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1. Introduction
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In the intensive care unit, the monitored variables collected from sensors may have different behaviors among patients with
different clinical basic information. Giving prior information of the monitored variables based on their specific basic information
as soon as the patient is admitted will support the clinicians with better decisions during the surgery. Instead of black box models,
the explainable hidden Markov model is proposed, which can estimate the possible distribution parameters of the monitored
variables under different clinical basic information. A Student’s ¢-test or correlation test is conducted further to test whether the
parameters have a significant relationship with the basic variables. The specific relationship is explored by using a conditional
inference tree, which is an explainable model giving deciding rules. Instead of point estimation, interval forecast is chosen as the
performance metrics including coverage rate and relative interval width, which provide more reliable results. By applying the
methods to an intensive care unit data set with more than 20 thousand patients, the model has good performance with an area
under the ROC Curve value of 0.75, which means the hidden states can generally be correctly labelled. The significant test shows
that only a few combinations of the basic and monitored variables are not significant under the 0.01 significant level. The tree
model based on different quantile intervals provides different coverage and width combination choices. A coverage rate around
0.8 is suggested, which has a relative interval width of 0.77.

basic clinical data, it can improve the posterior probability
either diagnosed by the surgeons or by models like Bayesian.

In the intensive care unit (ICU), patients suffer from com-
plications like sepsis and circulatory failure during surgery.
Such complications will incur serious conditions out of
medical control [1, 2]. Without fast and accurate disease
diagnosis, patients face a high death rate due to lack of proper
treatment. To improve the diagnosis efficiency, a prior in-
formation extraction method was developed in this research.
As soon as the patients are admitted into the ICU, their basic
clinical data can be checked from the medical information
system. By giving the prior probability calculated from the

The model developed during the training process in this
research utilizes the basic clinical data before the surgery and
the monitored data during the surgery. The data include two
parts (1) the basic clinical data B, for patient # including
variables such as sex, age, weight, and height.

B, =[B.1:Bus-- s Bupo- - ]s (1)

wheren=1,2,...,Nandk = 1,2, ..., K. (2) The monitored
data during the surgery for patient n, including variables
such as heart rate and cardiac output.
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where A, refers to the matrix for the n" individual con-
taining all variables at all times. As the time length for
patients differ, T, is used to measure the time length for
patient n. Without any extra information, the data for pa-
tient n are {Bm, Anﬁ,}.

For diseases such as circulatory failure and sepsis during
surgery, there are typical methods to diagnose their onset.
For example, systemic inflammatory response syndrome
(SIRS) and sequential organ failure asses (SOFA) are
designed for sepsis detection. These are simple decision rules
by including criteria like that the temperature is higher than
38 or lower than 36. These criteria are the general diagnosis
standard when patients show obvious symptoms. In the
early diagnosis of neonatal sepsis, the semiquantitative PCT
test kit helps to exclude negative results [3]. Cheadle et al. [4]
have surveyed a number of host defense parameters that
pertain to an adequate immune response and developed an
outcome predictive score, which can identify patients within
hours of hospitalization who are at risk of subsequently
developing overt clinical infection and sepsis. For obser-
vations A, , at time ¢, a response can be given according to
the diagnosis standard as y, ;. Until now, the data for patient
n are {an,_, A, yn),}.

The current research for disease analysis by using the
abovementioned data can be divided into three aspects,
which are as follows:

(1) The relationship analysis of basic clinical data B and
response variables such as survival rate. The models
can be traditional biostatistics tests and machine
learning methods [5]. For example, Chicco and
Jurman [6] predict the survival rate of patients with
sepsis from age, sex, and septic episode number
alone.

(2) From the static aspect, the data A is regarded as a
static multivariate time series, which assumes the
data follow the same distribution without changing
with time, thus a stationary process. Methods such as
neural networks or ensemble learning technics such
as the random forest or AdaBoost are used in the
modeling process [7].

