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Abstract

Background: Intracellular signaling networks transmit signals from the cell membrane to the nucleus, via
biochemical interactions. The goal is to regulate some target molecules, to properly control the cell function.
Regulation of the target molecules occurs through the communication of several intermediate molecules that
convey specific signals originated from the cell membrane to the specific target outputs.

Results: In this study we propose to model intracellular signaling network as communication channels. We define
the fundamental concepts of transmission error and signaling capacity for intracellular signaling networks, and
devise proper methods for computing these parameters. The developed systematic methodology quantitatively
shows how the signals that ligands provide upon binding can be lost in a pathological signaling network, due to
the presence of some dysfunctional molecules. We show the lost signals result in message transmission error, i.e.,
incorrect regulation of target proteins at the network output. Furthermore, we show how dysfunctional molecules
affect the signaling capacity of signaling networks and how the contributions of signaling molecules to the
signaling capacity and signaling errors can be computed. The proposed approach can quantify the role of
dysfunctional signaling molecules in the development of the pathology. We present experimental data on caspese3
and T cell signaling networks to demonstrate the biological relevance of the developed method and its predictions.

Conclusions: This study demonstrates how signal transmission and distortion in pathological signaling networks
can be modeled and studied using the proposed methodology. The new methodology determines how much the
functionality of molecules in a network can affect the signal transmission and regulation of the end molecules such
as transcription factors. This can lead to the identification of novel critical molecules in signal transduction networks.
Dysfunction of these critical molecules is likely to be associated with some complex human disorders. Such critical
molecules have the potential to serve as proper targets for drug discovery.

Keywords: Cell signaling, Intracellular communication, Molecular networks, Signal transduction
Background
Each cell in the human body includes many biomolecules,
which continuously communicate with each other [1].
Intracellular signaling networks transmit signals from the
cell membrane to the nucleus, via biochemical interac-
tions. The goal is to regulate some target molecules, to
properly control the cell function. This regulation of the
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target molecules occurs through communication of sev-
eral intermediate molecules that convey specific signals
originated from the cell membrane to the specific target
outputs. Signaling networks have been studied in a num-
ber of different contexts [2-5]. From a communication
system point of view, in this study we propose to model
an intracellular signaling network as a communication
channel. The message which is supposed to be communi-
cated is a signal originated from the extracellular matrix
that tells the cell what to do. The inputs of the communi-
cation channel could be ligands which upon binding to
the cell surface, create a chain of interactions through some
intermediate signaling molecules. This way the message is
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propagated towards the channel output, typically a target
protein such as a transcription factor, to produce an appro-
priate response. Inputs and outputs of the channel can be
considered as transmitters and receivers, respectively. In
communication engineering, there are typically two types
of channels, error-free and erroneous channels, which can
correspond to functional and dysfunctional intracellular sig-
naling networks, respectively. In an error-free communica-
tion channel, the message is transmitted without any error
to the channel output. Signaling networks where all their
molecules are functional can be considered as error-free
channels, which allow the cell to correctly follow its in-
put signals and function exactly the way it is supposed
to. However, in an erroneous communication channel
the message becomes distorted and signal might be lost.
Delivery of the erroneous message to the channel output
(typically a target protein) results in the malfunction of
the cell. This may eventually result in a transition from
the normal behavior (physiological condition) to a dys-
functional system (diseased or pathological condition).
Signal transmission in communication systems is

accomplished via digital techniques, where different
types of data and signals such as voice, music, image,
video, text, etc., if not already in the digital format, are first
digitized and converted to sequences of 0’s and 1’s [6,7].
Digital communication in an error-free channel does not
face any transmission error. For example, the digital input
sequence 100010 can be transferred via an error-free cable
channel to the destination, channel output, without any
error (Additional file 1: Figure S1a). In an erroneous
channel, however, there might be some transmission er-
rors. For example, in a complex mobile wireless channel
with significant amount of fading due to reflection
and scattering via multiple paths, obstructed line-of-
sight, etc., 0’s might be transmitted correctly, whereas
1’s might be incorrectly received as 0’s by a moving car
(Additional file 1: Figure S1b).
In the area of systems biology, digital models and

methods have been used for various purposes, and
have also been verified using experimental data. The
interested reader can refer to some review articles on
this subject [8-13]. They have certain predictive and
modeling capabilities that are particularly useful in large
networks, where information on mechanistic details and
kinetic parameters are not available. Some recent applica-
tions are discussed in [14-19].
Inspired by communication engineering and signal

transmission concepts, in this paper we develop a sys-
tematic framework to quantitatively model how the
signals that ligands provide upon binding can be lost
in a pathological signaling network, due to the pres-
ence of some dysfunctional molecules. We also show
how the lost signals result in message transmission
error, i.e., incorrect regulation of target proteins at the
channel output. Furthermore, we show how dysfunctional
molecules affect the capacity of signaling networks and
how the contribution of each signaling molecule to the
signaling capacity and signaling errors can be com-
puted. The proposed approach can quantify the role of
dysfunctional signaling molecules in the development
of the pathology.

Results
A simple pathological communication channel model for
the Caspase3 network
Caspase3 is one of the most important molecules in the
regulation of cell death (apoptosis) and cell survival.
Caspase3 is a suitable molecule for the purpose of devel-
oping this approach for several reasons. This molecule has
been extensively studied by several independent groups of
scientists and the intracellular signaling molecules that
regulate its activity are well characterized. Moreover, it is
either in an active or inactive form. Caspases exist as in-
active enzymes that undergo a proteolytic cleavage at con-
served aspartic residues, to produce two subunits, large
and small, that dimerize to form the active enzyme [1].
Dysfunction of the caspase network causes the failure of
automated process of cell death and eventually results in a
malignant transformation [1]. Signaling pathways from
the input ligands EGF, insulin and TNF to the output
caspase3 (Figure 1a) are extensively characterized and
experimentally verified [20,21]. Having the biological
data and information from an independent group will
validate the outcomes of this study, as discussed later.
There are seventeen intermediate molecules between
the inputs and the output, which constitute the com-
munication channel of this network. The input–output
relationships for the normal channel, i.e., when all the
molecules in the channel are functional, are summa-
rized in a table (Figure 1b), supported by the experi-
mental findings of Janes et al. [20]. A value of 0 or 1
for a molecule means that it is either inactive or active,
respectively [22]. Using the input–output relationships
(Figure 1b), the channel transition probability diagram
for the normal channel is obtained (Figure 1c).
Now we introduce a simple pathological communication

channel model for the caspase3 network (Figure 1a). In
this model, all the seventeen molecules in the channel
are equally likely, i.e., with a probability of 1/17, to be
dysfunctional. When a molecule is dysfunctional, its ac-
tivity state does not change in response to its regulators.
In this model we make a simple assumption that a dys-
functional molecule remains active, 1, or inactive, 0, with
an equal probability of 1/2. This assumption could be easily
changed to other possible probabilities of a molecule being
dysfunctional, without affecting the proposed methodology.
By calculating conditional probabilities (see Methods), the
channel transition probability diagram for this pathological



