested the expansion
event in the Ili River as well as North and South
Tarim rivers (Fig. 2).

The Bayesian skyline plots (BSPs) showed that the
population size was not statistically significant chan-
ged because of broadly overlapping HPDs (Fig. 4).
However, the trend for each population size was con-
sistent with the neutrality test results. For the North
Tarim River clade (Weigan and Aksu River), BSP in-
dicated a moderate and recent (25 and 10 Kya) ex-
pansion, whereas BSP of South Tarim River clade
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Fig. 2 The Bayesian inference tree for Diptychus maculatus based on the 70 haplotypes from combined mtDNA. Numbers on branches
indicate, posterior probability in Bl analyses followed by bootstrap supports for ML the node. The corresponding median-joining network
based on the combined sequence data for each clade is depicted to the right of each clade. The haplotype numbers correspond to those in
the Additional file 2: Table S1. The circle sizes represent the approximate numbers of individuals, and the scale is provided in the lower right
corner. The black dots indicate the nucleotide substitutions inferred for that branch. The geographical origins of the haplotypes are illustrated

by the same colors used Fig. 1

(Yarkand River) indicated a strong expansion (of
about 25 Kya) (Fig. 4). BSP of Ili River clade was
stable until rapidly expanded about 7-5 Kya. BSP
demonstrated that the Indus River population kept
shrunk and dramatically reduced at about 5 Kya. Fi-
nally, BSPs indicated the population of all the clades
were depressed about 1 Kya.

Discussion

Phylogeography and historical demography of D.
maculatus

The current study drew a whole picture of phylogeo-
graphy of D. maculatus for the first time by the inten-
sive sampling across the north of QTP and adjacent
regions, from three major drainages: Indus River, Tarim
River and Ili River. We identified four clades, of which
two corresponded geographically to the Indus River
and Ili River respectively, and the other two from Tarim
River population separated by the Taklimakan Desert
(Figs. 1 and 2).

The divergence history of D. maculatus clearly showed
that the split of the species occurred when the geo-
graphic events happened. For example, the estimated
producing times of four clades corresponded to the tim-
ing of the uplift of Tien Shan in the Early Pleistocene
period and the third phase of the “Tibetan movement”
at 1.7 Ma [1]. The forming of three subclades within the
North Tarim River also occurred when Tien Shan
uplifted in the Early Pleistocene period. The two sub-
clades within the South Tarim River clade were split dur-
ing Kunlun-Yellow River Tectonic Movement (1.1-0.6
Mya) [1]. Therefore, we concluded that the allopatric di-
vergence producing four clades and five subclades of D.
maculatus was likely associated with the vicariance
caused by the rapid uplift of Tien Shan and QTP.

Several lines of evidence confirmed a dynamic demo-
graphic history for the five clades/subclades resolved in
D. maculatus. First, star-like haplotype networks with
high level of haplotype diversity and low nucleotide di-
versity indicated all population but Indus River clade
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experienced the bottleneck effect followed by the popu-
lation expansion [22, 24]. Second, the negative Tajima’s
D and Fu’s Fs statistics together with the BSPs indicated
Yarkand, Aksu, Weigan and Ili river populations ex-
panded in a late Pleistocene or Holocene.
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The principal reason of the demographic changes was
the climatic and environmental alterations caused by the
geographic events. In the Late Pleistocene and Holocene
era, the large-scale and rapid uplift of QTP resulted in
the dramatic changes in both climate and ecology [2].
The BSPs for Yarkand and Weigan Rivers indicated that
the expansion began 25 Kya, and the expansion for Aksu
River began 10 Kya, coinciding with the uplift of
Karakoram-West Kunlun Mts. This movement allowed
the westerly wind to come into northern slope of
Karakoram-West Kunlun Mts., which sequentially lead
to the warm-humid climate and river development in
the area [25]. In contrast, because the Indus River popu-
lation was located in the southern slope of Karakoram-
West Kunlun Mts. where the westerly wind could not
reach, the population size was gradually declined as indi-
cated by the BSP analysis. Notably, samples of Indus
River population were collected from very high altitude
(4810 m), and the harsh conditions presumably had in-
fluences on the genetic variations of the population. The
small number of haplotypes discovered in Indus River
population resulted in the lack of signal to evaluate the
dynamic demographic history. The Ili River, protected
by the Tien Shan from the Taklimakan Desert, was con-
sistently under the influence of the westerly circulation,
leading to a small difference in precipitation between
cold and warm periods in the Late Pleistocene period
[26], therefore, the population was maintained stably,
until 7-5 Kya. Ili River population was expanded during
the late Holocene period (6-1.5 Kya) with a relatively
wet conditions induced by stronger westerly circulation
[27]. BSPs pointed out all the populations experienced a
depression in 19™ century when population explosion as
well as the development of agriculture and industry
caused by the urbanization along the rivers. The eco-
logical consequences of human activities were water
shortage, soil salinization, enhanced ecological degrad-
ation and desertification.

