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Abstract

With advances in library construction protocols and next-generation sequencing technologies, viral metagenomic sequencing has
become the major source for novel virus discovery. Conducting taxonomic classification for metagenomic data is an important means
to characterize the viral composition in the underlying samples. However, RNA viruses are abundant and highly diverse, jeopardizing
the sensitivity of comparison-based classification methods. To improve the sensitivity of read-level taxonomic classification, we
developed an RNA-dependent RNA polymerase (RdRp) gene-based read classification tool RdRpBin. It combines alignment-based
strategy with machine learning models in order to fully exploit the sequence properties of RdRp. We tested our method and compared
its performance with the state-of-the-art tools on the simulated and real sequencing data. RdRpBin competes favorably with all. In
particular, when the query RNA viruses share low sequence similarity with the known viruses (∼ 0.4), our tool can still maintain a
higher F-score than the state-of-the-art tools. The experimental results on real data also showed that RdRpBin can classify more RNA
viral reads with a relatively low false-positive rate. Thus, RdRpBin can be utilized to classify novel and diverged RNA viruses.
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Introduction
Eukaryotic viruses are abundant and diverse. Based on
the recent report of IPBES Workshop on Biodiversity and
Pandemics [33], it is estimated that ∼1.7 million viruses
inhabit mammal and avian hosts, and 631 000−827 000
of them may infect humans. Although many viruses
are commensal, some viruses, especially RNA viruses,
have caused notorious infectious diseases, such as SARS,
Ebola, COVID-19, etc. Many RNA viral pathogens are
zoonotic viruses that have animals as their native hosts.
It is estimated that about 75% of new human diseases
are caused by microbes originating in animals [12]. To
prepare for future breakouts of new infectious diseases, it
is important to conduct viral composition analysis from a
wide range of environmental niches and host-associated
samples.

Metagenomic sequencing, which can sequence all the
microorganisms present in one sample, has become the
favored approach for virus discovery [6]. In particular, it
enables viral genome discovery without prior knowledge
of the sequence for primers, allowing us to study both
known and novel viruses.

However, it is not trivial to characterize RNA viruses
from metagenomic data. There are two major challenges.

First, the reference database is far from being complete,
which can lead to a low recall of comparison-based
methods. Second, RNA viruses in ecosystems, such as the
marine water, are more diverse than currently character-
ized viruses [23]. Newly identified viruses or viral genes
may not share any significant sequence similarity with
the reference genomes, which can fail the most powerful
sequence comparison methods. Thus, methods beyond
sequence comparison are in great need to conduct sen-
sitive taxonomic classification for new viruses.

Due to the complexity of metagenomic data, most
pipelines for viral analysis combine reference-based clas-
sification and de novo assembly. Some conduct de novo
assembly first and compare the contigs with references
for phylogenetic analysis [22]. The others classify reads
into different taxonomic groups using reference-based
methods and then conduct assembly for each group
[15, 16]. While these virus identification tools made sig-
nificant contributions in purifying the data by remov-
ing non-virus reads and classifying virus-like reads into
functional/taxonomic groups, their performance heav-
ily depends on high-quality viral references. However,
quality viral references are not always available for new
and host-switching viruses. Thus, there is a need for

http://creativecommons.org/licenses/by/4.0/


2 | Tang et al.

new methods that can classify both closely and remotely
related RNA viruses. In this work, we will introduce a
new method that capitalizes on the utilities of alignment-
based and learning-based methods for maximizing the
sensitivity of read-level taxonomic classification. Before
we detail our method, we first summarize the related
work.

Related work
Composition analysis can be conducted at read level or
contig level. Although contigs contain more information
than short reads, metagenomic assembly is still compu-
tationally challenging and can be error-prone for com-
plex data. Thus, read binning, which clusters reads of the
same origin, is also a popular method for composition
analysis at read level [15, 16]. In this work, we will con-
duct composition analysis.

For metagenomic data taxonomic classification, there
are two types of methods: reference-based and marker-
based. Basic Local Alignment Search Tool (BLAST) [1]
is a tool that has been commonly used in aligning the
unknown biological sequences against the reference
database. But it is too computationally expensive to clas-
sify a large number of metagenomic sequencing reads.
To improve the efficiency, DIAMOND [4] builds indexes
for the protein references and queries simultaneously,
achieving up to 10 000x speedup compared with BLAST.
To get the taxon of reads, Kaiju [18] uses the minimum
exact match, and MMseqs2 [25] and Kraken2 [31] use k-
mer matching. However, the performance of reference-
based methods will decrease with the increase of the
distance between the test set and the reference database,
or when the reference database is incomplete.