Figure 1 The caspase3 network and its input-output characteristics and transition probability diagrams. (a) The caspase3 communication
channel. The channel input molecules are EGF, insulin and TNF, and the channel output molecule is caspase3. The molecule ComplexI within the
channel includes TNFR and TRADD-RIP-TRAF2 [20], whereas the molecule ComplexII stands for TRADD-RIP-TRAF2 and FADD [20]. (b) The input–output
relationships for the caspase3 normal channel. (c) Transition probability diagram for the normal caspase3 channel. Numbers above the arrows
are transition probabilities. (d) Transition probability diagram for the pathological caspase3 channel where all the molecules in the channel are
equally likely to be dysfunctional. Numbers above the arrows are transition probabilities.
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channel model can be constructed (Figure 1d). To under-
stand the biological implications of the diagram, here we
explain the arrows connecting 001 at the input to the 0 and
1 at the output, with the transition probabilities 3/34 and
31/34 written next to the arrows (other arrows can be simi-
larly explained). Each transition probability is a conditional
probability of the form P(caspase3|EGF, insulin,TNF) that
we have calculated in (see Methods), using the total prob-
ability theorem [23]. Since there are 17 molecules in the
channel and they are assumed to be equi-probable to be
dysfunctional, the chance of each molecule to be dysfunc-
tional becomes 1/17. A dysfunctional molecule is assumed
to remain either always active or inactive, with a probabil-
ity of 1/2. Therefore, the probability of each molecule in
the channel to remain always active or inactive, irrespective
of their input signals, is (1/17) × (1/2) = 1/34. According to
our calculations (see Methods), in 3 out of 34 cases, cas-
pase3 will be inactive, 0, when (EGF, insulin, TNF) = (0, 0, 1)
in our pathological channel model. That is why this transi-
tion probability is 3/34. The probability of caspase3 to
be active, when (EGF, insulin, TNF) = (0, 0, 1), is simply
1 − (3/34) = 31/34. The dashed arrow in the diagram
(Figure 1d) means that when (EGF, insulin,TNF) = (0, 0, 1),
the probability of capsase3 = 0 is 3/34, whereas the
probability of capsase3 = 1 is 31/34. This implies that
if, say, 100 molecules of TNF ligands bind to their re-
ceptors and activate them, then the number of inactive
caspase3 molecules is 100 × 3/34 ≈ 9, whereas the
number of activated caspase3 molecules is 100 × 31/
34 ≈ 91. In this example, according to the channel
transition probability diagram for the normal network
(Figure 1c), in this example 100 caspase3 molecules should
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have been activated upon 100 TNF ligand bindings when
EGF and insulin are inactive. However, in the pathological
caspase3 channel, the remaining 9 inactive caspase3 mole-
cules are the result of transmission errors occurred in the
communication process because of the dysfunctional mole-
cules in the signaling network.
Now we calculate the transmission error probability

Pe for the caspase3 network. In the normal network
(Figure 1c), input molecules correctly regulate the output
molecule. This means that there is no transmission error
probability, i.e., Pe,normal channel = 0. However, in the
pathological network (Figure 1d), dysfunctional mole-
cules do not allow the state of the output molecule to
be correctly determined by the inputs. Using the total
probability theorem and by considering all the error
events, we have calculated the transmission error prob-
ability for the pathological caspase3 channel (Figure 1d),
which is Pe,abnormal channel = 11/136 ≈ 0.08 (see Methods).
This means out of one hundred (EGF, insulin, TNF) lig-
and bindings, on average eight caspase3 molecules will
not be correctly regulated. From a signal transmission
perspective, signal loss due to dysfunctional signaling
molecules can be understood by noticing Cnormal channel = 1,
whereas Cabnormal channel = 0.69 (see Methods). We have
calculated the signaling capacity by applying the algorithm
in Methods to the transition probability channel matrix,
obtained from the channel transition probability diagram
of the caspase3 abnormal channel (Figure 1d). Note that
the maximum signal content that the molecular network
can convey from ligands to caspase3 is reduced because of
the abnormalities in the network.

A more general pathological communication channel
model for the Caspase3 network
To explore how much each molecule contributes to
channel transmission errors and signal loss, caused by
dysfunctional molecules, now we introduce a more gen-
eral channel model. In this model the probability of each
molecule to be dysfunctional is β. However, there is one
dominant molecule such that its dysfunctionality prob-
ability is kβ, k ≥ 1, where k is the dominance factor. In
the model introduced earlier in the paper k = 1 but in
this model the dominant molecule is more probable to
be dysfunctional. Depending on which molecule in the
channel (Figure 1a) is dominant, we obtain different
channel transition probability diagrams, which result in
different transmission error probabilities Pe (Figure 2a)
and signaling capacities C (Figure 2b) (see Methods).
Similarly to the previous simpler channel model, we have

calculated the transmission error probabilities (Figure 2a)
using the total probability theorem and by considering
all the error events (see Methods). Moreover, we have
computed the signaling capacities (Figure 2b) by apply-
ing the algorithm in Methods to transition probability
channel matrices. The results will be discussed in the
Discussion Section.

Experimental data to demonstrate signal transmission error
We analyzed the experimental data of Janes et al. [20]
(Figure 3a) to demonstrate the biological relevance of
signal transmission error concept in a biological net-
work. The data of Janes et al. [20] is a collection of pro-
tein levels or activity measurements of several molecules
(Figure 3a) which are plotted versus time (Figure 3b and c).
From a biological point of view and according to ex-
periments data of Janes et al. [20], addition of TNF in-
duces programmed cell death (apoptosis) through the
activation of several mechanisms which are eventually
reflected in the increased level of cleaved caspase8, a
key caspase molecule that causes apoptosis (Figure 3c).
However, by adding IL-1ra, the IL-1 receptor antagon-
ist acting downstream to TNF, the apoptotic effect of
TNF is significantly reduced [20]. This effect of IL-1ra
is reflected in the decreased level of cleaved caspase8
(Figure 3c). The antagonistic effect of IL-1ra is reflected on
the activity of the immediate downstream molecule IKK.
As shown in Figure 3b, addition of IL-1ra caused an early
fluctuation in the activity of IKK in the first 1.5 hours but
caused a steady decrease in the activity of IKK, compared
to the case without IL-1ra, after the first few hours. This
continued to be the situation for several hours (Figure 3b).
The decrease in IKK activity after long term treatment is
nicely mirrored in the decreased level of cleaved caspase8
(Figure 3c) which again does not occur in the first 1.5 hours
after treatment, but appears afterwards for several
hours (compare IKK activity with cleaved caspase8 after
100 minutes of treatment with IL-1ra in Figure 3b and c).
From the proposed communication modeling point of

