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Abstract

Background: Recent advances in high-volume sequencing technology and mining of genomes from metagenomic
samples call for rapid and reliable genome quality evaluation. The current release of the PATRIC database contains
over 220,000 genomes, and current metagenomic technology supports assemblies of many draft-quality genomes
from a single sample, most of which will be novel.

Description: We have added two quality assessment tools to the PATRIC annotation pipeline. EvalCon uses
supervised machine learning to calculate an annotation consistency score. EvalG implements a variant of the CheckM
algorithm to estimate contamination and completeness of an annotated genome.
We report on the performance of these tools and the potential utility of the consistency score. Additionally, we
provide contamination, completeness, and consistency measures for all genomes in PATRIC and in a recent set of
metagenomic assemblies.

Conclusion: EvalG and EvalCon facilitate the rapid quality control and exploration of PATRIC-annotated draft
genomes.

Keywords: CheckM, RAST, Genome annotation, Random forest, Machine learning, Metagenomics, Genome quality,
Supervised learning

Background
The Pathosystems Resource Integration Center (PATRIC)
[1, 2] currently contains over 220,000 genomes, some
of which come from metagenomic samples. The field of
metagenomics has recently seen increases in the quality
and quantity of genomes that can be assembled from a
sample, and the bulk of future genomes added to PATRIC
will likely come from metagenomes. A recent metage-
nomic analysis by Pasolli et al. has produced 150,000
draft genomes [3] that are being considered for inclusion
in the PATRIC database. Such evaluations and metage-
nomic assembly methods themselves depend on rapid and
reliable draft genome quality assessment.
Current methods for automated evaluation of draft

genomes rely on scores computed from the absence or
overabundance of lineage-specific marker genes. Anvi’o
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estimates completion and redundancy based on Hid-
den Markov Model-derived profiles of expected single-
copy genes in a lineage [4]. BUSCO uses evolutionarily-
informed expectations of gene content in near-universal,
single-copy genes pulled from OrthoDB v9 to calculate
the completeness of draft genomes [5]. CheckM, which
uses collocated single-copy, ubiquitous, lineage-specific
genes to estimate measures of completeness and contam-
ination [6], has been used to compare the effectiveness
of assembly methods [7] and to evaluate the quality of
metagenomic draft genomes [3].
In this paper, in addition to completeness and contami-

nation, we introduce consistency, a complementary metric
of genome quality applicable to RAST-annotated genomes
[8]. The RAST system annotates genomes using a con-
trolled vocabulary derived from a set of manually curated
gene subsystems [9].
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Construction
Consistency
Wewish to define ameasure of annotation self-consistency
as an extension of the notions of completeness and con-
tamination. We must first define some terms: A genome
contains a set of protein encoding genes (PEGs). Each PEG
encodes a single protein implementing a function, which
consists of one or more roles. A set of roles that are related
in some defined way constitutes a subsystem. The notion
of subsystem generalizes and abstracts the notion of a bio-
chemical pathway to include any biologically relevant set,
such as a structural complex or a subnetwork.
The multiplicity of a role refers to the number of

PEGs implementing that role in a given genome. Because
individual genes do not function in isolation but work
together to build structures and perform functions
within a genome, we observe correlated patterns of role
multiplicities, many but not all of which correspond
to our manually curated subsystems. Figure 1, which

shows a heatmap of role-to-role correlations for a sub-
set of roles, illustrates the kind of patterns we seek to
predict.
In most cases the multiplicity for a set of correlated

roles will be either one or zero (all present with a sin-
gle copy, or all absent); however in some cases the
multiplicities may be higher, because of gene duplica-
tions or multiple copies of an operon or the presence of
mobile elements such as transposons, phage insertions,
or plasmids.
Since we do not yet have a complete manual characteri-

zation of all role correlations, we shall usemachine learn-
ing to capture the most significant of these correlations.
We shall call a role strongly predictable by some predic-

tor if, under 5-fold cross-validation, its multiplicity can be
predicted with better than 93% accuracy as estimated by
Tukey’s trimean [10, p. 3069] and less than 5% accuracy
dispersion as estimated by the interquartile range (IQR)
[10, p. 1505]; we chose these two measures because they

