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Abstract Epithelial and stromal tissues are components of the tumor microenvironment and play a major role in tumor
initiation and progression. Distinguishing stroma from epithelial tissues is critically important for spatial characterization
of the tumor microenvironment. Here, we propose BrcaSeg, an image analysis pipeline based on a convolutional neural
network (CNN) model to classify epithelial and stromal regions in whole-slide hematoxylin and eosin (H&E) stained
histopathological images. The CNN model is trained using well-annotated breast cancer tissue microarrays and validated
with images from The Cancer Genome Atlas (TCGA) Program. BrcaSeg achieves a classification accuracy of 91.02%,
which outperforms other state-of-the-art methods. Using this model, we generate pixel-level epithelial/stromal tissue maps
for 1000 TCGA breast cancer slide images that are paired with gene expression data. We subsequently estimate the
epithelial and stromal ratios and perform correlation analysis to model the relationship between gene expression and tissue
ratios. Gene Ontology (GO) enrichment analyses of genes that are highly correlated with tissue ratios suggest that the same
tissue is associated with similar biological processes in different breast cancer subtypes, whereas each subtype also has its
own idiosyncratic biological processes governing the development of these tissues. Taken all together, our approach can
lead to new insights in exploring relationships between image-based phenotypes and their underlying genomic events and
biological processes for all types of solid tumors. BrcaSeg can be accessed at https://github.com/Serian1992/ImgBio.
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Introduction

Most solid tumors are composed of many tissue compo-
nents such as cancer cells, stroma, and epithelium. The
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interaction of tissues within such complex neoplasms de-
fines the tumor microenvironment that contributes to cancer
initiation, progression, and therapeutic responses. For
example, breast cancer epithelial cells of the mammary
ducts are commonly the site of tumor initiation, while the
stromal tissue dynamics drive invasion and metastasis [1].
Tumor-to-stroma ratios of hematoxylin and eosin (H&E)
stained images are therefore an important prognostic factor
[2,3], and distinguishing stromal from epithelial tissue in
histological images constitutes a basic but crucial task for
cancer pathology. Classification methods (i.e., pre-processing,
training classifiers with carefully selected features, and
patch-level classification) are the most commonly adopted
automated computational methods for tissue segmentation
[4,5]. For instance, Bunyak et al. [6] combined traditional
feature selection and classification methods to perform
segmentation of epithelial and stromal tissues on a tissue
microarray (TMA) database. While this approach is viable,
it can be time-consuming and inefficient given the feature
selection process. Recently, deep convolutional neural net-
work (CNN) models have greatly boosted the performance
of natural image analysis techniques such as image classi-
fication [7], object detection [8], and semantic segmentation
[9,10], and biomedical image analysis [11–13]. Ad-
ditionally, Ronneberger et al. [14] proposed implementation
of a U-Net architecture to capture context and a symmetric
expanding path that enables precise localization in biome-
dical image segmentation. Therefore, CNN models have the
potential to improve the segmentation performance of epi-
thelial and stromal regions [11,12].

Despite breakthroughs in the application of CNN models
to medical image analysis, automated classification of epi-
thelial and stromal tissues in whole-slide tissue images
(WSIs) remain challenging due to the large size of WSIs.
WSIs often contain billions of pixels, and machine learning
methods are limited by the technical hurdles of working
with large datasets [13]. Several solutions based on deep
learning for classification of WSIs have been proposed. For
instance, a context-aware stacked CNN was proposed for
the classification of breast WSIs into multiple categories,
such as normal/benign, ductal carcinoma in situ, and in-
vasive ductal carcinoma [15]. Saltz et al. [16,17] also pre-
sented a patch-based CNN to classify WSIs into glioma and
non-small-cell lung carcinoma subtypes.

Additionally, commercial software has been developed
to aid in quantitative and objective analyses of tissue WSIs.
Among them is GENIE (Leica/Aperio), a tool with pro-
prietary algorithms that incorporate deep learning. While
many of its functionalities are designed to handle specific
biomarkers using immunohistochemical (IHC) or fluore-
scent images, for H&E images, tissue segmentation requires
user-defined regions of interest (ROIs). Similarly, HALO
(Indica Labs) and Visiopharm (Hoersholm) provide a

toolbox for histopathological image analysis. The toolbox
includes unsupervised algorithms for tissue segmentation
that require manual configuration of parameters and usually
underperform than supervised methods. The AQUA system
(HistoRx) focuses on estimating tissue scores on TMA based
on IHC staining by measuring protein expression within
defined ROIs. Therefore, reliable systems that enable both
fully-automatic tissue segmentation and quantified analysis
for WSIs with H&E staining are still in great demand.