view, the message is “apoptosis” that needs to be trans-
mitted from the cell surface through a communication
channel composed of several signaling molecules inside
the cell. The transmitter is TNF, the receiver can be
considered to be caspase8, and the channel is composed
of the molecules in between (Figure 1a). Activation of
TNF by increasing its concentration to 100 ng/ml can
be viewed as TNF transmitting a signal. This signal is
then propagated towards its downstream molecule IKK
(Figure 1a). Activation of IKK eventually appears in long
term (Figure 3b), which ultimately transmits the apop-
tosis signal, reflected in the increased level of cleaved
calspase8 (Figure 3c). This can be interpreted as the cor-
rect reception of the apoptosis message sent by TNF in
an error-free transmission. Adding IL-1ra, 10 μg/ml,
acts as an abnormality added to the communication
channel, which distorts the signal sent by TNF and causes
transmission errors. This can be understood by looking at
the decreased level of IKK activity in long term (Figure 3b).
This eventually results in the decreased level of cleaved



Figure 2 The caspase3 network and its input-output characteristics and transition probability diagrams. (a) Transmission error probability
Pe versus the dominance factor k in the caspase3 communication channel. We have calculated transmission error probabilities using the total
probability theorem and by considering all the error events (see Methods). The caspase3 network shows completely different behavior
depending on the dominant dysfunctional molecule. For example, when AKT is the dominant molecule, Pe rapidly increases as the dominance
factor k increases. This shows the critical role of AKT in signal transmission over this molecular communication channel. In contrast, other
molecules, such as EGFR or MEKK1ASK1, cause a small increase in Pe, which indicates that they have less impact on information transfer. The
decrease of Pe for the rest of the molecules means that even if any of these molecules is dysfunctional with probability one, there will be no
transmission error. (b) Caspase3 signaling capacity C versus the dominance factor k. Small values of C for AKT confirm the significant role of a
dysfunctional AKT. Higher values of C for EGFR and MEKK1ASK1 mean that their dysfunction is less harmful to signal transmission than AKT. Large
values of C for the rest of the molecules indicate their insignificance, when they are dysfunctional.
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Figure 3 Experimental IKK and caspase data. (a) Measured biological data available in the Supplemental Data of Janes et al. [20]. For different
concentrations of TNF (0 or 100 ng/ml) and IL-1ra (0 or 10 μg/ml), average IKK activity and cleaved caspase8 level are measured at thirteen time
points, which start from 0 and end after 1440 minutes. (b) IKK activity versus time under three different conditions: no treatment (TNF = 0 ng/ml),
treatment with TNF (TNF = 100 ng/ml, IL-1ra = 0 μg/ml), treatment with both TNF and IL-1ra (TNF = 100 ng/ml, IL-1ra = 10 μg/ml). From a communication
system perspective, the “apoptosis” message is going to be transferred via IKK in the channel from the transmitter TNF to the receiver. Activation of TNF by
increasing its concentration to 100 ng/ml can be viewed as TNF transmitting a signal. This signal is then propagated towards its downstream molecule
IKK (Figure 1a). Activation of IKK eventually appears in long term, which means IKK has correctly received the signal from TNF. Adding IL-1ra, 10 μg/ml,
acts as abnormality added to the communication channel, where IKK is located, and distorts the signal sent by TNF. This can be understood by looking
at the decreased level of IKK activity in long term, which reflects the fact that IKK has not received the signal from TNF correctly. Hence, the “apoptosis”
message has not been communicated successfully, and therefore the level of survival has increased [20]. (c) Cleaved caspase8 level versus time under
three different conditions: no treatment (TNF = 0 ng/ml), treatment with TNF (TNF = 100 ng/ml, IL-1ra = 0 μg/ml), treatment with both TNF and IL-1ra
(TNF = 100 ng/ml, IL-1ra = 10 μg/ml). See “Experimental data to demonstrate signal transmission error” in the Results section for further biological and
communication engineering explanations.
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caspase8 (Figure 3c) which indicates incorrect reception of
the apoptosis message. Because of this erroneous signal
transmission, the level of survival has increased [20]. There-
fore, using the data available in Janes et al. [20] one can see
that signaling through normal and pathological molecular
networks can be explained using signal transmission and
reception concepts in communication channels.

Communication engineering analysis of a large T cell
signaling network
Using the proposed bio-communication methodology
developed in this study, we analyzed a large experimentally-
verified model of a cellular network described by Saez-
Rodriguez et al. [24]. This T cell network is composed
of 94 different molecules, 123 interactions and mul-
tiple feedback loops, which give rise to a complex map
of interactions based upon well-established findings
from different studies on primary T cells (Figure 4a).
The inputs of the T cell network [24] (Figure 4a) are TCR
ligand (T cell receptor ligand) and two other receptors CD4
and CD28, whereas the outputs are AP1, bcat, BclXL, CRE,
Cyc1, FKHR, NFκB, p21c, p27k, p38, p70S6K, SRE, NFAT
and SHP2. This network is experimentally verified and
characterized extensively [24]. There are seventy four
intermediate molecules between the inputs and the
outputs, which constitute the communication channel
in the network (Figure 4a). There are four feedback loops
in the network, regulating SHP1, cCblp1, PAG and Gab2.
According to Saez-Rodriguez et al. [24] there are some
molecules which regulate other molecules but their own
regulation mechanisms are not clear: CARD11, GADD45,
GAP, CD45, PTEN, BCL10, CDC42, MALT1, SHIP1,
AKAP79 and CALPR1. We have similarly [24] included
them in the network, with their states [24] specified in
Additional file 1: Table S1. Here we present the results
of the analysis of this network to show how the findings of
proposed communication analysis method for the T cell
network are biologically relevant and are also supported
by the experimental findings of Saez-Rodriguez et al. [24]
and other studies [21-24].
We studied the role and significance of each molecule

in the T cell network (Figure 4a), in terms of their im-
pacts on an output node, such as SHP2. Following the new
methodology discussed above, we analyzed transmission



