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Abstract

We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We
thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local
computations. Such information may come from specialized quantum devices or even from remote universal quantum
computers. We show how to accomplish this by devising universal quantum computer programs that implement well
known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external
black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the
universal quantum computer.
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Introduction

Quantum networks which connect quantum systems and can

transmit quantum information have been extensively discussed

[1]. Quantum connectivity provides a means of overcoming size-

scaling and error-correction problems, and has significant

advantages over classical connectivity. Furthermore, networks of

quantum computers have also been proposed [2] where

information can be exchanged between nodes via quantum and

classical channels. A general question arises as to whether and how

such quantum computers can communicate and exchange

information. In the simplest case a quantum computer may

download data sets from other nodes over the quantum network,

but in more complex cases use the network to call subroutines, or

concatenate programs from other quantum computers.

It is well known that classical principles do not necessarily

apply in the realm of quantum mechanics. The no-cloning

theorem (see [3] for example) is a well-known example of this. In

the field of quantum computing, the ability to halt a

programmable quantum computer was such an example. The

original Universal Quantum Turing Machine proposal [4] made

the tacit assumption that a quantum turing machine could be

halted in a classical manner. This turned out to be problematic

(see [5] for a discussion of the issues associated with the original

proposal) due to properties of quantum mechanics. Thus, it is

imperative to formally show whether a classical solution or

property is applicable (or even relevant) in the realm of quantum

mechanics. Assuming that a classical solution to a problem

directly applies to a quantum mechanical system is prone to run

into potential complications.

We address here the question of how a universal quantum

computer can access an external oracle, which may be regarded as

a ‘‘black box’’ quantum device, possibly over a quantum network

but in any case as a separate and external quantum system to the

universal quantum computer itself. In fact, the oracle may be a

program running on a remote universal quantum computer. It

should be noted that this is a different problem from that of

implementing an oracle ‘‘program’’ on a universal quantum

computer. This is of course possible by virtue of the fact that the

computer is universal. Hence, if such a program exists, it can be

implemented and executed on a universal quantum computer.

Strictly speaking, however, the ability to utilize external quantum

devices over a network connection is a different problem because

such devices are external to the universal quantum computer itself.

Classically, the ability to access devices on a network is a well-

known problem with well-known solutions. However, as stated

earlier, we cannot assume that this is necessarily the case for a

quantum computer accessing quantum devices on a quantum

network. Our aim is to explicitly show that accessing external

quantum devices with a universal quantum computer is indeed

possible by devising universal quantum computer programs that

implement well-known oracle based quantum algorithms, namely

the Deutsch, Deutsch-Jozsa, and the Grover algorithms using

external black-box quantum oracle devices.

In [5] we constructed a programmable universal quantum

computer UQC that is universal in the sense that it can emulate

any classical Turing machine and can approximate any unitary

operation to any desired accuracy. It is programmable in the sense

that the machine’s operations are specified using a sequence of

instructions in the same way as for classical computers. UQC also

supports conditional branching and hence conditional execution, a

feature that is not directly possible in the quantum gate array

circuit framework. Moreover, UQC uses a halting scheme that

allows for valid program concatenation, thus resolving issues with

the original Universal Quantum Turing Machine (UQTM)

proposed by Deutsch [4].
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In order to use information from a quantum network in UQC
programs, we need to devise a means of enabling UQC programs

to access such remote information and use that information for

local computations. We assume that remote quantum nodes exist

and treat them as black boxes without any assumptions as to their

internal structure or operational details. Without loss of generality,

we assume that such devices accept a finite number of input qubits

and generate a finite number of output qubits. The input and

output qubits may be shared, which is the case if the remote device

functions in such a way as to alter the input qubits based on its

function. We also assume, without loss of generality, that quantum

network nodes have an ‘‘enable’’ qubit, jenT, that controls when

an access is to begin, in order to let the device know when the

input data has been prepared and is valid. We further assume,

without loss of generality, that the nodes of the network generate

their output data in less time than the time associated with a single

iteration of UQC. If the query time were longer than a single

iteration of UQC or were data-dependent, one could simply write

the UQC program to wait for the appropriate number of cycles

before using the result of the network access. Alternatively, the

nodes could provide an ‘‘access completed’’ status flag qubit such

that the UQC program could poll this status flag qubit before

using the result of a network access.