Table 2 Genetic diversity and neutrality test results for clades/subclades of Diptychus maculatus

Clade/Subclade Gene diversity Nucleotide diversity (%) Tajima'’s D (P value) Fu's Fs (P value)
Ili River 0.8474 £ 0.0305 0.0806 £ 0.0495 —0.3594 (04178) —2.9242 (0.0972)
Indus River 06275+ 0.0537 0.0943 + 0.0568 2.5050 (0.9956) 5.8652 (0.9834)
North Tarim River 09014+ 00164 09799+ 04779 0.8319 (0.8464) 102111 (0.9606)
South Tarim River 0.8712+0.0358 0.6996 + 0.3469 0.1995 (0.6618) 1.9915 (0.7600)

Weigan River 0.8461 +0.0252 0.0921 £ 0.0547
Aksu River 0.7747 +£0.0713 0.0906 + 0.0558
Kashgar River 1.0000 +0.1768 0.1349+0.1014
Yarkand River 0.8365 + 0.0448 0.2623 £ 0.1375
Hotan River 0.7500 +0.1391 0.0313+0.0273
All samples 0.9620 + 0.0042 2.1093 £ 1.0101

—0.6772 (0.2736)
—1.6347 (0.0404)
—0.8173 (0.1418)
—0.0126 (0.5646)
—0.8125 (0.2688)
1.7501 (0.9636)

—4.5150 (0.0580)
—0.8623 (0.3454)
—0.8247 (0.1426)
—2.5482 (0.2250)
—1.3872 (0.0446)
14.0746 (0.9438)
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Table 3 Summary of results of the hierarchical analysis of molecular variance (AMOVA) for Diptychus maculatus, All P < 0.001

Grouping option % Among groups % Among populations within groups 9% Within populations Ocy Osr O

Three groups 39.51 56.90 3.60 0.3951 0.9640 0.9405
Four groups 65.77 30.46 3.77 0.6577 0.9623 0.8899
Seven groups 94.63 148 3.88 0.9463 0.9612 0.2765
Within north Tarim River 96.28 0.04 3.68 0.9628 0.9632 0.0120
Within south Tarim River 8792 4.85 7.24 0.8792 0.9277 04012

The collection of samples turned out to be very chal-
lenging in Kashgar and Hotan Rivers because of both
environmental and climatic changes (aridification and
desertification) as well as human activities such as
overfishing, reservoirs, groundwater wells and hydro-
power stations. Especially, jade mining in Hotan River
[19], changed the watercourse and destroyed fresh-
water habitats.

Drainage history of Tarim River

Compared with the modern drainage patterns, the
paleodrainage was in better agreement with the phylo-
geographic structure which aims to decode the history
of species evolution, and to reconstruct the sequence of
evolutionary events [17, 28, 29]. The current Tarim
River has a five-source-one-mainstream pattern, i.e.,
the North Tarim River. However, it is a controversial
view about the existence of the South Tarim River
among scientists, some consider that the South Tarim
River existed in history, but some others disagree [30].
We used a phylogeographic approach to assess the evo-
lution and distribution patterns of freshwater fish D.
maculatus generated from mtDNA data, which reflect
the palaeogeographical complexity of a region, espe-
cially, the development of rivers and their isolation and
interconnection processes [29]. Based on our analysis,
populations from five tributaries of Tarim River were
classified into two clades, the North clade containing
three subclades (Weigan, Aksu, Kashgar), and the
South one containing two subclades (Yarkand and

Hotan), which were geographically divided by the
Taklimakan Desert. Similarly, the nucDNA RAG-2
showed that the gene flow existed within the north or
south clade only. It seemed that the disintegrated
modern Tarim River system was inconsistent with the
phylogeologic history of D. maculatus. Therefore, our
observation supported the hypothesis that the South
Tarim River has indeed existed in history. In the further
analysis, more nucDNA markers are required to verify
the hypothesis accurately.