The second type of method is marker-based and
has shown better profiling performance in taxonomy
classification [3, 26]. Because the marker-based reference
database is much smaller, it leads to higher efficiency.
MetaPhlAn3 [3] is a marker-based tool that contains
1.1M marker genes. It achieves better performance
than other profiling tools with lower time and memory
consumption. Core-Kaiju is a tool that combines Kaiju
and the core protein family to improve precision.
However, although these tools have achieved excellent
performance on the composition analysis, most of
the tests were conducted on bacteria. Because RNA
viruses and bacteria have highly different sequence
compositions and gene organization, different batches
of efforts are needed for choosing and using the marker
genes from RNA viruses.

Overview of our method
Because previous works have shown that using marker-
based genes can improve the classification performance,
we will design our taxonomic classification model based
on RNA-dependent RNA polymerase (RdRp) genes, which
are responsible for replicating the genome and perform-
ing transcription [30] in RNA viruses. RdRp gene exists
in almost all RNA viruses, except retroviruses, such as

human immunodeficiency viruses. As the only universal
gene among RNA viruses, researchers use RdRps to study
the phylogeny relationship of RNA viruses [23, 30]. In
this work, we focus on order-level taxonomic classifica-
tion for RNA viruses. The order-level labels for available
RNA viruses are relatively stable. According to ICTV, the
number of taxa of RNA viruses changed from 28 to 29 at
the order level, and 102 to 111 at the family level from
2019 to 2020 [28]. In addition, as we will use learning-
based methods, order-level classification allows us to
obtain more training data. When more RNA viruses are
sequenced and classified, our framework can be conve-
niently adjusted to lower ranks.

In this study, we developed a novel method named
RdRpBin, which combines the reference-based method
and graph learning, to identify and classify RNA virus
reads in metagenomic data. Unlike tools that only
classify sequences with alignments against a reference
database, we can classify RdRp reads that cannot be
aligned to the database by two strategies. One is to
use label propagation to get the labels by building
edges between test reads, and the other is to build a
graph through motifs and then classify reads by Graph
Convolutional Network (GCN). We tested our model
using simulated test datasets with different similarities
against the reference database. Then we compared
the performance with other tools on real data. The
results showed that our method can find more RNA viral
reads in the metagenomic data without jeopardizing the
precision.

Method
Sequence properties of RdRp
We downloaded all the RdRp families from Pfam [19],
which contains protein families encoded by profile hid-
den Markov models (pHMMs). In order to obtain as many
RdRps as possible, we used all RdRps in NCBI that can
be aligned with RdRp pHMMs, including the segmented
RdRps such as those in H1N1. Then, we kept orders
containing at least 150 RdRps to build the database called
NCBI-RdRp, which contains 18 orders and 175 476 RdRps.
The numbers of RdRps in different orders are shown in
Figure 1.

Although using marker genes has achieved better clas-
sification performance based on the empirical results
of a number of tools, we must incorporate the prop-
erty of RdRp sequences into the method design in order
to maximize the sensitivity of read classification. First,
RdRps of the same taxon do not always exhibit high
similarity [27]. To quantify the similarity between RdRp
within the same order, we use CD-HIT [14] to cluster
RdRp sequences according to the sequence similarities in
NCBI-RdRp. Figure 2 summarizes the number of clusters
at an identity percentage of 0.4. The result shows that the
three most diverse orders are Picornavirales, Mononegvi-
rales and Bunyavirales.
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Figure 1. The number of RdRps in different orders.

Figure 2. The number of clusters after using CD-HIT with the identity threshold of 0.4.

Second, the number of RdRps in different orders and
clusters vary greatly (as shown in Figures 1 and 2).

Third, the conservation along RdRp is also hetero-
geneous. Figure 3 (A) shows part of the HMM logo for
PF00680, an RdRp Pfam family. The height, which rep-
resents position-specific conservations, changes along
with different sites. For reads that are sequenced from
poorly conserved regions, alignment-based methods

tend to miss them. To examine whether other RdRp genes
also have heterogeneous conservation, we computed the
percentage of well-conserved sites in the RdRp protein
families. If a site with the three most frequent amino
acids has a summed frequency above 0.6, it is defined
as a well-conserved site. The result is summarized in
Figure 3 (B), which shows that almost all Pfam families’
highly conserved sites are below 20%.
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Figure 3. (A) The HMM logo of PF00680 from position 0 to 236, which is generated by Skylign [29]. (B) The proportion of highly conserved positions in
different Pfam families.