Figure 4 Analysis of the T cell network. (a) The T cell network [24]. The channel input molecules are TCR lig, CD4 and CD28, whereas the
output molecules are AP1, bcat, BclXL, CRE, Cyc1, FKHR, NFκB, p21c, p27k, p38, p70S6K, SRE, NFAT and SHP2. Green arrows represent activatory
interactions and red blunt lines show inhibitory interactions. This figure is intended to provide a general picture of the network. For specific
details and regulatory mechanisms of each molecule, one can refer to the equations listed in Additional file 1: Table S1. (b) Values of transmission
error probability Pe and capacity C are calculated for different molecules in the network with the output node SHP2, as an example output
molecule. Pe and C values for those molecules not listed in this table are calculated as 0 and 1, respectively. See Additional file 1 for the list of
these molecules. (c) Transmission error probability Pe versus the dominance factor k in the T cell communication channel for the two molecules
PI3K and Fyn. When PI3K is the dominant dysfunctional molecule, Pe rapidly increases as the dominance factor k increases. This is in agreement
with experimental data, which shows when PI3K is knocked out (inhibited with both Ly294002 and Wortmannin), PKB does not properly receive
signals from the input molecules and remains inactive (its phosphorylation is blocked in human T cells) [24]. In contrast, the decrease of Pe when
Fyn is the dominant dysfunctional molecule means that even if Fyn is dysfunctional with probability one, there will be no transmission error. This
is consistent with the experimental observation that when Fyn is knocked out (Fyn-deficient and heterozygous splenic mouse T cells), stimulation
of the input molecules still correctly regulates PKB [24].
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error probabilities and capacities relevant to all molecules
in this network, to identify molecules that have critical
regulatory effect on the activity of the output node SHP2 in
Figure 4b (see Methods). Similar to what is presented here
for SHP2, transmission error probabilities and capacities
can be computed for all other output molecules as well,
and we only present the data for SHP2 as an example. As
shown in Figure 4b, there are three molecules that are crit-
ically important for the accurate transmission of signals to
output molecule SHP2. These molecules are Gab2, TCRb
and ZAP70 that represent transmission error probabilities
of 0.5 and capacities of 0. This means that for the correct
propagation of message provided by inputs to the output
molecule SHP2, the functions of these three molecules are
very critical. In other words, the signaling capacity falls to
zero if any of these molecules are dysfunctional. These
findings are all biologically relevant and consistent with the
experimental finding of Saez-Rodriguez et al. and other
published literate. In more specific terms, critical regulatory
effect of Gab2 on SHP2 has been established by several
studies [25] and deregulation of this interaction is known
to be associated with chronic myeloid leukemia (CML)
[26]. TCRb has been known as a critical regulator of SHP2
for the past few years [27]. When we initially found the crit-
ical regulatory role of ZAP70 on SHP2 through this novel
methodology, we thought this is a prediction of this analysis
that has not been known in the past and we were trying to
confirm this finding by experiments. However, later we
noticed that another group has recently published convin-
cing evidence for direct regulation of SHP2 by ZAP70, by
affecting both enzymatic activity and phosphorylation levels
of this molecule [28]. This recent paper, which nicely sup-
ports the prediction of our communication analysis method
using extensive experimentation is the first paper that
presents a direct evidence of critical regulatory role of
ZAP70 on SHP2.
In this large network, we also considered two case

studies, two molecules, to show that the results of the
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proposed method regarding signal transmission in sig-
naling networks are consistent with experimental data
[24]. The model described in Saez-Rodriguez et al.
predicted the signaling events after antibody-mediated
perturbation of CD28 and after genetic knockout of
Fyn, which were subsequently experimentally validated.
As shown in Figure 4c, comparative analysis of this net-
work in terms of the importance of PI3K versus Fyn in
the regulation of PKB (see Methods) identified that the
molecule PI3K plays a key role in signal transmission
from the input molecules TCR, CD4 and CD28, to the
molecule PKB. This is because the transmission error
probability increases, as PI3K becomes a dominant dys-
functional molecule (Figure 4c). This prediction is in
agreement with the experimental data of Saez-Rodriguez
et al. [24], which shows when PI3K is targeted (inhibited
with both Ly294002 and Wortmannin), PKB does not
properly receive signals from the input molecules TCR,
CD4 and CD28 and remains inactive (its phosphorylation
is blocked in human T cells) [24]. In contrast to the
dominant role of PI3K, the same proposed communi-
cation analysis method has determined that the mol-
ecule Fyn does not cause signal transmission errors to
PKB, when it is the dominant dysfunctional molecule
(transmission error probability decreases as the dom-
inance factor increases) (Figure 4c). This prediction is
consistent with the experimental observation that
when Fyn is targeted (Fyn-deficient and heterozygous
splenic mouse T cells), stimulation of the input nodes
TCR, CD4 and CD28 still correctly regulates PKB [24].
This means correct delivery of the input signals via the
network to PKB, although Fyn is dysfunctional. Overall,
the proposed method has been able to correctly identify
and quantify different roles of PI3K and Fyn in a signal
transduction network in T cells. These results are biologic-
ally relevant and consistent with experimental data [24].

Discussion
In this study, we proposed a method to analyze patho-
logical signaling networks and showed that the presence
of dysfunctional molecules in these networks can cause
signal loss. This results in message transmission error, i.e.,
incorrect regulation of the target protein at the network
output. We also showed how the proposed method can be
used to compute the level of contribution of dysfunctional
signaling molecules to the signaling capacity loss of the
network. Some critical molecules known to be involved in
several disorders are correctly identified by this method-
ology, as discussed below.
As shown in Figure 2a, the caspase3 network shows

completely different behavior depending on the dominant
dysfunctional molecule. For example, when AKT is the
dominant molecule, Pe rapidly increases as the dominance
factor k increases (Figure 2a). This can reflect the critical
role of AKT in signal transmission over this molecular
communication channel. In contrast, other molecules,
such as EGFR or MEKK1ASK1, cause a small increase in
Pe, which indicates that they have less impact on signal
transfer. The decrease of Pe for the rest of the molecules
means that even if any of these molecules is dysfunctional
with probability one, there will be no transmission error
(Figure 2a). Small values of the signaling capacity C for
AKT (Figure 2b) confirm the significant role of a dysfunc-
tional AKT. Higher values of C for EGFR and MEK-
K1ASK1 (Figure 2b) mean that their dysfunction is less
harmful to signaling from inputs to caspase3, compared to
AKT. Large values of C for the rest of the molecules indi-
cate their insignificance in this specific network, when they
are dysfunctional.
Transmission error probability introduced from a