Results

Recall from [5] that UQC consists of a memory tape M with an

infinite number of qubits, of which only a finite portion is ever

used, and a processor that contains observables that play the roles

of several registers, including a data register D, a program counter

register P, a scratch qubit s, and the halt qubit h. The processor

executes programs stored on the memory tape using data that is

also stored on the memory tape. A program of UQC consists of a

sequence of qubits whose states encode instructions of the

instruction set defined in [5] and reproduced in Table 1 at the

end of this paper.

The single qubit operations H and T act on the qubit at tape

location M(D), denoted jMTD, and the two qubit operations

SWAP and NAND act on jMTD and the scratch qubit jsT, the

latter being used as the control qubit for the NAND operation.

The instruction set includes a set of operations that can

approximate any unitary operation to any desired accuracy. Thus,

it is quantum computationally universal. In [5] we constructed a

UQC program that can compute the NAND function, thereby

showing that the machine can compute any classically computable

function. Because of UQC’s universality, any algorithm that can

be implemented in the quantum gate array framework can be

mapped to an equivalent UQC program by virtue of the fact that

gate array circuits can be decomposed into circuits of gates with

the same universal set of unitary operations fH,T,CNOTg that

are implemented in the UQC instruction set. Each of the qubits in

a quantum circuit (i.e. lines connecting gates) can be mapped to a

suitable memory tape data qubit and each of the unitary

operations (i.e. quantum gates) can be mapped to a suitable

UQC subroutine. It is possible therefore to map quantum gate

array implementations of algorithms such as the quantum Fourier

transform, quantum phase estimation, quantum order finding,

quantum factoring discussed in [6] (Chapter 5) onto UQC.

Accessing Networked Quantum Resources With UQC
Modifying UQC to use networked quantum devices, then, is a

matter of connecting the qubits comprising the interface (input,

output, enable, and optionally access complete) qubits of those

devices to a finite subset of the data portion of M, which is the

quantum analog of a classical computer’s memory-mapped I/O

and allows UQC programs to access remote devices using the M
qubits that are connected to those devices. The UQC programs

prepare the appropriate input data qubits, set the corresponding

access enable qubits to perform an access, and utilize the

corresponding output data qubits of M. It should be noted that a

remote quantum device could be another instance of UQC which

would enable distributed quantum computing. However, the

scheme to access data from remote devices, be they simple devices

or full-fledged quantum computers, would work in the same way.

Primitive Programs
In [5] we defined several primitive programs and subroutines

that serve as building blocks for devising and analyzing more

complicated and useful programs. We reproduce here only those

that we specifically require for constructing the algorithms that are

the focus of this work. By considering the quantum gate array

framework implementations of the algorithms, we identify that we

need programs that perform the operations H, sx, and CNOT.

We also need to swap qubits for several operations such as

enabling or disabling the remote networked quantum device, and

the ability to address individual qubits on the memory tape to

perform operations on them. Finally, we need a primitive program

to halt the overall program.

In the equations that follow, superscripts on programs denote

the operation specified by the program and subscripts indicate the

qubits on which the program specifies the processor to operate

upon. For notational simplicity, jPhT denotes the program that

halts UQC, i.e. jPhT ~
def jh?1TjNOPT.

The first set of primitive programs, fjDziT,jDiT,jSi,sT,jSi,jTg, is

a subset of those defined in [5]:

1. jDziT: Increment D by i,

jDziT~
def Pi

k~1jDz1T if i § 1,

I otherwise:

(
ð1Þ

2. jDiT: Set D to i, iw0,

jDiT ~
def jDz1TjD?0TjDziT: ð2Þ

Table 1. UQC Instruction Set.