In this work, we propose BrcaSeg, a WSI processing
pipeline that utilizes deep learning to perform automatic
segmentation and quantification of epithelial and stromal
tissues for breast cancer WSIs from The Cancer Genome
Atlas (TCGA). The TCGA data portal provides both clinical
information and matched molecular data [18,19]. This of-
fers the opportunity to identify relationships between
computational histopathologic image features and the cor-
responding genomic information, which can greatly inform
researcher regarding the molecular basis of tumor cell and
tissue morphology [20–22] including important biological
processes such as cancer immunology [17].

To achieve our goal, we first trained a deep CNN model
on the Stanford Tissue Microarray (sTMA) dataset in a
5-fold cross validation, and then validated the well-trained
CNN model on 171 image patches that were randomly
cropped from TCGA WSIs. Next, we successfully applied
the BrcaSeg pipeline to process 1000 TCGA breast cancer
WSIs to segment and quantify epithelial and stromal tissues.
Spatial quantification and correlations with genomic data of
both tissue types for three subtypes of breast cancer (i.e.,
ER-positive, ER-negative, and triple-negative) were esti-
mated based on the high-resolution global tissue segmen-
tation maps. Gene Ontology (GO) enrichment can reveal
whether these tissues are associated with similar biological
processes in different breast cancer subtypes, whereas each
subtype has its own idiosyncratic biological processes
governing the development of tumor tissues. Our results are
consistent with underlying biological processes for cancer
development, which further affirms the robustness of our
image processing method.

Spatial characterization of different tissues in histo-
pathological images plays an important role in diagnosis
and prognosis for cancers. However, human assessment of
these features is time-consuming and often infeasible for
large-scale studies. This study offers an innovative auto-
mated deep-learning analysis pipeline that enables rapid and
accurate quantification of epithelial and stromal tissues
from WSIs of cancer samples. Such approaches are im-
portant because they can be adopted to quantify tissue-level
epithelial/stromal/cancer phenotypes, which in turn can be
integrated with other biomedical data. For this reason, we
also demonstrate how model-generated outputs can be
correlated with gene expression data and how the results can
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lead to new insights about genetic mechanisms that contribute
to tumor microenvironment heterogeneity in breast cancer.
An important contribution of this study is that the approach,
data, and demonstrated use of the novel BrcaSeg pipeline can
be applied to other cancers for tissue quantification. To the
best of our knowledge, this is the first study to provide pixel-
level tissue segmentation maps of TCGA image data.

Method

Datasets

Two breast cancer image sets were used in this study: 1)
TCGA breast cancer (TCGA-BRCA) data collection; and 2)
the sTMA database [2]. The sTMA database consists of 157
H&E stained rectangular image regions (1128 × 720 pixels)
digitized using 20× objective lens, which were acquired
from two independent cohorts: 106 samples from
Netherlands Cancer Institute (NKI) and 51 samples from
Vancouver General Hospital (VGH). In each image in the
sTMA dataset, epithelial and stromal tissues were manually
annotated by pathologists. The TCGA cohort samples in-
clude matched H&E stained WSIs, gene expression data,
and clinical information. Patients with missing expression
data or images with cryo-artifacts deemed too severe were
excluded, leaving a selected set of 1000 samples. Since the
TCGA clinical information includes subtyping information, we
further categorized the selected samples into three breast can-
cer subtypes for more specific biological analysis: ER-positive,
ER-negative, and triple-negative breast cancers. Sample
information for both sTMA and TCGA-BRCA datasets are
summarized in Table 1.

Overview of the workflow

Figure 1 shows the detailed structure of BrcaSeg for tissue
segmentation. Figure 2A shows the WSI processing part of
BrcaSeg. Figure 2B shows an overview of the biological
analysis of gene expression data and image features. Details
of each part are described in the following subsections.