Overview of the algorithm
The sequence properties of RdRp can lead to three types
of reads as shown in Figure 4. The first type of reads are
sequenced from well-conserved regions of RdRp and can
be effectively classified using an aligned-based strategy.
The second and third types of reads are both sequenced
from the poorly conserved regions but reads from type 2
share overlaps or high similarities with reads in type 1.

To classify all types of reads, our method consists of
two steps. In the first step, we will build a graph contain-
ing queries and references based on sequence similarity,
and use a relational classifier to classify the highly con-
served queries and as many poorly conserved queries as
possible. In the second step, we will focus on classifying
reads that cannot be classified in the first step. Motivated
by the model text GCN [32], we will create a motif GCN,
which adds motifs as the nodes in the graph and motif-
matching as the edges. Then, the graph convolution will
be conducted for read node classification. To alleviate the
bias caused by data imbalance, we assign larger weights

to small classes when training models. The pipeline is
sketched in Figure 5.

Our tool can take either DNA or protein sequences
as input. For the DNA sequences, we will translate the
sequences (i.e. reads) into proteins with six reading
frames. Then, we only keep the translations without stop
codons, which is equivalent to the longest translation
for a read. The shortcoming of this method is that we
will discard the reads that are sequenced from the end
of RdRps. Thus, RdRpBin also allows the user to specify
a length cutoff for the translated amino acid sequences
if none of the translations are complete for a read. The
translations with length above the cutoff will be kept for
downstream analysis.

Step 1: Using Probabilistic Relational Neighbor Classifier
to classify reads

In the first step, we build a sequence similarity graph
G1, where the nodes are the translated reads and the
references. The edges are built in two steps. First, we will
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Figure 4. Three types of reads that can be classified by our method. The darker the color on RdRp, the higher the conservation.

build edges between reads and reference RdRp database
using DIAMOND BLASTP (e-value ≤ 1.0). Usually, reads
with high conservation against some RdRp references
will be connected to G1. Then, we run DIAMOND BLASTP
(e-value ≤ 1.0) again to perform all-against-all alignment
on all reads. Some of the poorly conserved reads can be
connected with the highly conserved reads based on the
reads’ similarities. If the input data are too large to use
DIAMOND BLASTP efficiently, we resort to String Graph
Assembler (SGA) [24] to build the edges between reads
based on theirs overlaps. The speed of SGA is much faster
than DIAMOND. But because it uses more stringent crite-
ria for read comparison, the accuracy is slightly reduced.

After building G1, we apply Probabilistic Relational
Neighbor Classifier (PRC) [17] on it to classify these reads.
In G1, P(c|v) is the probability of the read v belong-
ing to class c (i.e. an order). PRC will compute P(c|v) as
the weighted average of the class probabilities from v’s
neighboring nodes. Then, the algorithm will iteratively
update the probability of each node until it converges or
until the maximum number of iterations is reached. The
equation of P(c|v) is shown below:

P(c|v) = 1∑
vj

w(v, vj)

∑
vj∈Dv

w(v, vj) ∗ P(c|vj) (1)

where Dv is the set of neighboring sequences of read v
and w(v, vj) is the weight of the edge between v, and vj.
Here, we set the w(v, vj) of all edges to 1. We also tried to
define the weights with e-values or similarities, but there
was no improvement in the results.

Macskassy et al. [17] have shown that this method is
better than traditional label propagation methods, espe-
cially when the data set is imbalanced or few nodes have
known labels.

Our experimental results showed that PRC is able to
assign correct labels for nodes even if the nodes are
connected to ‘wrong’ nodes initially. Figure 6 gave a true
example, where the node denoting read v1 is from the
order Ghabrivirales and is connected to RdRps from more
than one order. If we simply apply majority vote, which
is a commonly adopted strategy for comparison-based
classification, the label of v1 would be assigned with
Picornavirales. But if we use PRC, v1 will be assigned with
the correct order Picornavirales after multiple iterations

because the probability of v1 being classified into Picor-
navirales increases when its neighboring nodes are clas-
sified as Picornavirales during the label propagation.