Ayelhan et al. [31] proposed that D. maculatus origi-
nated from West Kunlun area. Amongst the five sub-
clades of Tarim River, the highest values of Fst and
nucleotide diversity in Yarkand population suggested it
was a possible center of the origin of the species.

Methods

Sampling and laboratory procedures

D. maculatus is a species under protection, hence diffi-
cult to sample [16, 17, 32]. The entire animal experiment
was conducted according to the principles expressed in
the “Guide for the Care and Use of Laboratory Animals”
by National Research Council of the National Academies
of Science. Samples were collected using gill nets or cast
nets in June and July 2010, May to June in 2013, as well
as July and August in 2014. All the specimens were
preserved in 95 % ethanol for further laboratory
analyses. The definition of samples was on the basis
of the classical taxonomic description by Chen & Cao
[17] and Wu & Wu [16]. A total of 261 individuals

Table 4 Summary of average pairwise Fst values for Diptychus maculatus within and among geographical zones and subdivisions

Fer Fer
Within Ili River clade 0442 Between Weigan and Aksu 0.964
Within Indus River clade —0.069 Between Weigan and Kashgar 0.962
Within North Tarim River clade 0.768 Between Aksu and Kashgar 0.940
Within South Tarim River clade 0.708 Within Weigan River subclade 0.017
Between lli and Indus 0.966 Within Aksu River subclade —0.051
Between Ili and North Tarim 0.970 Within Kashgar River subclade 0.090
Between lli and South Tarim 0.966 Between Yarkand and Hotan 0.953
Between Indus and North Tarim 0.968 Within Yarkand River subclade 0.521
Between Indus and South Tarim 0.962 Within Hotan River subclade —-0.206

Between North and South Tarim 0.966
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of D. maculatus were used for the phylogenetic and
population genetic analyses (Additional file 2: Table
S1). The samples were collected from 16 populations
across three different river systems in northwestern
China (Fig. 1), including 47 individuals from Ili River
Basin, 34 individuals from Indus River Basin, and 180
individuals from Tarim River Basin (Table 1). Accord-
ing to the comparative morphology [16, 17] and
molecular phylogenetics [33, 34], Gymnodiptychus
dybowskii (GenBank accession number KJ081377 for
16S rRNA and KJ081423 for Cyt b) [22], Aspior-
hynchus laticeps (KF564793) [35], and Barbus barbus
(AB238965) [36] were used as outgroups in the
phylogenetic analyses based on their locations in the
Tarim River (Xinjiang), Tarim River (Xinjiang) and
Danube River (Austria) respectively. Voucher speci-
mens were deposited in the key Laboratory of Adapta-
tion and Evolution of Plateau Biota, Northwest Plateau
Institute of Biology, the Chinese Academy of Sciences
in Xining (Additional file 2: Table S1).

Total genomic DNA was extracted with proteinase K
followed by the standard 3-step phenol-chloroform
method [37]. Complete sequence of Cyt b gene, partial
sequences of the 16S rRNA, D-loop and RAG-2 genes
were obtained for all the sampled individuals. When dir-
ect sequencing of RAG-2 failed due to heterozygosity,
amplicons of RAG-2 were cloned using a TA-cloning
system (TakaRa Biotechnology, Dalian, China) following
the manufacturer’s instructions [38]. The master mixture
of polymerase chain reaction (PCR) contained approxi-
mately 100 ng of template DNA, 1 uL (10 pmol) of each
primer, 5 uL of 10x reaction buffer, 2 uL of dNTPs
(2.5 mM of each) and 2.0 U of Taq DNA polymerase, in
a total volume of 50 pL. Reactions were carried out on a
Veriti Thermal Cycler (Applied Biosystems, Carlsbad,
CA, USA) and always included a negative control. Indi-
vidual thermal cycling parameters for each primer set
are provided in Table 5, and all protocols began with
3 min at 95 °C and ended with 10 min at 72 °C. The
amplified DNA was fractionated by electrophoresis
through 0.8 % low-melting agarose gels, recovered
from the gels, and purified with Gel Extraction Mini
kit (Watson Biotechnologies, Shanghai, China). The
purified DNA Sequencing was sequenced with the
Perkin-Elmer BigDye DNA Sequencing Kit according
to the manufacturer’s protocol, using the same primers
employed in the PCR.
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Table 5 Primers, corresponding references and PCR cycles used
to Cyt b, 16S rRNA, D-loop and RAG-2