CNN model for tissue segmentation

Given an RGB image of height H, width W, with C color

channels, the goal of segmentation is to predict a label map
with size H ×W where each pixel is labeled with a category.
CNN-based framework for segmentation essentially con-
sists of an encoding and decoding counterparts.

The encoding block is derived from classification
models, which performs downsampling operators to capture
global information from input images. Max-pooling is the
most commonly adopted operation in encoding, which in-
tegrates neighbouring pixels to learn invariance from local
image transformation. More recently, dilated convolution
was proposed to control spatial resolution, thus enabling
dense feature extraction. Given a 1-dimensional input signal
x[i] with a filter w[k] of length K, the output of dilated
convolution is defined as:

y i x i r k w k[ ] = [ + ] [ ] (1)k
K

=1

where r is the stride in the sampling input signal, referred to
as rate. By filling zeros between pixels in the filter, dilated
convolution can enlarge receptive fields without sub-
stantially increasing computational cost.

We carefully constructed our deep hierarchical segmen-
tation model using specific strategies in both encoder and
decoder, as shown in Figure 1. The ResNet-101 structure
[7], which contains 101 convolution layers, was adopted as
the backbone of our proposed model. Since dilated con-
volution inserts zeros between pixels in the filter, it can
enlarge receptive fields without substantially increasing
computational cost. The encoder of BrcaSeg inherited the
first three blocks of ResNet-101, while the rest was mod-
ified into six dilated convolution blocks, each of which
further contained four ResUnits with different dilation rates.
This configuration was inspired by the success of the atrous
spatial pyramid pooling (DeepLab-ASPP) approach from
Chen and colleagues [10], which captures objects as well as
image context at multiple scales, and thus robustly improves
the segmentation performance. In our work, the modifica-
tion of convolution layers was carried out to ensure that our
encoder learned both tissue structures and contextual in-
formation for the next phase of processing. In the decoding
step, we adopted a multi-channel convolution approach to
generate high-resolution segmentation maps. Given a fea-
ture map of dimension h × w × c, multi-channel convolution
first generated features of h × w × (r2 × c), where r is the
upsampling rate. Then the features were reshaped to obtain

Table 1 Sample information for image datasets used in this study

Dataset Subgroup Image type No. of images in each subgroup No. of images in each cohort
sTMA NKI H&E stained image region

(1128 × 720 pixels)
106 157

VGH 51
TCGA-BRCA ER-positive WSI 773 1000

ER-negative 227
Triple-negative 112

Note: For TCGA cohort, samples in triple-negative subgroup also belong to ER-negative subgroup. sTMA, Stanford Tissue Microarray; TCGA-BRCA, The Cancer Genome
Atlas breast cancer data collection; NKI, Netherlands Cancer Institute; VGH, Vancouver General Hospital; WSI, whole-slide tissue image.
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upsampled features of H′ × W′ × c, where H′ = h × r, W′ =
w × r. To this end, we stretched each individual pixel in the
small feature map to the channel of r2 × c, so that it cor-
responded to a fixed area (r × r) in the upsampled output
map. We applied four parallel dilated multi-channel con-
volutions with a range of dilation rates and added all of their
outputs pixel by pixel in order to further exploit multi-scale
contextual information from the encoding feature map.

We next used the sTMA dataset to train our CNN model
in a 5-fold cross validation. The proposed model was im-
plemented using the MXNet toolbox. Parameters in the
encoder were initialized with pre-trained weights from
Deep-Lab V2 [10], while the decoder layers were randomly
initialized by Xavier method. Due to GPU memory lim-
itations (8 GB for GeForce GTX 1080), we randomly
cropped 600 × 600 patches from the raw images, and per-
formed random mirror and random crop as data augmen-
tation in the training stage.

