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Abstract

Slow conduction areas and conduction block in the atria are considered pro-arrhythmic con-

ditions. Studies examining the size and distribution of slow conduction regions in the context

of persistent atrial fibrillation (AF) may help to develop improved therapeutic strategies for

patients with AF. In this work, we studied the differences of size and number in slow conduc-

tion areas between control and persistent AF goats and the influence of propagation direc-

tion on the development of these pathological conduction areas. Epicardial atrial electrical

activations from the left atrial roof were optically mapped with physiological pacing cycle

lengths and for the shortest captured cycle lengths. The recordings were converted to local

activation times and conduction velocity measures. Regions with slow conduction velocity

(less than 0:2 m
s ) were identified. The size of the connected regions and the number of non-

connected regions were counted for propagation from different orthogonal directions. We

found that regions of slow conduction significantly increases in our 15 persistent AF goat

recordings in response to premature stimulation (24.4±4.3% increase to 36.6±4.4%, p <
0.001). This increase is driven by an increase of size from (3.70±0.89[mm2] to 6.36±0.91

[mm2], p = 0.014) for already existing regions and not by generation of new slow conduction

regions (11.6±1.8 vs. 13±1.9, p = 0.242). In 12 control goat recordings, no increase from

baseline pacing to premature pacing was found. Similarly, size of the slow conduction areas

and the count did not change significantly in control animals.
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Introduction

Atrial fibrillation (AF) is the most frequently diagnosed chronic arrhythmia [1] and is often a

recurring condition, while its reversal is slow and limited [2–7]. Despite significant advances

in management strategies of rhythm and rate control, the long-term efficacy of treatments

such as drug therapy and catheter ablation are inconsistent. Identification of patients who

would benefit most from these specific therapies would be a significant advance in care for AF

patients.

Collagenous tissue has been linked to conduction disturbances and it is well understood

that fibrosis is a major contributor to the maintenance of AF [8]. Investigators have recreated

the 3-dimensional structure of collagenous septae in ventricular tissue [9–11] and demon-

strated that these collagenous structures play a significant role in conduction and act as sec-

ondary sources of excitation during defibrillation [12–14]. It has been hypothesized that

different types of atrial fibrosis lead to different conduction abnormalities: diffuse fibrosis may

lead to overall conduction slowing, patchy fibrosis may lead to unidirectional block, and

stringy interstitial fibrosis may lead to slowed or blocked transverse conduction [15].

Similarly, Angel et al. hypothesized that specific fibrosis structures enable AF [16]. To study

this, they measured the conduction velocity in atrial tissue of control goats and rapidly-paced

goats with 6 months of AF. In an open chest study, they placed an array of 256 electrodes on

the left atrial appendage and delivered S1-S2 pacing from the center of the array. The anisot-

ropy between control and AF goats was similar in S1 beats (1.55±0.42 vs. 1.57±0.33) but

changed for S2 beats (1.72±0.55 vs. 1.47±0.25). After the electrophysiological study 2-dimen-

sional histology was conducted to evaluate the local fibrosis pattern, showing a higher intersti-

tial or disruptive fibrosis density for AF goats.

Conduction velocity is not homogeneously affected by the shorting of the pacing interval.

Spach et. reported an exponential decrease in conduction velocity in transversal direction for

coupling intervals between 100ms and 300ms, while the longitudinal direction was not signifi-

cantly changed [17]. This findings were recently confirmed in a human case report [18] and is

in agreement with Angel et al. [16]. A similar directionally dependent response can be seen in

the development of conduction block; specifically, longitudinal conduction is more likely to be

disrupted and block compared to transverse conduction [19].

Aside from the direction of propagation, short coupling intervals between activations pro-

motes slow condition (SC), fractionation, and the development of conduction block [8, 18].

The developed conduction block can be unidirectional, combining the cycle length depen-

dency and the directional dependency. The differences in conduction between directions

makes directionality of propagation an important factor when investigating SC or blockage.

It has been shown that fibrotic tissue is associated with SC, which can also be rate or direc-

tionally dependent. However, quantification of how much tissue is affected by the SC remains

unclear. Therefore, we set out to investigate the size and quantity of SC areas. We will answer

the question of how the size of affected areas change in response to different pacing protocols

and locations and how these changes differ between healthy control goats and goats with per-

sistent AF.