communication system engineering perspective in this
paper is conceptually related to, but more general than
the molecular vulnerability level [22]. In Abdi et al.
[22], molecular networks were modeled using elec-
tronic circuit components and a simpler fault model
was used, where the dysfunctionality probability of a
faulty molecule was always one. The pathological com-
munication model introduced in this paper is more
general in the sense that it allows a molecule to be par-
tially dysfunctional, i.e., its dysfunctionality probability
can be changed from zero to one, using the dominance
factor k of the model. In biological terms, we have sev-
eral pathological conditions in which a dysfunctional
molecule is partially expressed. For example, in schizo-
phrenia, we see almost 50% reduction in total protein
levels of AKT [29] in the brain of schizophrenic indi-
viduals, while several other signaling molecules in this
pathway show normal levels [29]. This means that the
dominance factor k is nearly 2 (=1/0.5) for AKT. Having
the dominance factor k allows to examine the impact of
each molecule on the network more precisely. With regard
to the signaling capacity introduced and calculated in this
paper, we can say it shows the maximum signal content
that a signaling network can convey to correctly regulate
target molecules such as transcription factors. If the pres-
ence of some dysfunctional molecules in a network deterio-
rates the capacity significantly, then the network fails to
regulate its output molecules. Therefore, one can use sig-
naling capacity as an index to characterize the role of mole-
cules in a network. A molecule which can considerably
decrease the capacity if it is dysfunctional, can be the cause
of significant signal loss in the network, and might be cor-
related with some diseases. The computational results show
that a dysfunctional AKT provides the lowest signaling cap-
acity (Figure 2b). This can be related to the crucial role of
AKT in the pathologic process of a number of common
human malignancies [30,31], including breast cancer, pros-
tate cancer, lung cancer, gastrointestinal tumors, pancreatic
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cancer, hepatocellular carcinoma, thyroid cancer, and CNS
malignancies (such as glioblastoma and gliomas), and other
disorders such as schizophrenia [29].
The proposed method can be extended to handle mul-

tiple simultaneous dysfunctional molecules. However, in
practice, due to the large number of all possible multiple
cases, it is not feasible to check all the possible cases.
For example, in a network with 20 molecules, the total
number of single dysfunctional molecules is 20. In the
same network, however, the total number of all possible
single and multiple dysfunctional molecules together is
220 − 1 = 1, 048, 575 (!). Besides the high computational
complexity involved, the results might be non-conclusive,
due to the extremely large number of possible situations.
To avoid this, one can consider a subset of multiple
dysfunctional molecules. For example, one can start
with pairs of simultaneous dysfunctional molecules, to
obtain transition probability diagrams, calculate trans-
mission error probabilities, etc., following the proposed
method. Such study can determine which pairs of mole-
cules are the most critical ones for signal loss in the net-
work, when both molecules are dysfunctional. Due to
space limitation, we are not including such studies in
the paper in detail. However, here we provide few case
studies in the caspase3 network, to demonstrate the
feasibility of analyzing multiple dysfunctional mole-
cules. For example, when {AKT,JNK1} is the dominant
dysfunctional pair and the remaining molecules are
functional, we obtain the transmission error probabil-
ity to be Pe({AKT, JNK1}) = 0.4688. Comparison of this
result with Pe’s obtained when only a single dominant
molecule is dysfunctional reveals some notable character-
istics. When {AKT} and {JNK1} are dominant individual
dysfunctional molecules, equations (20) and (23) result in
Pe({AKT}) = 0.4375 and Pe({JNK1}) = 0.0625, respectively,
with k =∞. However, if they are both dysfunctional
simultaneously, Pe increases to 0.4688. This indicates
that simultaneous dysfunction of two molecules could
be more harmful to the entire network, compared to
their individual malfunction. The same observation is
made regarding the dysfunction of {EGFR}, {IRS1} and
{EGFR, IRS1}, since Pe({EGFR}) = 0.125, Pe({IRS1}) = 0.0625
and Pe({EGFR, IRS1}) = 0.1875.
M ¼
P 0⋯00j0⋯00ð Þ P 0⋯01ð
P 0⋯00j0⋯01ð Þ P 0⋯01ð

⋮
P 0⋯00j1⋯11ð Þ P 0⋯01ð

2
664

Outputs y1; y2; …; yn 0⋯00 0⋯0
Conclusions
In summary, this study demonstrates how signaling
networks can be modeled as communication systems.
This approach takes advantage of the concepts of com-
munication engineering and signal transmission, to
model and analyze networks with dysfunctional molecules
as pathological communication channels. The fundamental
concepts of transmission error probability and signaling
capacity are defined for intracellular signaling networks,
and proper methods for computing these parameters
are developed. Application of the proposed methods to
the caspese3 and T cell signaling networks provided
biologically relevant findings which are also consistent
with experimental data. Overall, this study shows how
signal transmission and distortion in pathological sig-
naling networks can be modeled and studied using a
new communication analysis framework. The proposed
method allows to determine how much the functionality
of each molecule in the network affects signal transmis-
sion and regulation of end molecules such as transcrip-
tion factors. This can lead to the identification of novel
critical molecules in signal transduction networks. Dys-
function of these critical molecules is likely to be associ-
ated with some complex human disorders. Such critical
molecules have the potential to serve as proper targets
for drug discovery [32].

Methods
Definitions and generic description of the methods
In general, a molecular network consists of several inputs,
intermediate molecules and output molecules. To be able
to analyze the network (also known as channel here), first
we need to specify the equations that determine the chan-
nel outputs in terms of the channel inputs. Then we use
them to calculate the transition probability channel matrix
for the network. The size of the matrix depends on
the number of network inputs and outputs. Each elem-
ent of the transition probability channel matrix speci-
fies P(outputs|inputs), the probability of the outputs to
be 0 or 1, conditioned on the 0 or 1 states of the inputs.
The transition probability channel matrix M for a gen-
eral molecular network with m inputs x1, x2, …, xm and
n outputs y1, y2, …, yn is given in (1):
Inputs x1; x2; …; xm

j0⋯00Þ ⋯ P 1⋯11j0⋯00ð Þ
j0⋯01Þ ⋯ P 1⋯11j0⋯01ð Þ
⋮ ⋱ ⋮
j1⋯11Þ ⋯ P 1⋯11j1⋯11ð Þ

3
775

0⋯00
0⋯01

⋮
1⋯11

1 ⋯ 1⋯11

ð1Þ
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For any given set of 0 and 1 values for the network in-
puts, each element of the matrix in (1) gives the probability
of the network outputs to take a certain sequence of 0 and
1 values. In a pathological network with some dysfunctional
molecules, some network output states might be erroneous
(different from normal network outputs). Therefore, some
elements of the transition probability channel matrix might
be different under normal and pathological conditions. By
taking all these differences into account and using the total
probability theorem [23], transmission error probability
which quantifies network signaling errors can be deter-
mined. In other parts of the Methods section and also in
Additional file 1, the above concepts and methods are
applied to several networks.
Signaling capacity is another metric that we use to

analysis signaling networks. To calculate the capacity of a
molecular network, first we need to define entropy, equivo-
cation and mutual information. Entropy is a measure of
uncertainly in a random variable and shows its unpredict-
ably. For a discrete random variable X, entropy is mathem-
atically defined by Shannon as follows [33]:

H Xð Þ ¼ −
X
x∈X

p xð Þ log2p xð Þ; ð2Þ

where p(x) is the probability of the state x ∈ X.
Equivocation or the conditional entropy H(X|Y) is the
remaining uncertainty about X, after observing another
random variable Y. Its definition is given by [33]:

H XjYð Þ ¼ −
X
y∈Y

p yð Þ
X
x∈X

p xjyð Þ log2p xjyð Þ
 !

; ð3Þ

where p(. |.) is the conditional probability. When the
input of a system is random, we are uncertain about the
system input. However, by observing the system output
we can reduce this uncertainly and gain information.
Based on this concept, mutual information between the
input X and the output Y is defined as [33]:

I X;Yð Þ ¼ H Xð Þ−H XjYð Þ
¼ −

X
x∈X

p xð Þ log2p xð Þ

þ
X
y∈Y

p yð Þ
X
x∈X

p xjyð Þ log2p xjyð Þ
 !

: ð4Þ

The amount of information that is provided to the
input of a molecular signaling system can be consid-
ered as the input entropy. Equivocation can be consid-
ered as a measure of the information loss in a signaling
system. The difference between these two is the mutual
information between system input and output. As can
be observed in (4), mutual information depends on the
input probability distribution. However, in many appli-
cations we typically prefer to have a metric which is
related only to the system itself. This is why the system
capacity was proposed by Shannon as an intrinsic prop-
erty of the system. By definition, capacity is equal to
the maximized mutual information over all possible
input distributions [33]:

C X;Yð Þ ¼ sup
p xð Þ

I X;Yð Þ; ð5Þ

where sup stands for supremum.
For cell signaling networks, typically it is not straightfor-

ward to determine the input distribution. However, we can
determine the mutual information as a function of input
distribution, using the input–output relations. Then we
can find the particular input distribution which maximizes
the mutual information. The maximum mutual informa-
tion is the system capacity.

Method for calculating channel transition probabilities in
the normal caspase3 network
A channel transition probability for the channel of
Figure 1a is a conditional probability of the form P
(caspase3|EGF, insulin, TNF). It specifies the likeli-
hood of the output to be 0 or 1, conditioned on the 0/
1 states of the inputs. When the caspase3 network in
Figure 1a operates normally, i.e., all the molecules are
functional, transition probabilities can be easily deter-
mined using the input–output table of the network
(Figure 1b). According to Figure 1b, when (EGF, insu-
lin, TNF) = (0, 0, 1), i.e., EGF and insulin are inactive
whereas TNF is active, capsase3 becomes active, i.e.,
capsase3 = 1. This means that P(caspase3 = 1|EGF = 0,
insulin = 0, TNF = 1) = 1 and P(caspase3 = 0|EGF = 0,
insulin = 0, TNF = 1) = 0. For the other seven input
combinations, caspase3 is inactive, i.e., capsase3 = 0. This
implies that for these seven cases we have P(caspase3 = 0|
EGF, insulin, TNF) = 1 and P(caspase3 = 1|EGF, insulin,
TNF) = 0. All these channel transition probabilities are
graphically shown in Figure 1c, as well as the following
transition probability channel matrix M:

EGF; insulin; TNF

Mnormal channel ¼

P 0j000ð Þ P 1j000ð Þ
P 0j001ð Þ P 1j001ð Þ
P 0j010ð Þ P 1j010ð Þ
P 0j011ð Þ P 1j011ð Þ
P 0j100ð Þ P 1j100ð Þ
P 0j101ð Þ P 1j101ð Þ
P 0j110ð Þ P 1j110ð Þ
P 0j111ð Þ P 1j111ð Þ

2
66666666664

3
77777777775
¼

1 0
0 1
1 0
1 0
1 0
1 0
1 0
1 0

2
66666666664

3
77777777775
:

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

caspase3 ¼ 0 1

ð6Þ
Each element of the above matrix is a conditional transi-

tion probability of the form P(caspase3|EGF, insulin,TNF).
For any given set of 0/1 values for the inputs shown in (6),
this gives the probability of the output to be 0 or 1.
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Method to determine the input–output relationships for
the pathological caspase3 network
In order to model a pathological molecular channel, one
needs to specify the equations that determine the channel
output, in terms of the channel inputs. Since the state of
each molecule is considered to be binary, i.e., active, 1, or
inactive, 0, we need to specify the binary equation of each
molecule. The binary equation of each molecule includes
all the regulatory inputs to that particular molecule, and
symbolically shows how the activity of the molecule is reg-
ulated by its different inputs. Based on the physiological
mechanisms by which different regulators control the ac-
tivity of each molecule in the caspase3 network (Figure 1a),
we have derived all the binary equations (Table 1).
To understand the binary equations (Table 1), we ex-

plain three representative equations. Other equations
can be similarly explained. The first equation AKT =
EGFR + insulin means that the activation of EGFR “or”
insulin activates AKT. The last equation caspase3 =
AKT’ × (caspase8 + JNK1 +MK2) indicates that the acti-
vation of AKT, which is an inhibitor, turns off caspase3,
i.e., caspase3 = 0. However, if AKT is inactive (0), activa-
tion of caspase8 “or” JNK1 “or” MK2 can activate cas-
pase3. Finally, the third equation cFLIPL = NFκB simply
shows that NFκB is an activator for cFLIPL.
When all the molecules are functional, the state of the

output molecule caspase3 can be determined using the
Table 1 Equations for the caspase3 channel in Figure 1a

Molecules Equations

Internal molecules of the
channel (listed alphabetically)

1. AKT AKT = EGFR + insulin

2. caspase8 caspase8 = cFLIPL’ ×
(ComplexII + ERK)