Fig. 1 Role correlations. Heatmap of role-role correlations for a subset of roles clustered according to the dendrogram clustering method in R. Roles
are arranged according to their positions in a dendrogram (not shown) computed according to their mutual correlations. In particular, roles that are
clustered together in the dendrogram will appear close to one another in the diagram; borders with high contrast correspond to divisions between
higher-order clusters. This algorithmmaximizes contrast in the heatmap at such boundaries and results in light-colored blocks of strongly correlated
roles. High correlations along the diagonal correspond to highly conserved small sets of roles, e.g. subunits of a single protein complex, and all roles
are fully correlated with themselves (ρ=1). While it is apparent from visual inspection of the blocks in the heatmap that there is an underlying
structure to these role-role correlations, the actual nature of this structure can be nonapparent and difficult to characterize precisely. EvalCon uses
machine learning to learn these structures from role-role correlations, thereby eliminating the need for an a priori characterization
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are robust against outliers. The set of strongly predictable
roles depends on the predictor being used. Using only the
set of strongly predictable roles for consistency checking
reduces the probability of obtaining false positive and false
negative inconsistencies between observed and predicted
role multiplicities.
We define consistency for a genome and role multi-

plicity predictor as the percentage of agreement between
the annotated and predicted role multiplicities. We define
fine consistency score to be the percentage of strongly
predictable roles whose annotated multiplicity matches
their predicted multiplicity exactly, and we define coarse
consistency score to be the percentage of roles whose
annotated occurrence or nonoccurrence matches their
predictor.

EvalCon
Given a RAST-annotated genome and a machine learn-
ing algorithm trained on a set of reliably predictable
roles, EvalCon implements a jackknife predictor of role
multiplicity and returns a vector of predicted multiplici-
ties for each role in the genome of interest (Fig. 2).
For our training data, we used a set of Additional file

1 that have been manually curated by the SEED project
[11], We selected from these genomes Additional file 2
that are: (1) members of subsystems (and may therefore
be expected to be highly correlated with each other), (2)
appear in at least 10% of the training genomes, and (3)
have multiplicities of no more than 5 (thereby excluding
roles within mobile elements and other genomic regions
that have highly variable counts).
We then iteratively (1) built Additional file 3, (2) trained

a machine learning algorithm to predict the count of each
role for a genome based on the counts of all other roles, (3)
selected Additional file 4, and (4) used this set of reliably
predictable roles to build a matrix for the next iteration
and Additional file 5.
To date we have built predictors using a number of clas-

sical machine-learning methods and one deep learning
method. We chose these models for their ability to work
with discrete ordered data and to model complex decision
processes.
We used the Python scikit-learn package to construct

the following classical predictors: linear discriminant
analysis, logistic regression, three random forest-based
models (random forest regressor, random forest classi-
fier, and ExtraTrees), and XGBoost. The input matrix for
these predictors was formed from the role multiplicities
of all roles except the target role, which was used as the
output label. For regression-based models, we rounded
the output to integer values at the end. We evaluated
the training time, size of the final set of reliably pre-
dictable roles, and the average accuracy of each model’s
predictions.