Materials and methods

Animal experiments were approved by the Institutional Animal Care and Use Committee of

the University of Utah and followed the Guide for the Care and Use of Laboratory Animals

[20].
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Animal model

In total, 55 pace maps where obtained from 7 goats (3 female); 4 goats (2 female) formed the

persistent AF model. For the generation of the persistent AF model goats were first anesthe-

tized with propofol (5-10mg/Kg iv) and anesthesia was maintained by ventilation with a mix

of oxygen (2 l/min) and isoflurane (2-4%). Following a previous established procedure, a cath-

eter was then advanced from the right jugular vein to the right atrium where a pacing lead was

secured [21]. A pacemaker (InterStim™, Medtronic, Minneapolis, MN) was connected to a

lead in the right atria. Pacing was initiated one week following pacemaker implant and config-

ured for 50Hz pacing with one second on followed by one second off. The pacing was contin-

ued until AF was sustained for more than one minute, at which point pacing was reduced to

one second on and 30 seconds off. From this point onward the animals were constantly in AF

for a total of at least six months, as ensured by weekly ECG readings. For the study, a sternot-

omy was performed under general anesthesia and 5000 units of Heparin was injected. The ani-

mal was euthanizing by exsanguination. First, the aorta was clamped and than the heart was

quickly excised and immediately submerged in ice-cold Tyrod solution (NaCl 5.2mM,

NaH2PO4-H2O 48μM, MgCl2-6H2O 40μm, CaCl2-2H2O 72μM, NaHCO3 0.96mM, Dextrose

11.20mM, Bovine Serum Albumin 0.60μM).

Optical mapping

In preparation for optical mapping, the heart was cleaned of excess tissue and rinsed with cold

cardioplegic solution (NaCl 5.2mM, NaH2PO4-H2O 48μM, MgCl2-6H2O 40μm, KCl 160μM,

CaCl2-2H2O 72 μM, NaHCO3 0.96mM, Dextrose 11.20mM). The cleaned heart was trans-

ferred in a glass bowl, where is was perfused using a Langendorff setup with warm, oxygenated,

and pH-balanced Tyrode solution. The perfused heart was positioned such that the optical

mapping system (MiCAM05, Sci-Media, Costa Mesa, CA) with a lens (Plana 1.0x, Leica,

10450028, Germany) captured a square area of 17[mm] × 17[mm] of the left atrial roof. The

boundaries of the captured area were used to guide the placement of pacing leads at the center

of all four edges (Fig 1). The electromechanical uncoupler blebbistatin (8.55–17.1μM, ApexBio

B1387) was added to the perfusionsolution to suppress the motion of the heart, and the volt-

age-sensitive fluorescent dye di-4-Anepps (25-75 μg, Sigma Aldrich D8064) was added to visu-

alize the transmembrane potential.

Pacing was conducted from four sets of wires. Before pacing, any atrial arrhythmia was ter-

minated by applying a monophasic shock to the atria. To highlight animals that maintained

AF for 6 month but are kept in sinus during the study we use the term history of persistent AF.

During the study, the rhythm was controlled by pacing. The pacing was delivered at 2 times

the diastolic pacing threshold. The heart was paced from one wire set with an S1 train of 9

beats with a cycle length of 500-600ms, depending on the intrinsic rate, and a single S2. The

minimal S2 was found by reducing the S2 delay in 10ms steps until loss of capture. If the S2

pacing resulted in AF, AF was terminated by a monophasic shock and the lowest S2 was found

with a search starting with a non-captured short S2 and increasing the S2 delay in 10 ms steps.

The recording was managed with the software BV Workbench (Brainvision, Tokyo, Japan).

Illumination was adjusted to reach 70% of saturation or the maximum stable light output of

the light source (LEX2, Brainvison, Tokyo, Japan) at a recorded 3000 frames per second with

100 × 100 pixel.

Image post processing and statistics

The last recorded S1 and the following S2 are used for analysis. All visualization, processing,

and calculation have been done with the open-source software Rhythm (Rhythm, v 1.2,
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Washington DC). To reduce noise, gaussian binning (kernel size 3 or 5) and bandpass (0-

100Hz) filtering is used. For signal extraction, a drift correction and normalization were

applied. The resulting image was masked to remove pixels with a low signal to noise ratio.