WSI processing pipeline

During examination of histopathology slide of a tumor
sample, pathologists often search for a ROI that contains
cancer cells and conduct diagnostic assessment. Inspired by
these human analysis steps, we built an automatic pipeline

to perform tissue segmentation onWSIs, as shown in Figure
2A. OurWSI processing pipeline in BrcaSeg consists of two
parts: 1) automatic identification of ROIs, and 2) epithelial
and stromal tissue segmentation on the ROIs. Given a WSI
I, we first downsampled I into I′ at a factor of 16 in both
horizontal and vertical directions. Then we converted I′
from RGB color space to CIELAB color space (L a b* * *),
denoted as I lab. Since the L* channel in L a b* * * color space
represents the brightness, we extracted the a* and b* values
representing color components in I lab and obtained a new
image I ab. Each pixel in I ab is then represented as a
2-dimentional vector. Next, we applied K-means clustering
algorithm (K = 2) to divide the pixels of I ab into two groups.
Considering that corners of pathology images are usually
unstained, we classified pixels in the same cluster as the
upper-left pixel in I ab as background, while the other pixels
were classified as foreground. In this way, we generated a
binary mask M1, where 0 and 1 in M1 correspond to back-
ground and foreground pixels in I ab, respectively. Denoting
the smallest rectangle region that contains the largest con-
nected component in M1 as Fm, we identified the ROI FI by
mapping the coordinates of Fm onto I. Finally, FI was
cropped from I for downstream processing.

We split FI into patches of 1128 × 720 pixels to fully

Figure 1 The deep CNN model in BrcaSeg workflow for tissue segmentation
Shown in the scheme is the detailed structure of our deep CNN model in BrcaSeg workflow for segmentation of epithelial and stromal tissues in H&E
stained breast cancer histopathological images. DC, dilated convolution; DR, dilation rate; MC, multi-channel convolution; CNN, convolutional neural
network; H&E, hematoxylin and eosin.
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utilize the proposed CNN model for tissue segmentation.
Patches with more than 80% background were discarded.
The retained patches were then fed into the CNNmodel, and
all the patch-level predictions were combined to generate a
global tissue mask M2 for FI.

Tissue quantification and biological analysis

We applied the BrcaSeg pipeline on 1000 TCGA breast cancer
WSIs for further biological analysis, as shown in Figure 2B.
For each WSI I, we performed tissue spatial quantification
based on its tissue maskM2 derived from our method. The two
tissue ratios, Ratioepi and Ratiostro, which characterize the ratio
of epithelial tissue areas and stromal tissue areas to overall
tissue areas are respectively estimated as:

Ratio E T Ratio S T= , = (2)epi i
N

i
i
N

i stro i
N

i
i
N

i

where Ti, Ei, and Si represent the number of pixels classified
as foreground, epithelial, and stromal in the ith valid patch
in FI, respectively, and N represents the total number of
valid patches in FI.

To explore the relationships between gene expression
data and tissue ratios in different breast cancer subtypes, we
divided all the selected TCGA breast cancer samples into
three types: ER-positive, ER-negative, and triple-negative,
as shown in Table 1. Then, we computed the Spearman
correlation coefficients between gene expression data and
the two tissue ratios Ratioepi and Ratiostro for each breast
cancer subtype. Next, we sorted all the Spearman correla-
tion coefficients, and selected the gene symbols that were in
the top 1% of Spearman correlation coefficients with
Ratioepi and Ratiostro for each breast cancer subtype. For the
selected genes, we performed GO enrichment analysis
using WebGestalt [23]. The Overrepresentation Enrichment

Figure 2 The BrcaSeg workflow for WSI processing and biological analysis
A. The pipeline for processing H&E stained breast cancer WSIs. B. Overview of biological analysis of gene expression data and image features. WSI,
whole-slide tissue image.

1036 Genomics Proteomics Bioinformatics 19 (2021) 1032–1042



Analysis (ORA) with Bonferroni adjustment was used to
determine statistical significance of the enrichment. Genes
presented by the “Genome” platform were used as the re-
ference genes. Finally, the top 10 enriched biological pro-
cess categories were selected to further examine the
biological processes underlying the development of epi-
thelial and stromal tissues for each breast cancer subtype.