3. cFLIPL cFLIPL = NFκB

4. ComplexI ComplexI = TNF

5. ComplexII ComplexII = TNF + ComplexI

6. EGFR EGFR = EGF

7. ERK ERK =MEK

8. IKK IKK = ComplexI

9. IRS1 IRS1 = Insulin

10. JNK1 JNK1 = MKK7

11. MEK MEK = EGFR + IRS1

12. MEKK1ASK1 MEKK1ASK1 = ComplexI

13. MK2 MK2 = p38

14. MKK3 MKK3 =MEKK1ASK1

15. MKK7 MKK7 =MEKK1ASK1

16. NFκB NFκB = IKK

17. p38 p38 = MKK3

Channel output caspase3 caspase3 = AKT’×
(caspase8 + JNK1 +MK2)

Each equation specifies the input signals to a molecule using the binary
operations ’, + and ×, which represent NOT, OR and AND, respectively.
equations (Table 1), for eight different set of inputs. This
results in the input–output table (Figure 1b), which is con-
sistent with the experimental findings of Janes et al. [20].
On the other hand, when there is dysfunctional mol-

ecule in the network, the state of caspase3 can no longer
be determined from Figure 1b. Depending on which mol-
ecule is dysfunctional, the output state needs to be recal-
culated for eight different set of inputs, using the network
equations (Table 1). For example, when AKT is dysfunc-
tional such that it is always active, 1, irrespective of the
states of its inputs EGFR and insulin, caspase3 remains
inactive, 0, all the time. The reason is that according to
the last equation (Table 1) we have caspase3 = AKT’ ×
(caspase8 + JNK1+MK2)= 0× (caspase8+ JNK1 +MK2) = 0,
since AKT = 1 and 1’ = 0 (Additional file 1: Table S2, the
row next to AKT = 1). The states of caspase3 when other
molecules are dysfunctional are given in Additional file 1:
Table S2, for eight different input combinations. Note that
a dysfunctional molecule is considered to be either always
active, 1, or inactive, 0, and its state remains fixed, no mat-
ter what the states of its regulatory inputs are.

Method for calculating channel transition probabilities in
the pathological caspase3 network
Consider the channel model introduced in the paper,
where the probability of each molecule to be dysfunc-
tional is β, except one dominant molecule such that its
dysfunctionality likelihood is kβ, k ≥ 1. Transformation of
a normal molecule to a dysfunctional one is an event that
occurs due to mutations or other structural/functional ab-
normalities. In our model these events are independent.
Also only one molecule at a time is considered to be dys-
functional. Since there are seventeen molecules in the
channel (Figure 1a), we have 16β + kβ = 1, which yields
β = 1/(k + 16). So, in our pathological channel model the
dysfunctionality likelihoods of the dominant and the other
sixteen molecules are k/(k + 16) and 1/(k + 16), respect-
ively. When there is no dominant molecule, i.e., k = 1, all
the seventeen molecules of the channel are equally likely
to be dysfunctional, each with a probability of 1/17.
Each transition probability is the conditional probability

P(caspase3|EGF, insulin,TNF) that can be calculated using
the total probability theorem:

P caspase3jEGF; insulin;TNFð Þ

¼
X17
i¼1

fP caspase3jEGF; insulin;TNF;D0
i

� �
P D0

i

� �
þ P caspase3jEGF; insulin;TNF;D1

i
� �

P D1
i

� �g:
ð7Þ

Here D0
i represents the event that Xi is dysfunctional

with Xi = 0, where Xi is the i-th molecule in Table 1.
Similarly, D1

i denotes the event that Xi is dysfunctional
such that Xi = 1. It is easy to verify that:
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P D0
i

� � ¼ P Xi ¼ 0jXi is dysfuncð ÞP Xi is dysfuncð Þ ¼ 1=2ð Þpi
ð8Þ

P D1
i

� � ¼ P Xi ¼ 1jXi is dysfuncð ÞP Xi is dysfuncð Þ ¼ 1=2ð Þpi
ð9Þ

where pi = P(Xi is dysfunc). Note that in our model a
dysfunctional molecule is equally likely to be either 0 or 1.
This is why we have P(Xi = 0|Xi is dysfunc) = P(Xi = 1|
Xi is dysfunc) = 1/2 in (8) and (9). Moreover, pi = k/(k + 16)
if Xi is a dominant molecule. Otherwise, pi = 1/(k + 16).
The probabilities P caspase3 EGF; insulin;TNF;D0

iÞ
���

and

P caspase3 EGF; insulin;TNF;D1
iÞ

���
in (7) are either zero

or one, and can be determined using Additional file 1:
Table S2. For example, P 1 0; 0; 1;D0

6Þ ¼ 1
��� since with

(EGF, insulin,TNF) = (0, 0, 1) and the dysfunctional EGFR
(no. 6 in Additional file 1: Table S2) locked at 0, we have cas-
pase3 = 1. Similarly, one can verify that P 1 0; 0; 1;D1

6Þ ¼ 0
��� .

By inserting (8) and (9) into (7) we finally obtain:

P caspase3ð jEGF; insulin;TNFÞ
¼ 1=2ð Þ

X17
i¼1

pifP caspase3jEGF; insulin;TNF;D0
i

� �
þ P caspase3jEGF; insulin;TNF;D1

i
� �g: ð10Þ

For the pathological channel model introduced earlier, we
have calculated P(1|EGF, insulin,TNF) for different input
combinations using (10) and Additional file 1: Table S2. They
are listed in the second column of the transition probability
channel matrix M in (11). The first column of M, i.e., the
conditional probability of caspase3 = 0, is determined accord-
ing to P(0|EGF, insulin,TNF) = 1− P(1|EGF, insulin,TNF):
Mabnormal channel ¼

P 0j000ð Þ P 1j000ð Þ
P 0j001ð Þ P 1j001ð Þ
P 0j010ð Þ P 1j010ð Þ
P 0j011ð Þ P 1j011ð Þ
P 0j100ð Þ P 1j100ð Þ
P 0j101ð Þ P 1j101ð Þ
P 0j110ð Þ P 1j110ð Þ
P 0j111ð Þ P 1j111ð Þ

2
66666666664

3
77777777775

¼

1−P 1j000ð Þ 1
2

p2 þ p4 þ p5 þ
 

1−P 1j001ð Þ 1
2

p1 þ 2
X5
i¼2

pi þ p6 þ
 

1−P 1j010ð Þ p
1−P 1j011ð Þ p
1−P 1j100ð Þ p
1−P 1j101ð Þ p1 þð
1−P 1j110ð Þ p
1−P 1j111ð Þ p