(3) From the dynamic aspect, the time series are
regarded as dynamic multivariate variables, thus a
nonstationary process [8]. Dynamic models are
designed by giving model updating or retraining
criteria. For example, Zhao et al. [9] use wavelet
transform and decision tree-based methods to do
interval forecasting for monitored data A. The input
variables involved include A and sometimes B. For
example, Esteban et al. [10] predict clinical events by
combining static and dynamic information using
recurrent neural networks. The data B is involved as
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an input layer in the neural network, resulting in an
improvement in the performance. Bernhardt [11]
proposes a two-part regression model composed of
logistic regression and a truncated accelerated failure
time model, which helps to use all of the available
survival information. Instead of involving the data B
in the existing model, Lin et al. [12] built a separate
model to train B and combined it with the con-
volutional long short-term memory neural networks
trained for A. In addition to the data A and B,
pharmacy data are also used in the modeling process,
as demonstrated by Hyland et al. [13].

Current research mainly concentrate on one specific
disease with two states being safe or onset. But the reality is
that multiple states may occur during the surgery process.
Prediction of one specific state may reduce the data infor-
mation utility and ignoring other states may bring more
uncertainty to the health condition of the patients. In ad-
dition, the criteria of disease onset detection like SIRS may
not cover all possible hidden conditions. The states can be
regarded as hidden states that are not seen or cannot be
measured directly while the monitored variables like A or
basic information B are not hidden. One of the main hidden
states model is the hidden Markov model. Christopher et al.
give the initial probability distribution calculation method of
the multi-Markov model for such data. Their following
research can be seen from Christopher, Ieva et al. [14]. In this
case, hidden state models are proposed in this research to
label the state for each observation of each patient.

The distribution of data A is rarely studied among the
researches, as most of the methods are nonparametric
methods which have no parameter assumptions like some of
the machine learning methods. But if the distributions can
be estimated, the correlation of the basic clinical data B and
the distributions of different state labels can be established.
In that case, by giving the prior information of B, the cli-
nicians can have the estimated posterior distribution of A of
different disease states. For example, if females have an
average higher heart rate than males, a heart rate value
normal for females may be alerted for males. If the heart rate
is not distinguished by sex, male patients may be delayed in
medical treatment. So, in this research, the distributions of
monitored data A are studied under different states’ labels.
The correlation between distribution parameters and basic
clinical data is tested to distinguish their differences among
different basic information.

The innovative aspects in this paper include the fol-
lowing: (1) the multivariable hidden Markov model is se-
lected to discover the hidden states that may not be
measured by the general standard rules. (2) The variables’
distribution of A labelled with different states is estimated by
the hidden Markov model under the Gaussian assumption.
(3) The variables’ distributions are compared under different
prior basic clinic conditions to give a posterior information
for clinical decision.

We introduce our basic model in Section 2, and apply it
to the real data in Section 3. Some concluding comments
appear in Section 4. All calculations were carried out using R



Journal of Healthcare Engineering

Core Team [15]; “depmmixS4” [16] was used for the hidden
Markov model and “ctree” by Hothorn et al. [17] for the
Ctree.

2. Methods

The hidden Markov model (HMM) origins from the re-
search [18] for discrete observations and is further developed
for time series; detailed study was carried out in [19]. The
HMM has observations which are observable, such as the
monitored variable heart rate which can be collected by
sensors. 'The observations are generated by the

f(An,~,~’ yn; |7Ts’ Mn,k,s’ gn,k,s) =

where I(y,; = s) is the indicator variable showing whether
the status of patient # at time ¢ is s or not. If the variables are

f(An,~,-’ Yn, |7Ts’ Hnk,s> Un,k,s) =

By using the Baum-Welch algorithm (expectation
maximization algorithm) and assuming the initial distri-
bution is equally distributed, the Gaussian distribution
parameters can be estimated for patient n, variable k, and
state s as follows:

{ﬁn,k,s’ 6n,k,s}' (5)

By applying the forward-backward algorithm, the best
hidden states ¥, , and its corresponding probability p(y,,, =
s) can be estimated.

Since the hidden states are discrete, the metric AUC
(area under the ROC curve) is chosen to measure the
similarity between the real and estimated hidden states. A
ROC curve (receiver operating characteristic curve) is a
graph showing the performance of a classification model at
all classification thresholds. AUC provides an aggregate
measure of performance across all possible classification
thresholds, which ranges in value from 0 to 1. A model
whose predictions are 100 % wrong has an AUC of 0.0; one
whose predictions are 100 % correct has an AUC of 1.0,
while random guessing has an AUC of 0.5.