Step 2: using motif GCN to classify reads from diverged
RdRp genes

To further improve the read classification sensitivity,
we will expand G1 by adding motifs as the intermedi-
ates. This idea was inspired by text GCN [32], which
uses the relationship between words and documents
to build graphs and then uses GCN to classify docu-
ments. In this task, we will apply motif GCN and con-
tact node classification in the expanded graph. Next, we
first detail the graph construction and then describe the
graph convolution-based node classification.
Edge construction in the knowledge graph G2

In the first step, we run HMMER [7] to detect putative
RdRp reads from the unlabeled reads. For these putative
RdRp reads, if they can match a motif derived from
RdRps, we will create new nodes for these reads in the
knowledge graph. We will also create the edges between
references by running all-against-all DIAMOND BLASTP
if e-value ≤ 1.

To obtain the motifs of the sequences under different
orders, we use MEME [2] to calculate motifs and then use
FIMO [9] to search if query sequences contain the derived
motifs. The P-value of FIMO is used to determine whether
the motif is present in a read. We create an edge between
a motif and a read if the motif matches the read with P-
value ≤ 1e − 5.

Then, following the same idea from text GCN, we
create edges between motifs according to the point-wise
mutual information (PMI). PMI is widely used to mea-
sure the weights between words in natural language
processing problems and has been proven to enhance the
learning ability of GCN [32]. In our formulation, words are
motifs and we define the PMI between motif mi and motif
mj as follows:

PMI(i, j) = log
p(i, j)

p(i)p(j)
,

p(i, j) = #W(i, j)
#W

,

p(i) = #W(i)
#W

, (2)
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Figure 5. The pipeline of the RdRp identification and classification. In
Step 1, we build G1, which consists of two types of edges: the reads aligned
to the references and the similarity/ overlaps between reads. We apply
Probabilistic Relational Neighbor Classifier (PRC) to get the taxa of these
reads. For the unconnected reads, we will use HMMER to detect potential
RdRp reads. In Step 2, we augment G1 by adding motifs from RdRp and
edges for reads that can match the motifs. Then, we predict the taxa of
the potential RdRp reads by GCN.

where #W(i) is the number of sequences that contain
motif mi, #W(i, j) is the number of sequences that contain
motif mi and motif mj and #W is the total number of
sequences.

Finally, the edges of G2 consist of reads–motif edges,
motif–motif edge and reads–reads BLASTP edge. The
graph is shown in Figure 7 and the edge weight is defined
as follow:

Weight(mi, mj) = PMI(mi, mj), if PMI(mi, mj) > 0,

Weight(v, m) = 1, if p − value(v, m) < 1e − 5,

Weight(vi, vj) = 1, if e − value(vi, vj) < 1, (3)

where m is the motif and v is the read.
Node representation in the knowledge graph G2

Since the input to the convolution must be numerical
vectors, we need to represent all the nodes as numerical
vectors. We use the convolutional neural network (CNN)
to generate the embedding vector for each node. The
network structure is shown in Figure 7. After training
the CNN , we fix the model’s weights and then use the
output of the penultimate fully connected layer as the
embedding feature vectors v for nodes. And we define the
feature vectors of a motifs u as follow:

ue = 1
|Ne|

∑
i∈Ne

vi (4)

where Ne is the set of neighboring nodes of node e.
GCN training
After constructing the knowledge graph G2 , we apply
convolution on the graph to classify the unlabeled reads.
GCN can embed the features of neighboring nodes into
the target nodes while combining the topological struc-
ture of the graph. After applying multiple layers of convo-
lution in G2, the information can be passed from a node
to its non-directly connected neighbors. Let the number
of nodes in G2 be n, and we can represent the graph using
the adjacency matrix A. Thus, the degree matrix can be
represented as Dii = ∑

i Aij. The formula of the graph
convolution layer is listed as follows:

Hl+1 = σ(D̃− 1
2 ÃD̃− 1

2 H(l)W(l)), (5)

where H(l) is the output from the previous layer and W
is the weight matrix. The size of the input feature vector
H(0) is n ∗ l, where l is the length of the feature. The GCN
model is shown in Figure 7 (B). In the training step, all
the reference sequences and labeled reads will be used as
training samples. In the backpropagation, we update the
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Figure 6. A subgraph built with the simulated RdRp sequences from three orders. The nodes represent translated RdRp reads with a length of 66aa, and
these sequences are from Ghabrivirales, Picornavirales and Nidovirales. Nodes with dash lines represent unlabeled reads, while nodes with solid lines are
from reference sequences or sequences that can be labeled by BLASTP. Different colors represent different orders of the sequences. The NCBI ID of the
sequences is also shown inside the node.

parameters accordingly and the label information will be
delivered from labeled nodes to the unlabeled nodes.