Results

Validation of CNN model

We evaluated our proposed deep CNN model on segmen-
tation of epithelial and stromal tissues by comparing
BrcaSeg with several state-of-the-art methods [11,12,24,25].
BrcaSeg outperformed all of these methods in terms of
classification accuracies and achieved an average accuracy
of 91.02% on the entire sTMA dataset (NKI + VGH), as
shown in Table 2 and Table 3. Visual inspection of the
segmentation results also demonstrated that BrcaSeg can
accurately classify epithelial and stromal tissues (Figure 3).
Note that in the ground truth data, some areas belonging to
epithelia have been overlooked and incorrectly annotated as
background (an example is shown in the third row of Figure
3). However, BrcaSeg still generated correct predictions for
this area (marked by a black circle in Figure 3). This in-
dicates that BrcaSeg is robust enough to make the right
judgment, even under partially misleading supervision. We
believe this is valuable for future work in biomedical image
tasks with only partial or inaccurate annotations.

Tissue segmentation and quantification on WSIs

To evaluate the effectiveness of our proposed deep CNN
model in BrcaSeg on TCGA dataset, we randomly selected
171 large image patches with size of 2256 × 2280 pixels,
each from the TCGA breast cancer WSIs. We also invited

two domain experts to manually annotate the epithelial and
stromal tissues on these patches as ground truth. Without
any additional training, we applied BrcaSeg on these se-
lected large image patches, and compared our segmentation
results with the ground truth for evaluation. The validation
results suggest that BrcaSeg is robust enough to predict
credible tissue mask for the TCGA breast cancer dataset
based on the quantitative results reported in Table S1 and
Figure S1. We then applied the trained BrcaSegmodel to the
tissue segmentation of 1000 WSIs from three TCGA breast
cancer subtypes. Visual results showed that BrcaSeg can
robustly identify epithelial/stromal tissues in whole-slide
images (Figure 4).

Ratios of epithelial and stromal tissue areas to overall
tissue areas were estimated based on the WSI segmentation
results. Wide differences in tissue ratios were observed
among different breast cancer subtypes (Figure 5).
ER-positive images were predominantly enriched with
stromal tissues with a mean stromal ratio of 72.8%, while
triple-negative images were abundant in epithelial tissues
with a mean epithelial ratio of 63.56%. Epithelial and stro-
mal tissues were nearly equivalent for ER-negative images
with mean ratios of 49.35% and 50.65%, respectively.

Tissue-specific functional analysis

We further explored which genes are associated with the
development of different tissues in various subtypes of
breast cancers by computing pairwise Spearman correlation
coefficients between gene expression data and both tissue

Table 2 Performance evaluation of the CNN model in BrcaSeg on NKI and VGH cohorts

Cohort Model
Evaluation metric

TPR TNR PPV NPV FPR FDR FNR ACC F1 score MCC

NKI Xu et al. [12] 86.31 82.15 84.11 84.60 17.85 15.89 13.66 84.34 85.21 68.60

CNN only [11] 81.34 82.89 84.11 80.05 17.11 15.89 18.57 81.69 82.75 64.24
CNN + HFCM [11] 89.48 85.96 85.94 89.50 14.04 14.06 10.52 87.19 87.68 75.44
BrcaSeg 90.71 89.83 90.81 89.72 10.17 9.19 9.29 90.29 90.76 80.54

VGH Xu et al. [12] 88.29 88.40 89.93 86.55 11.60 10.07 11.71 88.34 89.10 76.59

CNN only [11] 90.32 88.15 92.98 83.97 11.85 7.02 9.68 89.14 91.63 77.70
CNN + HFCM [11] 91.96 92.21 95.45 86.59 7.79 4.55 8.04 91.04 93.67 83.10
BrcaSeg 91.37 91.49 92.37 90.38 8.51 7.63 8.63 91.42 91.87 82.80

Note: Value in bold represents the best performance result under each metric among different models. TPR = TP / (TP + FN); TNR = TN / (FP + TN); PPV = TP / (TP + FP);
NPV = TN / (FN + TN); FPR = FP / (FP + TN); FDR = 1 − TP / (TP + FP); FNR = FN / (FN + TP); ACC = (TP + TN) / (TP + FP + TN + FN); F1 score = 2 × TP / (2 × TP + FP
+ FN); MCC = (TP × TN – FP × FN) / (TP + FP) × (TP + FN) × (TN + FP) × (TN + FN) . TPR, true positive rate; TNR, true negative rate; PPV, positive predictive value;
NPV, negative predictive value; FPR, false positive rate; FDR, false discovery rate; FNR, false negative rate; ACC, accuracy; MCC, Matthews correlation coefficient; TP, true
positive; FP, false positive; TN, true negative; FN, false negative.