Fig. 2Map of the process of training EvalCon given a machine
learning algorithm and a set of training roles. For the development of
EvalCon in PATRIC, the training roles were kept constant, and a variety
of machine learning predictors were tested with this process

We used the Python Keras 2.0.2 API ordinary deep
neural network with the Sequential model type follow-
ing a standard classifier structure. The role multiplicities
formed the input layer (one neuron per role) followed by
one fully connected hidden layer of 16 nodes using the
ReLU (Rectified Linear Unit) activation function. The out-
put layer had six nodes, one for each possible multiplicity
level the target role could have, and used the softmax
activation function. The network was compiled with a
learning rate of 0.001 in the Adam optimizer and the
sparse_categorical_crossentropy loss function. The sparse
version of the loss function allows the label matrix to be
formatted as integers, converted internally by Keras into
the one-hot array that the network is trained to produce.
After one training session the networks were able to reli-
ably predict a set of 1010 roles. Using the same iterative
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process as performed on the scikit-learn predictors, the
networks converged on a set of 812 reliable roles.
The performance of the machine learning algorithms

tested was measured on two criteria: the number of roles
that exceeded the 93% accuracy threshhold in the first
iteration of role selection and the time required for train-
ing of the algorithm. All predictors were built by using
32 processes run in parallel using the scikit-learn module
joblib. The results are summarized in Table 1.
Of all the predictors tested, the random forest clas-

sifier produced 1423 reliably predictable roles after the
first iteration, outperforming all other predictors. At a
training time of 1.01 s per role, it is also the second-
fastest predictor (after the ExtraTrees classifier). We
therefore selected the random forest classifier to be the
predictor for EvalCon based on these criteria, and iter-
ated the training and role-selection to convergence as
described above, yielding a final set of 1353 reliably pre-
dictable roles. (These data may be found in the electronic
supplement.)

EvalG
EvalG implements a variant of the basic CheckM algo-
rithm using direct calls into the PATRIC database and user
workspaces. For faster performance, it omits the gene-
calling and BLAST phase of the full CheckM algorithm
and uses RAST annotations instead.
We also use our own set of marker genes derived

from PATRIC genomes; the presence or absence of these
marker genes is reported as universal roles in the prob-
lematic roles report. Based on annotated genome data
in PATRIC, we generated sets of marker roles for mul-
tiple taxonomic groupings representing species, genus,
and family-level similarity. For a given taxonomic group-
ing, a marker role is one that occurs exactly once in 97%
or more of the genomes in that grouping. The marker
roles were then clustered based on whether they co-
occurred in 90% or more members of a given taxonomic
grouping.
For computing the completeness and contamination

scores, each marker role is given a weight of 1
N , where N

represents the size of the clustered set. For a genome being
evaluated, we find the most granular taxonomic grouping

containing the incoming genome and then run through all
the features implementing that group’s set of marker roles
in the draft genome.
Designating as M the set of marker roles, as O the set

of roles that occur, as nx the number of occurrences of a
role x ∈ M ∪ O, and Nx as the size of the clustered set to
which x belongs, EvalG computes the contamination and
completeness scores as follows.

Contamination =
∑

x∈O(nx−1)/Nx∑
x∈O nx/Nx

(1)

Completeness =
∑

x∈O 1/Nx∑
x∈M 1/Nx

(2)

This definition of contamination differs from the value
calculated by CheckM to produce a value in the 0–100
range. In response to PATRIC user preferences, this latter
value corresponds to the more intuitive notion of contam-
ination as the percentage of the draft genome that can be
attributed to contamination.

Utility
Integration into the annotation pipeline
Quality reporting is an automatic part of PATRIC’s
annotation service [12], comprehensive genome analy-
sis pipeline [13], and metagenomic binning service [14].
Because we use lineage-specific marker genes, comput-
ing an accurate estimate of a genome’s completeness and
consistency depends on accurately knowing that genome’s
taxonomic group. A genome’s taxonomy ID is input by
the user of the annotation service and the comprehensive
genome analysis pipeline, whereas it is estimated automat-
ically for each putative genome within the metagenome
binning service.
Each completed PATRIC annotation job creates a direc-

tory containing an annotated genome as well as detailed
EvalG and EvalCon quality reports for that genome. These
reports include the completeness and contamination, the
fine and coarse consistency scores, the counts for pre-
dicted roles, overrepresented and underrepresented roles,
and a detailed structured-language table of potentially
problematic roles with links to related features. These
reports, including the role multiplicities predicted by