If the AUC results are acceptable, the estimated pa-
rameters {ﬁn’k,s,ﬁn,k)s} can be reliable. After that, the pa-
rameters are compared under different basic clinical data B.
For example, the data fi ;; of variable k and state s are
compared under different sex to test whether it has sig-
nificant difference between female and male patients. The
comparing methods include Student’s t-test for discrete

n K
[~

corresponding states which are not observable, like the status
of the patient as sick or healthy, as circulatory failure or
normal. The HMM has three typical questions: likelihood,
decoding, and learning. What is used in this research are
decoding and learning, which are finding the most likely
hidden status and learning the parameters of the model.

If the distribution of the observations are assumed to be
Gaussian distribution, for patient # and monitored variable k
at status s, by giving the parameters of initial distribution as
71, Gaussian distribution as Ppos> 2 the conditional joint
distribution is

10,8

=s I(yne=s
(yn,t )‘/V(An,k,tlyn,-,yzn,.,s) (}V )’ (3)

further assumed to be independent mutually, then the
distribution is

K K I (yn,t:s)
H 7T£ (ym:S) { 1_[ ‘/V(An,k,tllun,k,s’ on,k,s) } . (4)

variables such as sex and the correlation test for continuous
variables such as age, weight, and height. If the test shows
significant results, the model decision tree is further con-
ducted to find how the basic clinical variable influences the
monitored variables’ distribution, namely, the estimated
parameters.

The model decision tree is a model of tree-like decision
rules, which splits the sample space into subspaces by
choosing the best split each time. Specifically, the model
used in this research is a conditional inference tree (Ctree
[17]). Ctree estimates a regression relationship by binary
recursive partitioning in a conditional inference frame-
work. The predictor variable, like the clinical basic vari-
ables, with the lowest p value is selected for splitting the
response variable, for example, fi_; ; of variable k and state
s. The p value belongs to a split criterion which can be
Spearman’s correlation test, the Wilcox-
on-Mann-Whitney test, the Kruskal-Wallis test, per-
mutation tests, and so on. The stoping criteria are not
constrained to the p value, but also include the max tree
depth allowance. For example, a max tree depth of 5 means
the tree can be no bigger than 5 in depth. Other stopping
criteria may also be applied. A regression tree is formed by
iteratively splitting nodes so as to maximize the decreased
p value at each step.

For each observation, it will be split into one single
terminal node. The observations in the same terminal node
can be regarded as a set. By ranging the Y values in that set,
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FiGure 1: The hidden Markov model (HMM) result for one patient
with multiple states. In the first figure, the HMM estimated red
(below the black line) points are generally consistent with the black
points (above the red line). Its corresponding AUC value is 0.8962.
In the second figure, the right red Gaussian curve has the pa-
rameters 4 = 95.675 and ¢ = 10.027, and the left black curve has the
parameters y = 87.123 and o = 8.918. The observations of state
circulatory failure have a relatively lower u.

the quantile values can be selected as the forecast interval.
For example, an 80 % interval has an upper value of 0.9
quantiles and a lower value of 0.1 quantiles. The width of the
quantile interval is further standard adjusted to remove the
influence of the different variable units by dividing their 0.9
quantile difference of the variable.

original interval width

Relative interval width =

. — (6)
0.95 quantile — 0.05 quantile

The coverage of the interval is as follows:

number of observations in the interval
coverage rate = . . (7
total number of observations

A wider interval has a high coverage when a new ob-
servation comes into the same terminal node, but at the cost
of a higher width. An interval with good coverage and
suitable width is suggested.