Label Encoding Description

jNOPT j0000T No operation

jD?0T j0001T D?0

jDz1T j0010T D?Dz1

jD{1T j0011T D?D{1

jHT j0100T Apply Hadamard operation to jMTD

jTT j0101T Apply p=8 operation to jMTD

jSWAPT j0110T jMTD<jsT
jCNOTT j0111T CNOT of jMTD and jsT (jsT: control)

jD<PT j1000T jDT<jPT (branch) iff s~0

jCLST j1001T Clear s

jh?1T j1111T jhT?j1T (set halt qubit)

doi:10.1371/journal.pone.0029417.t001
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Recall from the discussion of UEX in [5], that we precede the

D?0 instruction with a Dz1 instruction to ensure that Dw0
when the D?0 instruction is executed.

3. jSi,sT: Swap data qubits D(i) and s,

jSi,sT~
def jD5i{1TjSWAPT: ð3Þ

4. jSi,jT: Swap data qubits D(i) and D(j),

jSi,jT ~
def jS5i{1,sTjS5j{1,sTjS5i{1,sT: ð4Þ

We also describe the set of programs fjPH
i T,jPH

i,jT,jPC
i,jTg which

apply the single- and multiple-qubit H and CNOT operations on

arbitrary qubits on the memory tape, where i and j[Z:

1. jPH
i T: Apply H to data qubit D(i),

jPH
i T ~

def jD5i{1TjHT: ð5Þ

2. jPH
i,jT: Apply H to data qubits D(i : j), where i§j,

jPH
i,jT ~

def
Pi

k~j jPH
k T: ð6Þ

One could implement this program using a loop but that would

require first implementing binary addition of M qubits. Binary

addition is possible because one can implement a binary adder

such as a Carry Lookahead Adder (CLA) [7] using the NAND
program that we defined in [5]. However, since we are only

interested in a polynomial order (in the number of qubits) multiple

qubit Hadamard transformation program, we define jPH
i,jT as a

sequential ‘‘unrolled’’ loop program.

3. jPC
i,jT: Apply CNOT to data qubits D(i) and D(j) with D(i) as

the control qubit,

jPC
i,jT ~

def jSi,sTjD5j{1TjCNOTTjSi,sT: ð7Þ

Using the primitive programs defined above, we define jPX
i T as

the program that applies the sx (X) operation on data qubit i[Zz.

Noting that a CNOT operation with the control qubit in the j1T
state is equivalent to the X operation, we deduce the equivalence

jPX
i T:jPC

j1T,iT, ð8Þ

where the subscript j1T denotes that some suitable data qubit on

the memory tape has been prepared in the state j1T. Similarly, we

define jPZ
i T as the program that applies the sz (Z) operation on

data qubit i[Zz. Noting that HXH~Z, we deduce

jPZ
i T:jPH

i TjPX
i TjPH

i T: ð9Þ

Finally, we define a program jPCZ
i,j T that conditionally applies the

Z operation on data qubit i[Zz and data qubit j[Zz. Since

CNOT is the conditional X operation, we have

jPCZ
i,j T:jPH

j TjPC
i,jTjPH

j T: ð10Þ

UQC Algorithms Using Networked Quantum Oracle Devices
With the notable exception of Shor’s factorization algorithm

[8], several well known quantum algorithms that achieve a speed-

up over their fastest known classical counterparts rely on the use of

an oracle, the best known examples being the Deutsch, Deutsch-

Jozsa, and Grover algorithms (see Nielsen and Chuang [6], for

example). The Deutsch algorithm can determine a global property

of a function f (x), namely f (0)+f (1), using only one evaluation of

f (x) whereas the fastest classical algorithm requires at least two

evaluations of f (x). The Deutsch-Jozsa algorithm can determine

whether a two-valued (0 or 1) function f (x) is constant or balanced

with only one evaluation of f (x) whereas the fastest classical

algorithm requires 2n{1z1 evaluations, where n denotes the

number of bits required to encode the possible values of f (x).
Grover’s algorithm [9] can find a marked item in an unstructured

database of N elements in O(
ffiffiffiffiffi
N
p

) operations whereas the fastest

classical algorithm requires O(N) operations. Thus, these

quantum algorithms all achieve at least a quadratic speedup over

their classical counterparts.