Experiment
We tested RdRpBin using three types of datasets. First,
we evaluated RdRpBin on simulated RNA viral sequenc-
ing data, which contains reads sampled from viruses
in different orders. For the simulated data with known
ground truth, we focus on testing three main factors
that can affect the performance of read classification.
They are the similarity between the references and the
test set, the size ratio of the training to the test set and
the sequencing coverage of samples in test set. Then,
we tested RdRpBin on a simulated viral marine metage-
nomic dataset that contains eukaryote, prokaryote, RNA
viruses and DNA viruses from the marine ecosystem.
Although there are publicly available mock metagenomic
datasets, they mainly contain bacteria and thus cannot
be conveniently applied to our test. We constructed the
simulated metagenomic data by including many non-
RNA virus reads from a comprehensive marine genome
survey [20]. Finally, we tested RdRpBin on a real metage-
nomic data.

For all the experiments, we benchmarked RdRpBin
against several popular and extensively tested read-level
taxonomic classification tools that can be applied to
RNA viruses, including DIAMOND, MMseqs2, Kaiju and
Kraken2.

Read classification for simulated RNA viral
sequencing data
We simulated the reads from the NCBI-RdRp dataset,
which contains the RdRp sequences identified from the

NCBI database (see Section 2.1 for its construction). As
shown in Figure 2, not every order has abundant training
data. Thus, the performance evaluation is divided into
two parts: one is for all the 18 orders, and the other is for
the three most abundant orders. The latter can reflect
the ability of learning more accurately. We constructed
eight pairs of training and testing RdRps (Dtrain and Dtest)
by configuring the three factors.
Similarity between Dtrain and Dtest. High divergence
between Dtrain and Dtest poses a challenge for both
alignment-based and learning-based read classification.
In order to create Dtrain and Dtest with controllable simi-
larities, we apply CD-HIT to cluster the RdRp sequences
in the NCBI-RdRp dataset using τ as the threshold. Then,
for each cluster, only the longest sequences from each
cluster are kept. Therefore, the similarity between all
kept RdRps will be less than the threshold τ . Then, we
randomly divided the data into Dtrain and Dtest, where the
similarity between Dtrain and Dtest will be less than τ . In
the experiment, we tested two similarity cutoffs: 0.4 and
0.6.
Ratio of Dtrain and Dtest. Small training data (i.e. number
of reference sequences) can affect the performance of
both learning and alignment-based tools. We split all the
RdRps extracted by CD-HIT into Dtrain and Dtest with two
ratios: 1:2 and 2:1.
Coverage of samples in test set. Because we use the
similarity or overlaps between reads to build edges, the
coverage of the sequencing reads will influence the con-
nectivity of the graph. To evaluate the performance of
RdRpBin on data with different coverage, we generated
test sets with coverage of 1X and 5X, respectively.

Table 1 and Table 2 show the number of training and
testing RdRps and their generated training and test sets
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Figure 7. The structure of the embedding model and the text GCN model. (A) is the architecture of the CNN model, which contains a convolutional layer
with kernels of different sizes followed by a global maximum pooling layer. The outputs of all pooling layers are concatenated and then fed to two fully
connected layers. (B) is the structure of the GCN model, which contains two graph convolution layers, and the output of the second graph convolution
layer is followed by two fully connected layers. In the graph inside (B), e1 indicates the edge between motifs and sequences, e2 represents the edge
between sequences and e3 represents the edge between motifs. And we apply the Adam optimizer and use the cross-entropy as the loss function for
both models.

in the 18-order and the three most abundant-order exper-
iments, respectively.

We use ART [11] to simulate the test set with differ-
ent coverage. We compared RdRpBin with DIAMOND
BLASTX, MMseqs2, Kaiju and Kraken2 on 18-order and
the three most abundant-order datasets. The results
are shown in Figure 8. DIAMOND BLASTX translates
the query reads into proteins and aligns these proteins
to the reference database. Then, we use the majority
vote to get the taxa. MMseqs2 uses k-mer matching and
vectorized ungapped and gapped alignment for sequence
annotation. Kaiju is a taxonomic classification tool
that uses the maximum exact match to find matching
sequences in protein reference databases. Kraken2
conducts taxonomic classification for metagenomic
sequencing data based on k-mer matching and lowest
common ancestor voting. We run all these tools using
their default parameters.