3. Real Data Analysis and Results

In the real data analysis, the circulatory failure data from
Hyland et al. [13] are used. After deleting patients who have
missing values, the data contains 22290 patients. The data
include monitored variables A such as heart rate, systolic
blood pressure (BP), diastolic BP, mean arterial pressure
(MAP), and basic clinical data B such as sex, age, weight,
height, and body mass index (BMI). Sepsis is a systemic
inflammatory response syndrome caused by the invasion of
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F1GURE 2: The area under the ROC curve (AUC) results for patients
with multiple states. The AUC value of 0.5 means the model has a
performance of random guessing. A value higher than that means
the model has better performance.

pathogenic microorganisms such as bacteria into the body.
Associated dysregulation of the inflammatory response has
been thought to be directly associated with cardiomyocyte
dysfunction. And heart rate reflects the frequency with
which cardiomyocytes move. Systolic BP, diastolic BP, and
MAP are related to blood volume, elasticity and tension of
blood vessel walls, and cardiac output. They can all reflect
well the ability of cardiomyocytes and can serve as an in-
dicator of sepsis. For the state variable y, it is labelled
generally according to the rule from [13]: y,, is labelled as
circulatory failure if MAP is <65 mmHg or (not exclusive)
vasoactive/inotropic drugs are present and lactate is bigger
than 2mmol 1"!. Under the other circumstances, y,, is
labelled as safe.

For the data A, . of patient n, we train them with the
model HMM under the Gaussian distribution assumption.
The estimated states and the estimated parameters for the
variable heart rate of one patient example are shown in
Figure 1.

j/n,t = f(An,~,~)‘ (8)

One thing that needs to be noticed is that the hidden
state of not being safe is not constrained to circulatory failure
but may also include others. The reason y,; is labelled as
circulatory failure is because circulatory failure is the main
disease during the process. If it can be correctly labelled, the
HMM results can be reliable. After the HMM processing, the
AUC value is calculated for patients who have multiple states
in y, . The patients with only circulatory failure or safe state,
namely, y, with only one label, are not involved in the AUC
measurement. After that, the number of patients is 10406.
The histogram of the results is shown in Figure 2.

The result shows that, the HMM model can efficiently
recognize the patterns of the data, thus most of the states are
labelled with the right tag. Since the AUC results are ac-
ceptable, the estimated parameters {ﬁmk’s,?fn)k,s} can be re-
liable. After that, the t-test or correlation test is conducted to
test whether the estimated 7., %, . have significant dif-
ference among different basic clinical settings. The results
are shown in Table 1.

The results show that most of the parameters have a
significant correlation with the clinical basic variables.
By giving the clinical basic information, the parameters
can have their values estimated, which can be regarded as
the prior values for the monitored variables. Instead of



Journal of Healthcare Engineering 5

TaBLE 1: The p value of the t-test or correlation test.

Variable Heart rate Systolic BP (invasive) Diastolic BP (invasive) MAP

Parameter U o Y o U o u o

State 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Sex 0.028 0.026 0.000 0.000 0.027 0.047 0.132 0.604 0.152 0.463 0.446 0.051 0.000 0.000 0.024 0.001
Age 0.000 0.000 0.000 0.000 0.309 0.365 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
Weight 0.113 0.163 0.000 0.000 0.029 0.025 0.000 0.001 0.000 0.001 0.000 0.008 0.023 0.014 0.022 0.325
Height 0.000 0.000 0.002 0.000 0.010 0.002 0.481 0.362 0.000 0.000 0.052 0.483 0.372 0.183 0.111 0.000
BMI 0.000 0.000 0.000 0.000 0.487 0.788 0.000 0.000 0.097 0.006 0.000 0.006 0.000 0.000 0.000 0.014
Variable Cardiac output SpO2 INR Serum glucose
Parameter U o 7 o u o u o

State 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Sex 0.000 0.000 0.000 0.000 0.001 0.000 0.610 0.895 0.667 0.434 0.531 0.130 0.014 0.000 0.000 0.000
Age 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Weight 0.000 0.000 0.000 0.000 0.000 0.000 0.462 0.814 0.425 0.754 0.168 0.004 0.000 0.000 0.004 0.037
Height 0.000 0.000 0.000 0.000 0.019 0.001 0.863 0.999 0.218 0.097 0.195 0.007 0.000 0.014 0.000 0.000
BMI 0.000 0.000 0.000 0.000 0.000 0.000 0.312 0.783 0.585 0.552 0.280 0.066 0.000 0.000 0.000 0.000

BP: blood pressure MAP: mean arterial pressure BMI: body mass index INR: international normalized ratio.