2
66666666666666664
When a molecule is dominant, its pi becomes k times
greater than the other pi s in our model. Depending on
which molecule is dominant, M in (11) takes a different
form. More specifically, the seventeen molecules of the
channel (Figure 1a) can be categorized into five classes:
{1}, {6}, {12}, {3,8,16}, and {2,4,5,7,9,10,11,13,14,15,17},
where numbers refer to the molecules in Table 1. In
what follows, we express M in terms of the dominance
factor k for these five set of molecules:

Mabnormal channel ¼ 1
2k þ 32

2k þ 20 12
k þ 2 k þ 30
k þ 32 k
k þ 32 k
k þ 32 k
k þ 31 k þ 1
k þ 32 k
k þ 32 k

2
66666666664

3
77777777775

AKT is dominantð Þ;
ð12Þ

Mabnormal channel ¼ 1
2k þ 32

2k þ 20 12
k þ 2 k þ 30

2k þ 31 1
2k þ 31 1
2k þ 31 1
k þ 31 k þ 1
2k þ 31 1
2k þ 31 1

2
66666666664

3
77777777775

EGFR is dominantð Þ;
ð13Þ
p7 þ
X15
i¼9

pi þ p17

!

2
X11
i¼7

pi þ p12 þ 2
X17
i¼13

pi

!

1=2

1=2

1=2
p6Þ=2

1=2

1=2

3
77777777777777775

: ð11Þ
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Mabnormal channel ¼ 1
2k þ 32

k þ 21 k þ 11
k þ 2 k þ 30

2k þ 31 1
2k þ 31 1
2k þ 31 1
2k þ 30 2
2k þ 31 1
2k þ 31 1

2
66666666664

3
77777777775

MEKK1ASK1 is dominantð Þ;
ð14Þ

Mabnormal channel ¼ 1
2k þ 32

2k þ 20 12
3 2k þ 29

2k þ 31 1
2k þ 31 1
2k þ 31 1
2k þ 30 2
2k þ 31 1
2k þ 31 1

2
66666666664

3
77777777775

cFLIPLor IKK or NFκB is dominantð Þ;
ð15Þ
Mabnormal channel ¼ 1
2k þ 32

k þ 21 k þ 11
3 2k þ 29

2k þ 31 1
2k þ 31 1
2k þ 31 1
2k þ 30 2
2k þ 31 1
2k þ 31 1

2
66666666664

3
77777777775

ðcaspase8 or ComplexI or ComplexII or ERK

orIRS1 or JNK1or MEK or MK2 or MKK3
or MKK7 or p38 is dominantÞ;

ð16Þ
Note that for k = 1, all the M matrices in (12)-(16)

reduce to the following matrix in (17). The associated
channel transition probability diagram is shown in
Figure 1d. It corresponds to the pathological channel
model where all the molecules are equally probable to
be dysfunctional.

Mk¼1
abnormal channel ¼

22=34 12=34
3=34 31=34
33=34 1=34
33=34 1=34
33=34 1=34
32=34 2=34
33=34 1=34
33=34 1=34

2
66666666664

3
77777777775

ðall molecules are equally
likely to be dysfunctionalÞ;

ð17Þ
Method for calculating the transmission error probability Pe
According to the channel transition probability diagram
(Figure 1c), a transmission error occurs when the inputs
are (EGF, insulin,TNF) = (0, 0, 1) but the output is cas-
pase3 = 0. Additionally, if the inputs are anything but
(EGF, insulin,TNF) = (0, 0, 1), caspase3 = 1 is an incorrect
output and indicates transmission error as well. Therefore,
using the total probability theorem, the transmission error
probability can be written as:

Pe ¼
X

P incorrect outputjEGF; insulin; TNFð ÞP EGF; insulin; TNFð Þ
ð18Þ

Since in our model all the eight input combinations
are equally probable, (18) can be simplified to:

Pe ¼ 1
8
fP 0j001ð Þ þ P 1j000ð Þ þ P 1j010ð Þ þ P 1j011ð Þ
þ P 1 100Þ þ P 1 101Þ þ P 1 110Þ þ P 1 111Þj g:ðjðjðjð

ð19Þ
The conditional probabilities in (19) can be easily ob-

tained from the matrices in (12)-(16). This results in the
following expressions for Pe versus k, depending on which
molecule is dominant:

Pe ¼ 7k þ 15
16 k þ 16ð Þ AKT is dominantð Þ; ð20Þ

Pe ¼ 2k þ 20
16 k þ 16ð Þ EGFR or MEKK1ASK1 is dominantð Þ;

ð21Þ

Pe ¼ 22
16 k þ 16ð Þ cFLIPLor IKK or NFκB is dominantð Þ;

ð22Þ

Pe ¼ k þ 21
16 k þ 16ð Þ

ðcaspase8 or ComplexI or ComplexIIor ERK
or IRS1 or JNK1or MEKor MK2 or MKK3

or MKK7 or p38 is dominantÞ:
ð23Þ

When k= 1, all the above equations reduce to Pe= 11/136,
as mentioned in the paper. This is the case where all the
molecules are equally likely to be dysfunctional. Plots of
the Pe equations in (20)-(23) versus k are provided in
Figure 2a. It is instructive to look at the transmission
error probability as k approaches infinity, i.e., only one
molecule is dysfunctional in the channel with probabil-
ity one and the chance of others to be dysfunctional is
zero. As k→∞, Pe in equations (20)-(23) reduces to 7/16,
2/16, 0 and 1/16, respectively. These are consistent with
what said in the paper, i.e., AKT plays a significant role in
this molecular network. This means that when AKT is
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dysfunctional while the other molecules are functional,
there is a high probability that the input message from
ligands will not be correctly delivered to caspase3. On
the other hand, cFLIPL and IKK and NFκB introduce
zero transmission error, when one of them is the only
dysfunctional molecule. The remaining molecules provides
a relatively small Pe, i.e., 2/16 and 1/16.

Method for calculating the signaling capacity C
To calculate the capacity of the molecular channel
(Figure 1a), one needs the transition probability channel
matrix M. Depending on which molecule is dominant in
the pathological channel, one can use the matrices given
in (12)-(16). The Arimoto algorithm is used to numerically
calculate the signaling capacity C (Figure 2b).

Methods for calculating the transmission error probability Pe
and signaling capacity C in the pathological T cell network
Binary equations of the T cell network [24] that represent
how it functions in response to different inputs are
provided in Additional file 1: Table S1, using the nota-
tion of this paper. Following the same methods used
for the pathological casepase3 network, one can calculate
Pe and C in the pathological T cell channel, using the logic
equations (Additional file 1: Table S1).

Additional file

Additional file 1: Quantitative Analysis of Intracellular Communication
and Signaling Errors in Signaling Networks [1,6,7,20-24,34-36].
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