As shown in Figure 8, the tools sorted by the descend-
ing order of the average F-score are RdRpBin, DIAMOND
BLASTX, MMseqs2, Kaiju and Kraken2. The results show
that similarity plays an important role on the classifica-
tion performance. The tools that rely on exact match,
including Kaiju and Kraken2, have the average F-score
reduction of 72.7% and 80.1%, respectively, when the
similarity decreases from 0.6 to 0.4. In contrast, when
the similarity is 0.4, RdRpBin still has a high F-score. In
addition, its average F-score is 12.8% higher than that
of the second-best tool DIAMOND BLASTX. Although
the F-score of all tools decreases as the training set
becomes smaller, RdRpBin also has the best performance
on a small training set. When Dtrain : Dtest is 2: 1 and
1: 2, RdRpBin’s average F-score is 5% and 7% higher
than that of DIAMOND BLASTX, respectively. Moreover,
as expected, The average F-score of RdRpBin is much
higher than other tools when the coverage increases. The
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Table 1. The properties and sizes of Dtrain and Dtest in the 18-order experiment∗.

Sim Ratio Cvge |Dtrain| |Dtest| # of training samples # of testing samples

0.4 1: 2 1X 111 221 4302 1775
0.4 1: 2 5X 111 221 4302 8990
0.4 2: 1 1X 221 111 9014 865
0.4 2: 1 5X 221 111 9014 4350
0.6 1: 2 1X 297 593 12 409 4699
0.6 1: 2 5X 297 593 12 409 23 827
0.6 2: 1 1X 593 297 24 773 2289
0.6 2: 1 5X 593 297 24 773 11 561

∗Note that the number of sequences is smaller than Figure 1 because of clustering by CD-HIT. Sim: the similarity between Dtrain and Dtest. Ratio: |Dtrain |
|Dtest | . Cvge: the

coverage of the testing samples.|Dtrain|: the number of training RdRps.|Dtest|: the number of testing RdRps. Training and testing samples: reads from RdRp genes.

Table 2. The properties and sizes of Dtrain and Dtest in the three most abundant orders.

Sim Ratio Cvge |Dtrain| |Dtest| # of training samples # of testing samples

0.4 1: 2 1X 50 101 2476 1009
0.4 1: 2 5X 50 101 2476 5307
0.4 2: 1 1X 101 50 5320 494
0.4 2: 1 5X 101 50 5320 2592
0.6 1: 2 1X 119 238 7061 2463
0.6 1: 2 5X 119 238 7061 13 026
0.6 2: 1 1X 238 119 13 726 1200
0.6 2: 1 5X 238 119 13 726 6339

Compared with the experiment in Table 1, the experiment in Table 2 contains only the three most abundant orders, so the number of samples is smaller than
that in Table 1.

reason is that more edges can be built between reads, and
using PRC can lead to a higher recall. The average F-score
of RdRpBin is 2.2% and 11.9% higher than DIAMOND
when the coverage is 1X and 5X, respectively. When we
focus on the three most abundant orders (Bunyavirales,
Mononegavirales, Picornavirales), all tools has better perfor-
mance as shown in Figure 8 (B). And RdRpBin still has the
best F-score.
Identification of unknown taxa and classification at
lower taxonomic ranks. To accommodate new viruses
that are not part of the trained labels of RdRpBin, we
allow RdRpBin to identify those reads as ‘others’. The
detailed method and the experimental results can be
found in Supplementary Section 1. In addition, RdRpBin
can be conveniently applied to other taxonomic ranks.
However, the limited training samples can affect its gen-
erality at lower taxonomic ranks. We demonstrate the
utility of RdRpBin at family and genus levels in Supple-
mentary Section 2.

Experiment on simulated marine metagenomic
data
While the previous experiment focuses on evaluating the
classification performance using pure RNA viruses as
input, the experiment in this section will use simulated
marine metagenomic data as input. Despite the advances
in viral metagenomic sequencing protocols, the real viral
metagenomic data are still loaded with contamination
from eukaryotes and prokaryotes, etc. In order to test
the read classification tools in a more realistic scenario,
we created a simulated marine metagenomic dataset
that mixes RNA viruses with other species. We choose

the marine ecosystem because it is a habitat of a large
number of viruses. To cover a broad range of marine
organisms, we created the dataset using two sources,
both of which cover many different marine species. It
is also worth noting that transcriptomic sequencing is
needed to sequence RNA viruses. In this simulated data
set, we used the whole genomes for simulating reads,
which cover all genes and thus will not reduce the dif-
ficulty of read classification.