Table 1 Summary of machine learning algorithm performance

Algorithm Parameters Training Time (s/role) Roles >93% Accuracy Avg. Accuracy (%)

Linear Discriminant Analysis Default 3.51 785 87.4

Logistic Regression Optimized 9.16 1081 91.4

Random Forest Regressor Optimized 1.35 1299 92.7

ExtraTrees Classifier Optimized 0.89 1405 93.4

XGBoost Optimized 7.40 1417 93.6

Random Forest Classifier Optimized 1.01 1423 93.5
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the EvalCon predictor, are automatically made available
in JSON, structured plaintext, and structured HTML for-
mats.
EvalCon and EvalG rely on RAST annotations and lack

a gene-calling step of their own. This design makes them
much faster but also inseparable from the rest of the anno-
tation pipeline. As the quality of annotations improves,
the completeness, contamination, and consistency scores
should become more reliable; the completeness score in
particular should approach the CheckM completeness
score.

Problematic roles report
A problematic roles report is found at the end of the
genome quality report. It contains the following columns:
(1) role, (2) predicted count, (3) annotated count, (4) fea-
ture link, and (5) comment. The feature link allows a user
to view all of the features implementing the role of inter-
est; if no such features are found, no link is given. The
comment field contains automatically generated struc-
tured text that is meant to help the user determine why a
particular role may be problematic.
Universal roles are roles that EvalG expects to occur

exactly once for a given taxonomic grouping. The absence
of a universal role in a genome lowers the completeness
score, and redundancies in universal roles increase the
contamination score. In the problematic roles report table,
the comment field for each problematic universal role
will include the phrase “universal role,” which helps users
understand the EvalG scores in more detail.
The contig on which it is found and link to the Com-

pare Region Viewer [15], a PATRIC tool that allows users
to see the feature in its immediate context on the chromo-
some alongside its closest relatives in the contexts of their
respective genomes. Features that are short, appear on
short contigs, or are located close to the edge of a contig
are marked accordingly in the comment field.
An excerpt from a problematic roles report is pro-

vided in Fig. 3, which displays examples of both coarse
inconsistencies (missing and unanticipated roles) and fine
inconsistencies (too many or too few features implement-
ing a role). For each problematic role the comments will
contain a link to the relevant contig; the report also notes
contigs that are short or contain no reliably predictable
roles. For any universal role, the comments begin with the
phrase “Universal role.” All references to PEGs link to the
Compare Region Viewer tool.
Problematic roles appearing fewer times than predicted

(possibly not at all) will contain links to PEGs imple-
menting the corresponding role in the reference genome
where possible. If no PEG for a predicted role exists, its
absence may often be traced back to a frameshift error
or truncation by contig boundary that prevented the PEG
from being called. On occasion, however, the missing role

represents a predictor error instead of a problem with the
genome or its annotation.
For problematic roles that occur more frequently than

predicted, the comment field will include links to the
contigs for each PEG. The PEGs most likely to be prob-
lematic are those that are not close to PEGs imple-
menting related roles within the reference genome (and
may therefore represent an instance of contamination)
or that have been fragmented by a frameshift or assem-
bly error. On occasion, however, an overrepresented
role may be the result of a genuine mutation or gene
duplication.
As yet no automatic criterion can distinguish between

genuine changes in a genome versus sequencing, assem-
bly, or annotation errors. The expert user must determine
by inspection what has mostly likely happened.