From the masked images, local activation times and conduction velocities were calculated with

Rhythm using the method described in [22]. Each pixel in the conduction velocity plot was

classified as normal conduction or SC (v < 0:2 m
s ), which results in a binary image. The image

processing steps are shown in Fig 2. The first measurement is the percentage of all pixels in the

region of interest (ROI) classified as SC, called percentage of SC. Then the binarized

Fig 1. Preparation of the heart for the optical mapping. The X marks the mapped area. At the edges of the mapped region, the pacing wires are show

at the 4 locations: top (Aorta), bottom (Towards AV groove), left (Left atrial appendage), and right (towards pulmonary veins).

https://doi.org/10.1371/journal.pone.0258285.g001
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conduction velocity image is filtered for its connected components for SC (see Fig 2(E)) The

connected component filter uses the direct neighboring horizontal and vertical pixel but not

diagonal pixel. Each neighbor which exhibits SC conducting is counted to the current compo-

nent. Components are grown until no further neighboring SC pixels are found. The process is

repeated for every component. Components with more than one pixel in size are counted and

their size is determined. Their size is given by the number of pixels in a particular component

multiplied by 0.0289mm2 the area of a single pixel.

Statistical analysis was performed using the Stata-16.1 statistical software (StataCorp, Col-

lege Station TX). Our data were a clustered sample dataset, with multiple observations per ani-

mal. We had four pacing lead positions used per animal, where 2 observations were collected

(one S1 and one S2 pacing for the train variable) at each pacing lead position, so the total

observations was n = 7 animals x 4 pacing lead positions x 2 train levels = 56—1 missing val-

ues = 55. We did not discard the animal with one unreliable observations, but instead used the

remaining data for that animal. To account for data clustering, a multivariable mixed effects

linear regression model was fitted, with animal as a random effect. Predictor variables were

class (control vs persistent atrial fibrillation cases), train (S1 or S2 pacing), position of pacing

lead (top, bottom, left, or right), train X class interaction, and position X class interaction,

requiring 9 predictor terms in the model. For correct interpretation of main effects in the pres-

ence of interaction terms, post-fit marginal estimation Wald tests with mean centering were

used to test the main effects, where adjusted means were compared while holding all other var-

iables constant at their means. All comparisons were two-sided comparisons and considered

significant if p<.05.

To avoid possible overfitting, where unreliable associations might be observed from having

too many predictor variables for the sample size, we should have 10 independent observations

per predictor variable. Our models used 9 predictor variables. In a clustered dataset, the num-

ber of independent observations is mimicked by the “effective sample size,” [23], which can be

determined using the design effect [24], Deff = 1 + [(average cluster size − 1) × ICC] where ICC
is the intraclass correlation coefficient. The effective sample size = (#observations)/Deff accord-

ing to [25]. The average cluster size was n = 7.9 for all outcomes. The ICC was 0.420 for the

“slow percentage” outcome, 0.150 for the “counts low condition areas” outcome, and 0.090 for

the “mean area” outcome. Based on these, the effective sample sizes were n = 14 for “slow per-

centage”, n = 27 for “counts low condition areas” and n = 33 for “mean area.” Given these

effective sample sizes, we recognize that there is a potential for overfitting in all of our models,

especially in the “slow percentage” model.

Fig 2. Processing of the recorded images. From left to right, (A) first the normalized and filtered recording, (B) then converted to local activation

times, (C) the conduction velocity, (D) finishing with the thresholding of conduction velocity (less than 0.2 m/s). (E) Connected components marked in

different colors.

https://doi.org/10.1371/journal.pone.0258285.g002
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Results

The recorded activation for S2 pacing from the right for one animal was inconsistent with the

expected activation. In that animal, the S2 pacing from the right did not originate from the

pacing electrode. It appeared from the top first and the activation occurred on a shorter inter-

val than the programmed S2. This leads to the assumption that the beat was not the pro-

grammed S2, but the spontaneous beginning of AF. Due to the uncertainty of the origin of this

excitation, we excluded data from the right pacing position for this animal.

In the first analysis of 55 activation recordings the SC area in the field of view is evaluated

(see Fig 3). The linear mixed model demonstrates that in 24 (12 S1 beats and 12 premature S2

beats) control goat recordings, 4.4±4.6% of the total tissue in the field of view had SC. In 31

(16 S1 beats and 15 premature S2 beats) persistent AF goat recordings, the SC area increased

significantly to a total of 30.6±4.0% of the field of view compared to control (p< 0.001). A less

expected result is the correlation between the class and the train which is reflected in the fact at

S1 and S2 pacing are not significantly different in control (an increase from 3.4±5.0% to 5.5

±5.0%, p = 0.556) but becomes significantly different in persistent AF (an increase from 24.4

±4.3% to 36.6±4.4%, p< 0.001). The shortest captured S2 beats are listed in Table 1.