The first source is based on the marine organisms in
the World Register of Marine Species (WoRMS) [10]. We
extracted the list of the marine RNA viruses and marine
DNA viruses. Among these viruses, Bunyavirales, Monone-
gavirales and Picornavirales are very abundant in marine.
Thus, we chose all 16 RNA viruses from these three
orders and all 47 DNA viruses to simulate viral reads.
We employed CAMISIM [8] to generate simulated data.
CAMISIM can generate simulated data that have high
functional congruence to the real data. We simulated the
metagenomic data with the relative abundance following
a log-normal distribution, whose mean and standard
deviation were set to 1 and 2, respectively. And we used
ART as the engine of CAMISIM to simulate Illumina 200
bp reads. Finally, the simulated data contain 31 382 RNA
virus reads and 131 717 DNA virus reads.

We created the second part by adding simulated
reads from eukaryotes and prokaryotes in the marine
ecosystem. We randomly sampled reads from a simu-
lated marine metagenome (NCBI SRA ID: ERR2185279),
which was created by Alex et al. [20] and contained
12 500 000 pairs of 250 bp reads. These data simulate
the high diversity of organisms in marine. They contain

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac011#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac011#supplementary-data
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Figure 8. Classification performance using simulated data: (A) is the performance on 18 orders and (B) is the performance on the three most abundant
orders.

the reads from 82 eukaryotic, 365 prokaryotic and DNA/
RNA viruses. Moreover, their sequencing error profile was
generated from real data, and shuffled reads were also
added as unknown reads. To build the second part of the
dataset, we randomly extracted 1500 000 non-virus reads
from these simulated data and kept only the first 200
bp of each read because we currently used the vectors
of length 200 in the CNN. In practical applications, the
vector size can be adjusted based on the most commonly
seen read size. Finally, we combined these two datasets
and got the simulated metagenomic dataset.

To focus on the difficult case where the test set has
diverged from the reference sequences, we removed the
reference viruses that have similarity with the test set
above 40%. We aligned RdRps from 16 RNA viruses to the

NCBI-RdRp dataset by DIAMOND BLASTP and removed
all reference RdRps with similarity greater than 0.4 in
NCBI-RdRp. Finally, the numbers of reference RdRps
under Bunyavirales, Mononegavirales and Picornavirales are
34, 40, and 60, respectively. All the benchmarking tools
used this reference database and were run using their
default parameters.

Because the reference sequences only contain RdRps,
we treat all the RdRp reads as the true samples and
all the other reads as false, including the reads from
other regions of RNA viruses. Because we have the RdRp
annotations for the 16 RNA viruses, we can decide the
reads’ origins using BLASTN with near 100% identity.
Figure 9 summarized the read classification results of all
benchmarked tools on this dataset. The performance of
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Figure 9. Benchmarking results on the simulated marine metagenomic
data.

Kaiju and Kraken is not good under the default param-
eters. Although the precision of Kaiju is 1, its recall is
only about 0.007. And Kraken2 does not identify any
reads in the test set. DIAMOND BLASTX and MMseqs2
are both alignment-based tools. Although MMseqs2 has
lower precision, it has a higher recall (0.251) than DIA-
MOND BLASTX (0.218), leading to a slightly better F-
score. Using PRC can increase the recall to 0.464 while
keeping the precision at 0.997, compared with BLASTX.
The RdRpBin can further improve the recall to 0.849.

The contamination from eukaryotes and prokaryotes
can affect viral composition analysis. There are some
tools available to estimate the level of viral enrichment,
such as ViromeQC [34]. We conducted a series of exper-
iments using this tool and RdRpBin on different simula-
tion datasets. The results can be found in Supplementary
Section 3.

Experiment on the real metagenomic data
We used real metagenomic data to test the performance
of our method and other tools. The dataset was down-
loaded from NCBI SRA (id: SRR9216246). Gideon et al. [21]
sampled these data from Oncorhynchus tshawytscha
and discovered a new coronavirus called Pacific salmon
Nidovirus, which belongs to Nidovirales. These data may
also contain some other RNA viruses.