Discussion
EvalCon performance
We have introduced a measure of the quality of anno-
tation consistency, the fine consistency score, which is
the percentage of functional roles with a predicted mul-
tiplicity matching the RAST-annotated multiplicity. We
verified the accuracy of fine consistency scores and mea-
sured the effects of genome incompleteness and con-
tamination by training a separate set of random forest
predictors on 80% of the original training data and run-
ning validation tests on the other 20%. We examined
role count predictions for both the unmanipulated valida-
tion data and genomes with simulated contamination and
incompleteness.
Genome incompleteness was simulated by lowering a

percentage of randomly selected role counts by one (if the
role has a count greater than zero); contamination was
simulated by increasing a percentage of randomly selected
role counts with replacement. The results are shown in
Figs. 4 and 5. The role predictors generally performed well
on novel data, even after training only on 80% of the avail-
able genomes. With no induced contamination or incom-
pleteness, the 193 validation genomes had an average fine
consistency score of 97±2%. Figure 4 shows average fine
consistency scores (with standard deviations as error bars)
for validation genomes, given a certain percentage of con-
tamination, incompleteness, or both. As expected, fine
consistency scores decrease approximately linearly with
increasing contamination and incompleteness levels. The
decrease with percentage contamination is approximately
1:1, but the decrease with incompleteness is more gradual
because many genomes have a substantial fraction of role
counts equal to zero.
Figure 5 shows the percentage of unchanged role pre-

dictions with increasing levels of genome contamination
and incompleteness. A set of role predictors used to
evaluate genome quality should ideally predict the same
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Fig. 3 Sample problematic roles report. First six rows of a problematic roles report for a draft genome produced by the PATRIC metagenome
binning service. The first four rows represent coarse inconsistencies: one role that is predicted but is not observed, and three roles which are
observed but not predicted. The fifth row represents a fine inconsistency corresponding to an extra PEG, and the sixth represents a fine
inconsistency corresponding to a missing PEG. Where applicable, the comment field notes universal roles, contig membership for observed roles,
short contigs, contigs with no good roles, features appearing near the ends of contigs, and closest features on the reference genome

role counts even with substantial genome contamination
and incompleteness; and we see that even at 30% incom-
pleteness or contamination, for most genomes less than
10% of role count predictions are altered.
Average fine consistency scores for genomes with both

artificial contamination and incompleteness decrease lin-
early to ∼20% and then begin to level off.

EvalG performance
The completeness scores provided by EvalG differed from
CheckM values by a mean of 5.1% and a median of
3.2%. The contamination scores provided by EvalG are
calculated by using a different definition from that used
by CheckM and therefore are not immediately compa-
rable; EvalG calculates contamination over all counts of
universal roles, whereas CheckM calculates contamina-
tion over the number of universal roles appearing in the
sample. Thus, a highly diverse metagenomic sample may
yield a CheckM contamination score over 100%, whereas
the EvalG contamination score tends asymptotically
to 100%.
EvalG is substantially faster (and therefore more scal-

able within the PATRIC environment) than CheckM. On
a random sample of 1000 genomes in PATRIC, EvalG took
4 milliseconds per genome on its own, and the combined
EvalG and EvalCon analysis took an average of 1.51 s

per genome. CheckM runtime is on the order of several
minutes on the same hardware. Quality scores are recal-
culated for all genomes in PATRIC on a quarterly basis, so
this represents a substantial reduction in computational
demands at scale. This reduction in time is driven by the
use of the RAST-annotated features (which are already
an integral part of the PATRIC framework), rather than
running PRODIGAL and BLAST de novo, which together
take an average of 5 min.

Analysis
We have run the EvalG and EvalCon algorithms on the
Additional file 6 and Additional file 7 and have tab-
ulated the results. Our analysis verifies the quality of
the Pasolli et al. metagenomic assemblies [3]: we iden-
tified 76,402 genomes meeting the PATRIC criteria of
high quality (contamination ≤10%, consistency ≥87%,
completeness ≥80%), which is close to the Pasolli et al.
figure of 70,178 high-quality genomes. These genomes
will be added to the PATRIC database in the near future.
(These quality reports may be found in the electronic
supplement.)
The EvalG estimates for completeness differed from

CheckM by an average of 6.5% and a median of 3.3%.
Since the Pasolli et al. estimate uses CheckM and does
not account for consistency, this suggests that EvalG is a
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Fig. 4 Fine consistency as a function of quality. Average fine consistency scores for 193 validation genomes under conditions of simulated
incompleteness and contamination

viable quality checker even for data representing unchar-
acterized or undersampled taxonomies. The availability
of more high-quality annotated reference genomes should
further improve the performance of EvalG and EvalCon.