Locus Primers Primer reference  Thermal cycling protocol
Cytb L14724 [55] [30sat 94 °C, 30 sat 52 °C,
70 sat 72 °CI x 35
H15915
16S rRNA  16Sp1F [56] [30sat 94 °C, 30 s at 48 °C,
90 s at 72 °C] x 33
16Sp1R
D-loop GEDL200 [57] [30sat 94 °C, 30 s at 52 °C,
60 s at 72 °CI x 35
GEDH860
RAG-2 RAG2-f2 [58] [60 s at 94 °C, 60 s at 60 °C,
105 s at 72 °C] x 35
RAG2-R6

DNA sequence alignment

DNA sequences were edited using DNASTAR 5.0
(DNASTAR Inc.), and were aligned using CLUSTALX
2.0 as implemented in MEGA 5.05 with default param-
eters [39]. Identical haplotypes were collapsed using
DNASP 5.1 [40].

Phylogenetic analyses
Phylogenies of the mtDNA data were constructed using
maximum likelihood (ML) and Bayesian inference (BI)
as implemented in PHYML 3.0 [41] and MRBAYES
3.2.1 software [42]. The most appropriate nucleotide
substitution models for the three segments were se-
lected using Akaike Information Criterion as imple-
mented in JMODELTEST 2.1.4 software [43]. Using a
starting tree obtained by neighbour-joining. Clade ro-
bustness was assessed by bootstrap analysis using 1000
replicates. To assess the statistical significance of
nodes, a bootstrap analysis with 100 replicates was used
for the ML analyses, remaining settings set to default.
The posterior distributions from BI were obtained by a
Markov Chain Monte Carlo (MCMC) analysis with one
cold chain and three heated chains. Samples of the
trees and parameters were drawn every 100 steps from
a total of 1 million MCMC generations. Three add-
itional runs were conducted beginning with random
trees. The 50 % majority rule consensus of the post-
burn (using a burn-in of 25 %) for all the generations
was computed for all the four runs.

The NETWORK 4.6 [44] was used to build a median-
joining network for both mtDNA and nucDNA data.

Molecular diversity and genetic structure
We used ARLEQUIN 3.5 software [45] for AMOVA and
pairwise Fgt values. Both AMOVA and Fst used Tamura
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& Nei genetic distance [46] with gamma correction for
heterogeneity of mutation rates.

Population demography

The time of divergence was estimated using a strict-
clock Bayesian approach in BEASTv1.8.0 [47], with the
GTR + G substitution model suggested by JMODELT-
EST 2.1.4 software [43], with Yule prior approach, and
a random starting tree. In the absence of a fossil rec-
ord of schizothoracines, we used the divergence-time
estimates from He et al. [34] for an internal time cali-
bration on branching point: D. maculatus vs. G.
dybowskii (7.77 £ 0.51 Mya). Another calibration point
was based on the European fossil records of the genus
Barbus, species B. barbus from the Pliocene period
(15-11 million years ago, Ma) [36, 48, 49]. The ana-
lysis included three independent MCMC runs sampled
every 1000 generations for 30 million generations with
20 % of samples discarded as burn-in. The effective
sample size for parameter estimates and convergence
was checked using TRACERL.5 [50]. The correspond-
ing tree files were merged with LOGCOMBINER
v1.8.0, and trees were summarized using TREEANNO-
TATOR v1.8.0, two software programs distributed
within the BEAST package [47]. Trees were visualized
in FIGTREE 1.4 [51].

We used three different approaches to assess demo-
graphic history. These included two neutrality statis-
tics, Tajima’s D and Fu’s Fs [52, 53], calculated with
5000 permutations in ARLEQUIN 3.5 [54]. The nega-
tive values for these indices are consistent with popu-
lation expansion. To evaluate the timing of any
expansion, we used BSP obtained with BEASTv1.8.0
[47] derived with three independent runs (30 million
simulations; first 10 % as burn-in). Both log files and
tree files were analyzed using TRACER1.5 [50]; effect-
ive sample size for all parameters was more than 200.
The results were consistent across runs. We then ran
these analyses under the GTR + G model, with a strict
molecular clock. The substitution rate for combined
three mtDNA genes was estimated from the previously
described analysis of divergence times to be 0.82 % per
Mya with a 95 % highest posterior density (HPD) of
(0.69, 0.91). We could not run BSPs for Kashgar and
Hotan River population due to the small number of
samples available (<10).

Additional files
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Diptychus maculatus included in this study. (DOCX 46 kb)
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