These algorithms are well suited to illustrate the use of

networked quantum resources with the UQC because they rely

on black-box quantum devices that generate some output based on

the given input. They thus serve as prototypical examples of a

networked quantum node, whose internal implementation details

are unknown; only the interface protocol need be known. Here, we

assume the simplest protocol, which is that the output is valid one

‘‘clock cycle’’ after making a request.

Deutsch and Deutsch-Jozsa Algorithms on UQC. We now

illustrate the use of a networked quantum device in a UQC

program by first implementing the simplest known oracle based

quantum algorithm, Deutsch’s algorithm. The Deutsch oracle

works as follows:

jx,yT?
jx,y+f (x)T if jenT ~ j1T ,

jx,yT otherwise ,

�

where f is some function and jenT denotes the oracle query enable

flag. The memory tape is prepared with D(0)~j0T and D(1)~j1T
where D(0) and D(1) take the roles of x and y, respectively. We

assume without loss of generality that D(2) takes the role of jenT
and is prepared as j0T, and D(3) is initially prepared as j1T.

The program that executes the Deutsch algorithm is

jPDT ~
def jPH

1,0TjS2,3TjS2,3TjPH
0 TjPhT, ð11Þ

where jPH
1,0T applies the Hadamard transform to the data qubits

corresponding to x and y. jS2,3TjS2,3T swap qubits D(2) and D(3)
thereby setting the oracle’s jenT qubit (recall that D(2) is

connected to jenT and that D(2)~j0T and D(3)~j1T initially) for

a single UQC cycle and then clears it, returning the state of

D(3 : 2) back to the original state. At this point, the oracle has

generated the output state jD(0),D(0)+D(1)T. jPH
0 T then applies

the Hadamard transform to the x output of the oracle and jPhT
halts the program thus yielding the following on the memory

tape:

Interfacing Quantum Devices to a Quantum Computer
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jD(0),D(1)T~+jf (0)+f (1)T
j0T{j1Tffiffiffi

2
p

� �
:

Measuring D(0) yields the result that we were interested in,

f (0)+f (1). This is a specific mapping of the gate array

implementation of the algorithm (see [6] Figure 1.19, for example)

onto the instruction set of UQC.

We can similarly implement the Deutsch-Jozsa algorithm by

mapping a gate array implementation such as the one shown in

[6], Figure 1.20. In this case, data qubits D(0 : n{1) take the role

of x, D(n) takes the role of y, and we use D(nz1) as the jenT
qubit. As before, D(0 : n{1) are prepared in the j0T state, D(n) is

prepared in the j1T state, D(nz1) is prepared in the j0T state and

D(nz2) is prepared in the j1T state. The Deutsch-Jozsa oracle

works like the Deutsch oracle with the only difference being that x
is n qubits wide. The resulting UQC program that computes the

Deutsch-Jozsa algorithm is therefore

jPDJT ~
def jPH

n{1,0TjSnz1,nz2TjSnz1,nz2TjPH
n{1,0TjPhT, ð12Þ

which is again a direct mapping of the gate array implementation

onto the UQC instruction set.