Table 3 Quantitative performance evaluation of BrcaSeg on the
whole sTMA dataset

Dataset Model ACC F1 score

NKI + VGH Du et al. [24] 89.7 89.7
Vu et al. [25] 90.315 90.51
BrcaSeg 91.02 91.59
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ratios. Genes in the top 1% of correlation with tissue ratios
in each subtype of breast cancer were selected for further
analysis. We then performed functional GO analysis for the
selected gene-sets. Genes correlated with the epithelial tis-
sues were highly enriched in biological processes related to
cell cycle, among which sister chromatid segregation, nu-
clear division, and mitotic cell cycle are the most commonly
enriched GO terms shared by the three breast cancer sub-
types. However, we also observed specifically enriched GO
terms and genes for each subtype that correspond to dif-
ferent cell cycle stages. The Growth phase-related genes
including G1 phase and G2 phase were specifically en-
riched for the ER-positive subtype, the Mitotic (M) phase-
related genes were specifically enriched for the triple-
negative subtype, and the Synthesis (S) phase-related genes
were specific for the ER-negative subtype.

Similarly, such patterns of shared high-level biological
processes with specific functions were also observed for the
stromal tissues. For the stromal tissue, the most sig-
nificantly enriched GO biological process terms were all
related to the development of the tumor microenvironment,
including vasculature development, cellular component
movement, and growth factor stimuli-related GO functions
which were shared among the three breast cancer subtypes.

For the ER-positive subtype, angiogenesis-related genes
were specifically enriched, while for the triple-negative
subtype, muscle structure-related genes (especially the ones
related to actin fibers and cytoskeleton) were specifically
enriched. In addition, for the ER-negative subtype, growth
factor genes were enriched. Altogether, our results (Figure
6) suggest that even though the same tissue was associated
with similar biological processes in different subtypes, each
subtype still had its idiosyncratic biological processes
governing the development of these tissues.

Discussion

Identification and spatial characterizations of epithelial and
stromal regions in histopathological images of tumors play
crucial roles in cancer diagnosis, prognosis, and treatment.
Recently, some studies have focused on developing systems
for automatically analyzing H&E stained histological ima-
ges from tissue microarrays in order to predict prognosis
[26,27]. In contrast, our approach is aimed at WSIs rather
than manually extracted regions since WSI provides much
more comprehensive characterization of tumor tissue het-
erogeneity. Mackie et al. [28] summarized the research

Figure 3 Qualitative segmentation results for BrcaSeg on sTMA dataset
Three segmentation examples on the sTMA dataset are provided, including Example 1 (A), Example 2 (B), and Example 3 (C). Raw images are shown on
the left; image annotations by pathologists are shown in the middle; and image predictions using BrcaSeg are shown on the right. Areas in red, green, and
black in annotations and predictions represent epithelial, stromal, and background regions in raw images, respectively. Black circle in Example 3 indicates
the overlooked tumor area that is accurately recognized by BrcaSeg. sTMA, Stanford Tissue Microarray.
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progress and challenges facing the application of big data
quantitative imaging to cancer treatment, focusing on 3D
imaging modalities including CT, PET, and MRI. Our
quantitative analysis of histopathological images comple-
ments and extends this work in terms of data modality and
size, application areas, and computational challenges.

Based on our global tissue quantification, distinct dif-
ferences were observed in the enriched GO terms for epi-
thelial and stromal tissues [29]. At the same time, highly
overlapping biological properties were observed in the same
tissue across different subtypes, all of which were tied to
cancer progression in one way or another. For example, for
the epithelial tissue, genes involved in cell cycle-related
processes were significantly enriched. Previous studies
have addressed that sustaining proliferative signaling is one
of the hallmarks of cancer, during which cell cycle is the
essential process [30]. In addition, CDK4/6 inhibitors (such

as palbociclib and ribociclib) target this biological process
[31,32]. For stromal tissue, genes related to the tumor mi-
croenvironment were significantly enriched (e.g., vascu-
lature and locomotion). Vasculature is vital for inducing
angiogenesis, which is another important hallmark of
cancer.