Related to the percentage of SC is the number of observed not connected SC areas (Fig 4).

In 24 control recordings, 6.0±1.8 SC areas were counted, while in the 31 persistent AF goat

recordings, we observe a significant (p = 0.004) increase to 12.7±1.5 area s. While differences

in the totals for different pacing positions (Fig 4) are observed (bottom 10.0±1.7, left 7.0±1.7,

right 12.7±1.8, top 9.7±1.7) all four positions are statistically the same. Similarly, there is no

significant change between S1 and S2 pacing for control (5.7±2.1 vs. 6.4±2.1, p = 0.769) and

persistent AF (11.6±1.8 vs. 13±1.9, p = 0.242).

Comparing the average size of SC areas for persistent AF animals shows a significant

change (p = 0.014) and the absolute change is more noticeable from 3.70±0.89[mm2] to 6.36

Fig 3. (A) The percentage of observed slow conduction in the region of interest. In control conditions, the premature excitation has a minor change,

whereas for animals with a history of persistent atrial fibrillation, the change is significant. The expected increase in slow conduction regions between

control and persistent AF animals is significant. (B) Description of the Boxplot used through the manuscript. The interquartile range (IQR) is from 25%

to the 75% of all observed values. The upper whisker is defined as the largest observation which is smaller than IQR � 1.5+ (75 percentile of observed

data). Similar, the lower whisker is the smallest observation that is larger than −IQR � 1.5+ (25 percentile of observed data). Observations that are not

contained between the upper and lower whisker are considered an outlier. Boxplots are created with the LATEX package pgfplots. (http://pgfplots.

sourceforge.net/).

https://doi.org/10.1371/journal.pone.0258285.g003
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±0.91[mm2]. Within control animals the average size of SC areas increases from 0.53±1.03

[mm2] to 0.95±1.03[mm2] for premature excitation which is not significant (p = 0.735). Com-

paring the 24 control samples 0.74±0.82 [mm2] and 30 persistent AF samples 5.01±0.72 [mm2]

shows a significant (p< 0.001) difference (Fig 5). In contrast to the number of SC regions, the

mean size of SC regions depends on the pacing position (Fig 5). While the position bottom

and right (5.19±0.88 [mm2] vs. 3.28±0.91 [mm2], p = 0.101) show larger SC areas, the position

top and left (2.2±0.88 [mm2] vs. 1.90±0.88 [mm2], p = 0.800) show small SC areas. The statisti-

cal test shows that the four position are not from the same distribution (p = 0.016).

Dependency on the direction of propagation is demonstrated in Fig 6. Two perpendicular

pacing points bottom and left are shown for S1 and S2 beats. The pacing from the bottom

shows lines of conduction block in S1 and S2, however, for the S2 paced beat a new line of con-

duction block develops spanning almost the ROI. This newly developed line of conduction

block changes the activation pattern dramatically. Additionally, a small region of wavefront

fractionation developed. The lower panels in Fig 6 show the same experiment but with pacing

from the left. Parts of the conduction block observed in bottom pacing (Fig 6A) disappear and

propagate freely. No new line of blockage develops in response to the premature beat.

Table 1. The shortest captured S2 in each animal and position, times are in [ms].

Animal Top Left Bottom Right Mean±Std

Control 1 130 170 190 160 163±25

Control 2 160 180 170 260 192±46

Control 3 220 220 240 200 220±16

Mean±Std 170±46 190±26 200±36 207 + 50

persistent AF 1 190 270 240 180 220±42

persistent AF 2 160 160 180 NA 167±12

persistent AF 3 170 180 190 250 198±31

persistent AF 4 210 210 240 200 287±17

Mean±Std 183±22 205±48 213±32 210±30

https://doi.org/10.1371/journal.pone.0258285.t001

Fig 4. The number of slow conduction regions. (A) grouped by the type of paced beat and (B) by the position of the pacing electrode. The premature

excitation does not change the number of slow conduction regions. Not all pacing positions result in the same number of slow conduction regions,

however, the pacing position is not a significant factor.

https://doi.org/10.1371/journal.pone.0258285.g004
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Discussion

In this manuscript, we investigate if new slow conduction areas are created in response to a

premature excitation in atrial tissue. From optical activation mapping of ex-vivo Langendorff

perfused control and persistent AF in goat hearts, we established the overall percentage of SC,

the number of connected components, and their average size. This data shows an increase of

overall slow conduction driven by enlarging existing SC areas and not by creating new areas of

SC.