When the forecast interval changes, the averaged cov-

. Forecast Interval 84% oo 00 880 erage rate and averaged relative interval width can be es-

5 0.80 1 timated. The results are shown in Figure 4. It can be shown

1 . that when the interval width increases, the coverage rate also

g 0.70 - ° increases, but at a decreasing speed. An increase of 0.1 may

S - cost the width of 0.5 when coverage has reached 0.8. A result

0.60 . . %o . of around 0.8 is proposed, which has relatively high coverage
0.5 0.6 0.7 0.8

Relative interval width

FIGURE 3: The coverage rate and relative interval width of the 32
monitored variables under the 84% forecast interval. The averaged
relative interval width is 0.77, and the averaged coverage rate is 0.81.

but not that wider width. It should be noted that this study
involves one disease, sepsis, but includes different stages of
sepsis and has a large sample size to support the data, so the
model is stable and can be generalized.

4. Conclusion

In order to calculate the prior distribution parameters of the
monitored variables of different hidden states, this research

g 0.8 _ gives a method by using the explainable HMM and Ctree
s = Interval width = 0.77 N .

= '§D 0.6 4 Coverage rate = 0.81 models. The HMM finds the most possible hidden states, and

%D S 04 Forecast interval = 84% the estimated states are compared with the true circulatory

é 3 02 failure states, which results in an AUC of 0.75 in the real data

00 Forecast Interval ranges from 2% to 98% with a step of 2% analysis. Thus, the distribution parameters of the monitored

T oo 05 o s 50 variables learned by the HMM can be reliable. The t-test or

Relative interval width (averaged)

FIGURE 4: The averaged coverage rate and relative interval width of
the 32 monitored variables under different forecast intervals.

point estimation, interval estimation is suggested to give
more reliable support for clinicians. The model Ctree is
applied, with the threshold chosen as 0.1 and the tree max
depth as 5, which balances the performance and com-
plexity of the model. For example, when the forecast
interval is set as 84 %, the coverage rate and relative
width across the 32 monitored variables are shown in
Figure 3.

Since the correlation significant results differ across the
monitored variables, the coverage rate and relative interval
width have different performances. But the results are rel-
atively acceptable as they are generally around 0.84, the
preset forecast interval.

correlation test is applied to test the significant relationship
between the basic clinical variable and the distribution
parameters of the monitored variables. Results show that
most relationships are significant, which means the distri-
bution of the monitored variables truly has some kind of
dependence on the clinical basic information. To further
explore the specific relationship, the model Ctree is con-
ducted. Instead of point estimation, interval forecast is
applied, along with the coverage rate and relative interval
width as the performance metrics. Results show that, with a
wider width, the coverage increases. But the increase decays
when the coverage reaches a high level. A good coverage of
0.8 with a suitable width is suggested.

In further research, in terms of the method, the pa-
rameters of the monitored variables can be assumed to
follow different distributions without being constrained to
follow a Gaussian distribution. This can help extend the
method for more general conditions. In terms of the variable



relationship exploration part, the relationship test can be
applied to a mixture of variables instead of one at a time. This
helps explore more potential relationships among different
variables. In the interval forecast method, point estimation
can be conducted by including other input variables so as to
get a good performance. In terms of sepsis, as it is a threat to
the public health with high morbidity and mortality, further
research can be extended from diagnosis assistance to also
include prevention and treatment support. More machine
learning methods can be developed to solve the potential
problems incurred by the rapid development of medical
technology.

The results of the research can not only be used for
clinician support but also provide prior distribution for the
models of state prediction during the monitoring process.
This can improve the prediction accuracy at the beginning of
the prediction process. If further pharmacy information is
added, the research can also be used for exploring the in-
fluence of clinical basic information in the usage of drugs.
Suitable and timely drug dosage provides the possibility of
precision medicine. By combining machine learning tech-
nologies with medical demand, medical problems can be
solved more automatically by modern algorithms, and less
human resources are required. The method developed in this
research can be also applied in other areas such as financial
and economical areas, environmental regulation, and so on.

Data Availability

The source codes in the methods are available from the
corresponding author upon request. The real data in the
application can be requested from Hyland et al. [13] [20, 21].
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