Additionally, we observed differences in biological
processes between different subtypes resulting from tumor
heterogeneity. Specific biological processes for each sub-
type were also identified for the same tissue. For the epi-
thelial tissue, genes associated with different stages of the
cell cycle were specifically enriched for different subtypes.
For ER-positive breast epithelia, we found that G1 and G2
phase-related GO terms were enriched, among which G2/M
transition is an important element. Wang et al. [27] have
highlighted the importance of G2/M transition in ER-
positive breast cancer. For the triple-negative subtype of
breast cancers, we found that M phase-related GO terms
were enriched, during which chromosome segregation plays
a key role. Witkiewicet et al. [33] have shown the close
relationship between chromosome segregation (PLK1) with
triple-negative breast cancer. Similarly, angiogenesis-
related biological processes were significantly associated
with the stroma of the ER-positive subtype. Previous studies
have indicated that vasculature is one of the important
components for tumor stroma [34], as stromal cells can
build blood vessels to supply oxygen and nutrients [35].

While the correlation analysis of this study reveals clear
pairwise relationships between morphological and genomic
features, there are two major limitations to our approach.
First, correlation cannot reveal highly nonlinear relation-
ships or multivariate complication relationships. For

Figure 4 Examples of qualitative segmentation results for BrcaSeg
on three selected TCGA breast cancer WSIs
Three segmentation examples of TCGA breast cancer WSIs are provided,
including Example 1 (A), Example 2 (B), and Example 3 (C), which have
different values of Ratioepi. For each TCGA-BRCAWSI, step 1 represents
the WSI; step 2 represents the background map of WSI; step 3 represents
the ROI in the WSI of raw image; and step 4 represents the tissue seg-
mentation result of ROI. Areas in red, green, and black in step 4 represent
the predicted epithelial, stromal, and background regions, respectively.
TCGA, The Cancer Genome Atlas; ROI, region of interest.

Figure 5 Distribution of tissues in different breast cancer subtypes
Epithelial ratio (red) and stromal ratio (blue) represent the ratios of epi-
thelial tissue areas and stromal tissue areas to overall tissue areas, re-
spectively.
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instance, Wang et al. [36] demonstrated that complicated
morphological features might need to be modeled using
multiple genomic features, implying contributions from
multiple genetic factors. Similarly, with our data, more so-
phisticated analysis such as nonlinear correlation analysis
can be applied to reveal deeper relationships. Secondly,
correlation is not causation. The genes that are strongly
correlated with the stromal or epithelial content may not be
the underlying driver genes for the development of the tis-
sues. Identification of such key genes requires further in-
corporation of biological knowledge, as well as future
experimental validation.

In summary, our framework provides not only fully au-
tomatic and detailed analysis for large H&E stained images
based on a state-of-the-art deep learning model, but also
carries out integrative analysis of image features and mo-
lecular data. The proposed framework enables us to effec-
tively explore the underlying relationships between gene

expression and tissue morphology, free from the extensive
labeling and annotation that are laborious even to skilled
pathologists.

Our WSI processing pipeline in BrcaSeg can be easily
applied to histological images of other types of cancers. The
global tissue segmentation maps we have presented could
also be used for other more specific computational analysis.
For example, global morphological features of different
tissues could be estimated for better patient survival pre-
diction [22,26], and lymphocytes in different tissues could
be distinguished for observation of more detailed immune
response. Currently the imaging data resources have not
been exploited to the degree of the other TCGA molecular
and clinical outcome data, likely because automatic image
annotation is still impeded by the “big data” challenges. In
this study, we present global tissue maps for the TCGA
breast cancer WSIs, and it is our belief that they will fa-
cilitate further exploration and utilization of these imaging

Figure 6 Enrichment of GO biological process terms for genes correlated with epithelial and stromal ratios in different breast cancer subtypes
Dots represent the most significantly enriched GO biological process terms for each cancer subtype. Sizes of dots represent the ratio of enrichment (GO
category). P values are adjusted with FDR for multiple comparison correction and coded in color gradient (purple for small values and red for large values).
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data for various cancers.

Code availability

The details about code and data of BrcaSeg are provided at
https://github.com/Serian1992/ImgBio.
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