During pre-possessing, we used fastp [5] to filter the
low-quality reads with its default parameter. If more than
40% of the bases in the reads have a quality value below
Q15, or the reads contain more than five Ns, we remove
these reads. And we used Bowtie 2 [13] to filter out the
reads belonging to the host. After pre-processing, 14 031
851 reads were left. To construct a relatively compre-
hensive RdRp reference dataset, we used the representa-
tive sequences extracted using CD-HIT with a threshold
of 0.95 from the NCBI-RdRp database. This reference
database contained 18 orders and 7008 RdRps. We com-
pared RdRpBin with MMseqs2, Kaiju and Kraken2. We did
not compare with DIAMOND BLASTX because we used

BLAST to determine the ground truth of reads, which was
not fair for other tools when calculating the precision. All
the tools used this dataset as the reference database and
were run using their default parameters. The final results
are shown in Figure 10.

We then examined whether the identified reads are
RdRp reads by aligning them to NCBI-RdRp database
using BLASTN with near 100% identity. Based on the
results, we divided the identified reads into three parts:
true, false and unknown. True refers to reads that are
aligned to the annotated RdRp genes in the correspond-
ing orders. False means that the reads are not aligned to
RdRp genes or aligned to the wrong orders. And unknown
reads mean that the reads cannot be aligned to any
reference sequence. The number of aligned RdRp reads
and the precision of each method on the real data are
shown in Figure 10 and Table 3, respectively. We can
see that although MMseqs2 classifies the most reads, it
tends to overestimate the reads in each order and its
precision is not high. Although Kaiju and Kraken2 have
high precision and fast speed, the number of identified
RdRp reads was low (≤150). Our tool achieves a superior
trade-off between recall and precision.

Discussion
RNA viruses have high diversity. RdRp is the only gene
possessed by most RNA viruses. By employing RdRp and
graph-based read classification method, we developed
RdRpBin to improve the trade-off between recall and
precision for RNA virus read classification, which helps
derive RNA virus composition and abundance profiles
from heterogeneous data. In particular, when the sim-
ilarity between the test RNA viruses and the reference
database is low (such as 0.4), RdRpBin can still maintain
a high F-score (>0.8).

The advantages of using GCN are evident for large
orders. However, for small classes, lacking sufficient
training data jeopardizes the learning ability of GCN.
In addition, the number of RdRps in different orders
varies significantly. This type of imbalance, if not
addressed carefully, can affect the performance of
learning. Reads from rare orders tend to be classified
into big orders. Data imbalance is a well-studied
problem in the field of machine learning. However,
conventional methods such as data oversampling and
undersampling do not work well for genomic data. We
will employ some recently developed methods such as
logit adjustment to address this challenge in our future
work.

The two most time-consuming steps of RdRpBin are
building edges between reads and identifying potential
RdRp reads using HMMER, which take ∼ 30% and ∼ 25%
of the running time in the real data experiment, respec-
tively. For the former, faster reads similarity measuring
tools can help RdRpBin reduce running time. For the
latter, we will try more efficient homologous sequence
search methods in the future.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac011#supplementary-data
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Figure 10. The number of RdRps found under different orders with different tools. True: RdRp reads supported by BLAST. False: misclassified reads.
Unknown: reads that have no known origin. MMseqs2 has many misclassified reads for multiple orders.

Table 3. The precision of each method on the real data.

Method # of found RdRp
reads

# of aligned RdRp
reads by BLASTN

Precision Running time (min)a

RdRpBinb 306 285 0.931 32.2
Kaiju 165 165 1.0 3.2
Kraken2 142 142 1.0 0.5
MMseqs2 1005 270 0.269 26.4

aBenchmarking was performed on a PC with Intel Core i7-9700 (8 cores) CPU and GeForce RTX 2070 GPU.bSGA was used to build edges between reads. If the
overlap between reads was bigger than 80 bp, the edge was built.

Key Points

• RNA virus taxonomy classification is a key step for viral
composition analysis and novel RNA virus discovery in
metagenomic data.

• We developed a read classification tool named RdRpBin
that uses RNA-dependent RNA polymerase gene for RNA
virus composition analysis.

• By combining alignment-based strategies and graph-
based learning models, RdRpBin outperformed other
state-of-the-art tools on both simulated and real
sequencing data.

Data availability
RdRpBin is implemented in Python, which can be down-
loaded at https://github.com/HubertTang/RdRpBin.
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