Grover’s Algorithm on UQC. We now use the techniques

developed in the previous section to implement the Grover

unstructured database search algorithm. We assume that the

database has only one marked solution as can be determined by

using the quantum counting algorithm (see [6] Chapter 6, for

example). We denote the query data qubits as jqT and the query

enable flag as jenT. The Grover oracle works as follows:

jqT?
({1)f (q)jqT if jenT ~ j1T ,

jqT otherwise

(

where f (q)~1 if q is a solution to the search problem and f (q)~0
otherwise. More concisely, the oracle performs the unitary

transformation

Um ~
def

I{2jmTSmj, ð13Þ

where jmT denotes the marked solution. In other words, the oracle

flips the phase of the solution state but leaves non-solution states

unchanged. Grover’s algorithm prepares an initial query state as

the equal superposition of all elements in the database, followed by

O(
ffiffiffiffiffi
2n
p

) iterations of G, where

G ~
def

(2jsTSsj{I)Um, ð14Þ

and

jsT~
1ffiffiffiffiffi
2n
p

X2n{1

i~0

jiT ð15Þ

denotes the equal superposition of all database elements.

Thus, the first step in the program is to create a superposition of

all database items in D(n : 1) where D(i)~M(5i{1), i[Zz, as

the first query input. This is accomplished by the multiple qubit

Hadamard primitive program jPH
n,1T defined in Eq. (6). The next

step is to perform an oracle query. The following program

performs an oracle call with query data prepared in D(n : 1):

jPmT ~
def jSnz1,nz2TjSnz1,nz2T, ð16Þ

where D(nz1) is used as the oracle query enable qubit and

D(nz2) is initialized to j1T. D(nz1) is assumed to be initialized

to j0T (i.e. the oracle query data is disabled at start-up). This

program simply sets the query enable qubit for a single UQC cycle

and then clears it, returning the state of D(nz2 : nz1) back to

the original state. Thus, upon running jPmT, the result of the

oracle call is in D(n : 1), i.e. this program is functionally equivalent

to Um.

The next step is to implement a program jPsT that performs the

reflection of a given state about the superposition of all basis states

jsT. This requires a conditional-phase operation that works as

follows:

jxT?
jxT if x~0,

{jxT otherwise

�

where jxT is n qubits wide. Up to a global phase, this can be

implemented using the following procedure:

1. Apply the sx operation to all n qubits.

2. Apply a controlled-Z operation using n{1 qubits as control

qubits and the remaining qubit as the data qubit.

3. Apply the sx operation to all n qubits.

We can construct a multiple qubit controlled-Z program jPCZ
i,j,kT

where qubits i through j are the control qubits and qubit k is the

data qubit, with the jPCZ
i,j T program defined in Eq. (10) and the

Toffoli program jPToff
i,j,k T that we defined in [5] using a procedure

analogous to that described in [6], Chapter 4. Armed with jPCZ
i,j,kT,

we construct jPsT as follows:

jPsT ~
def jPH

n,1TjPX
n,1TjPCZ

2,n,1TjPX
n,1TjPH

n,1T: ð17Þ

It can be readily verified that this is functionally equivalent to the

2jsTSsj{I operator. Thus, a program that performs a single

Grover iteration is

jPGT ~
def jPmTjPsT: ð18Þ

In summary, the complete program to search a database of 2n

items with a single marked solution is

jGT ~
def jPH

n,1T jPGTð ÞNG jPhT, ð19Þ

where NG~
p

4

ffiffiffiffiffi
2n
p

is the number of Grover iterations that can be

pre-computed based on the database size, or that UQC can

compute from the database size using a classical algorithm. Upon

execution of jGT, a measurement of D(n : 1) reveals the solution

jmT. Because there are no oracle queries associated with jPH
n,1T

and jPhT, we immediately identify the complexity (as a measure of

the number of oracle queries) of jGT as NG . As is to be expected,

this complexity is identical to the number of oracle queries

associated with an implementation in the gate array framework.
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Discussion

We have presented a scheme to allow universal quantum

computers to utilize networked quantum resources. We have

illustrated the scheme by devising UQC programs that implement

the well-known oracle based Deutsch, Deutsch-Jozsa, and Grover

algorithms using networked quantum oracle devices. We have

therefore demonstrated that universal quantum computers can

access networked quantum devices in a way analogous to that by

which classical computers access network resources. The method

that we used to map quantum algorithms onto UQC can be

applied to implement and analyze other quantum algorithms.
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