The clinically used premature pacing of an S1-S2 train does exacerbate SC areas, confirming

the effectiveness of this approach. Unexpectedly, the percentage of SC in S1 and S2 does not

change significantly for control animals. Contributing factors might include the higher overall

conduction velocity in control animals, which is well characterized in the literature [8, 26] and

observed in our study (data not shown). It is also likely that healthy tissue has larger functional

reserves to compensate for premature excitation. As a consequence, premature pacing might

be less efficient exacerbating SC areas in paroxysmal AF. Conversely, tissue with a history of

persistent AF exhibits a significant increase in SC following premature excitation.

Considering that premature excitation in controls does not lead to a significant change in

overall SC, it is not surprising that neither the count of SC areas nor the average size of SC

areas changed in response to premature excitation. This reinforces the idea of larger functional

reserves in control animals.

In contrast, in persistent AF animals, the percentage of SC increased significantly. The

increase cannot be explained by the number of connected SC components, as they remained

similar. However, the average size of a slow conduction region increased from 3.7 [mm2] to

6.36 [mm2], almost doubling in area. This finding supports the hypothesis that SC regions are

fixed in location, but recruit additional surrounding tissue in response to a premature excita-

tion. This could indicate that areas of tissue remodeling, of structural or ionic nature, have a

core region that gradually expands towards the surrounding tissue. In longer pacing cycle

length (S1 beats), the distal sections are still able to compensate for the tissue remodeling, but

in shorter S2 excitation this is no longer possible.

Fig 5. Means size of slow conduction area. (A) A significant difference between control and persistent atrial fibrillation animals was detected.

However, within each class, premature beats do not significantly change the size.(B) Effect of the pacing position on the mean area size. The bottom and

right positions appear similar in persistent AF animals, as do the left and top positions.

https://doi.org/10.1371/journal.pone.0258285.g005
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We demonstrated that premature excitation is important and, importantly, that attention

should also be given to the direction of propagation. We found that experiments with persis-

tent AF animals were sensitive to the direction of activation propagation; while one direction

propagates seemingly undisturbed, another can show large areas of SC (an example is shown

in Fig 6. Several factors contribute to this phenomenon. First, the predominant myocardial

fiber orientation is likely to impact this measurement. Propagation transverse to fiber orienta-

tion is typically slower than propagation in the same direction as fiber orientation. Thus, with

a smaller perturbation, it can drop below the SC threshold. A further contribution comes from

a unidirectional conduction block. Conduction block and unidirectional conduction block

can develop as a consequence of sudden changes in the fiber orientation, as often observed in

the atria or in tissue with high fibrosis. Overall, this suggests that in order to identify SC areas,

it is important to test multiple excitation sites in addition to finding the shortest S2 possible.

This suggestion confirms a previous suggestion from a case report of Starreveld and de Groot

Fig 6. Local activation times showing unidirectional conduction block. A line of blockage in the lower half is observed (dashed

line) when pacing from the bottom (A) and (B). In response to a premature beat (B) an additional line of blockage develops spanning

the field of view at about 45 degrees. In comparison, pacing from the left in physiological (C) or premature (D) condition does not

show a significant blockage.

https://doi.org/10.1371/journal.pone.0258285.g006
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who concluded that pacing from different locations and pacing cycle lengths may help in iden-

tification non-anisotropic tissue and thus substrate identification for AF [18].

Our results agree with other findings suggesting that persistent AF increases fractionating

and slowing the spread of activation. Throughout all our analysis, the persistent AF group

showed more SC compared to the control group, which has been attributed to different causes.

Frequently, slow conduction does coincides with fibrotic areas [8]. Other hypotheses include

disarrangement of myocardial fiber orientation which could lead to fractionation [27] and a

sudden change in myocardial wall thickness which has been linked to rotor attraction in

computational models [28].

In conclusion, this work demonstrated that premature excitation does not generate new SC

areas, but expands already existing areas in hearts with a history of persistent atrial fibrillation.

Limitations of the study include that only a small area of tissue has been studied. There is also

a possibility that our results could be affected by overfitting. The potential for this is especially

high in our “slow percentage” model results, which had the smallest effective sample size.

However, the results are consistent with the anticipated effect, which increases confidence that

the conclusions presented are correct. Further limitations include that the fiber orientation for

the area is unknown. Evaluating fiber orientation would provide information as to whether the

conduction block occurs parallel or perpendicular to the fiber direction.
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