Future directions
The notion of a strongly predictable role, which is depen-
dent on the machine learning predictor being used, is

currently used only as a heuristic to find roles whose
multiplicities behave in a predictable way. This set can also
be said to correspond to the subset of roles that, across all
organisms, exhibit an abstract notion of structure. Further
exploration of this set of and corresponding expression
data with machine learning may be a viable first step
toward a machine learning-based characterization of the
structure of unicellular life.

Fig. 5 Changes in predictor as a function of quality. Average percentage of predictions remaining constant for 193 validation genomes under
conditions of simulated incompleteness and contamination
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Conclusions
We have presented a new service that provides rapid
estimates of completeness, contamination, and annota-
tion self-consistency for RASTtk-annotated genomes. It
additionally flags potentially problematic gene calls and
annotations. These tools can be accessed through the
PATRIC annotation service.
The submitted manuscript has been created by

UChicago Argonne, LLC, Operator of Argonne National
Laboratory (“Argonne”). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Govern-
ment retains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide license in
said article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.
The Department of Energy will provide public access to
these results of federally sponsored research in accor-
dance with the DOE Public Access Plan. http://energy.
gov/downloads/doe-public-access-plan.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3068-y.

Additional file 1: EvalCon genome names. This file contains (row index,
genome name) tuples for both the training data matrix and the converged
matrix.

Additional file 2: EvalCon training role names. This file contains (column
index, role name) tuples for the training data matrix.

Additional file 3: EvalCon training multiplicity matrix. This is the
multiplicity matrix used to train the machine learning predictors for
EvalCon. Each line of this file represents a single genome, with
tab-separated multiplicities for each role. Its rows are labeled in
genome_names.txt and its columns are labeled in all_roles.txt.

Additional file 4: EvalCon reliable role names. This file contains (column
index, role name) tuples for the converged matrix. All indices start at zero.
This is the subset of roles in all_roles.txt found to be reliably
predictable under the random forest predictor.

Additional file 5: EvalCon converged multiplicity matrix. This is the
multiplicity matrix with its columns pared down to the set of reliably
predictable roles. Each line of this file represents a single genome, with
tab-separated multiplicities for each role. Its rows are labeled in
genome_names.txt and its columns are labeled in
reliable_roles.txt.

Additional file 6: PATRIC quality report. This is a report of EvalCon and
EvalG scores for all public genomes in PATRIC. Columns, in order, are:
PATRIC genome ID, genome name, EvalCon fine consistency score, EvalG
completeness score, EvalG contamination score, “Good,” and “Good Seed.”
Genomes marked “good” meet the following criteria: (1) contamination
≤10%, (2) fine consistency ≥87%, and (3) completeness ≥80%. Genomes
marked “good seed” have a single copy of the phenylalanine tRNA
synthetase, alpha subunit (pheS) gene of appropriate length (209–405
amino acid residues for bacteria, 293-652 for archaea).

Additional file 7: Pasolli et al. quality report. This is a report of EvalCon
and EvalG scores for high- and medium-quality genomes assembled in the
Pasolli et al. study. Columns, in order, are Pasolli et al. genome name,
CheckM completeness score, CheckM contamination score, PATRIC
genome ID, Scientific name of organism, EvalG completeness score, EvalG

contamination score, EvalCon coarse consistency score, EvalCon fine
consistency score, and “good?” Genomes marked “good” in this table will
meet the following criteria: (1) contamination ≤10%, (2) fine consistency
≥87%, and (3) completeness ≥80%, and (4) a single copy of pheS of
appropriate length.

Abbreviations
IQR: Interquartile range; PATRIC: Pathosystems Resource Integration Center;
PEG: Protein encoding gene; ReLU: Rectified linear unit
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