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Both infectious viral diseases and cancer have historically been some of the most
common causes of death worldwide. The COVID-19 pandemic is a decidedly relevant
example of the former. Despite progress having been made over past decades, new and
improved techniques are still needed to address the limitations faced by current treatment
standards, with mRNA-based therapy emerging as a promising solution. Highly flexible,
scalable and cost-effective, mRNA therapy is proving to be a compelling vaccine platform
against viruses. Likewise, mRNA vaccines show similar promise against cancer as a
platform capable of encoding multiple antigens for a diverse array of cancers, including
those that are patient specific as a novel form of personalized medicine. In this review, the
molecular mechanisms, biotechnological aspects, and clinical developments of mRNA
vaccines against viral infections and cancer are discussed to provide an informative
update on the current state of mRNA therapy research.
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INTRODUCTION

Since its establishment as a treatable disease in modern medicine, cancer is the second leading cause
of death in the United States (1). In Canada, cancer has a 50% incidence and 25%mortality rate1 (2).
Globally, respiratory cancers are the sixth most prevalent non-communicable causes of death2 (3).
From a biopsychosocial perspective, cancer patients and families experience poor mental health
outcomes and heavy financial burden (4, 5). Despite there being substantial improvements to
traditional cancer treatments and developments of therapeutic strategies such as adoptive T cell
immunotherapy and oncolytic viral therapy, these new treatments have their own shortcomings.
For example, while effective against bloodborne cancers, T cell immunotherapy has limited efficacy
against solid tumour cancers due to dosage restrictions imposed by off-target adverse effects of the
1Society CC. Canadian Cancer Statistics: 2021: Government of Canada; 2021 [Available from: https://cdn.cancer.ca/-/media/
files/research/cancer-statistics/2021-statistics/2021-pdf-en-final.pdf?rev=2b9d2be7a2d34c1dab6a01c6b0a6a32d&hash=
01DE85401DBF0217F8B64F2B7DF43986&_ga=2.25716733.1141201067.1645494864-721516791.1645494864].
2Organization WH. The Top 10 Causes of Death. [Available from: https://www.who.int/news-room/fact-sheets/detail/the-
top-10-causes-of-death.
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T cells on healthy tissue (6) For oncolytic viral therapy, the
technology still faces the primary challenge of finding the
optimal level of immunogenicity the virus should possess, such
that a robust antitumour immune response is induced but not
insofar as to compromise the virus reaching its target site (7).
Hence, there is still a need for the development of novel
cancer treatments.

Infect ious vira l diseases have been a pers is t ing
epidemiological and clinical issue, both before and after the
advent of vaccines. At the time of writing, Severe Acute
Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has
infected over 480 million people and caused six million deaths
worldwide3 (8). Yet even before the COVID-19 pandemic, the
seasonal flu has consistently caused over 15 million symptomatic
infections, 100,000 hospitalizations annually in the past decade
in the US alone, and 294,000-518,000 global annual respiratory
deaths4 (9, 10). Additionally, viruses effectively managed by
vaccines and well-established treatment standards in developed
countries still pose a significant burden of disease in the
developing world, where Human Immunodeficiency Virus
(HIV), Rabies, Ebola and Influenza are rampant (11–14). For
these reasons, additional vaccine technologies are crucial for
improving the global health burden of viral diseases.

The ability to administer mRNA engineered in vitro that later
translates into an antigen (Ag), bypasses the need to use
vaccination platforms that risk harmful effects such as live-
attenuated viruses that could revert to more virulent forms, or
ones that require large biological investments such as protein-
based plat forms which typica l ly require ad juvant
supplementation for an adequate immune response (15, 16).
Although previously neglected due to its instability, mRNA has
now regained focus following advancements in their synthesis,
delivery, and immunogenicity-optimizing and stabilizing
techniques (17–20). Further, with their scalability, cost-
effectiveness and adaptability, mRNA vaccines are emerging as
a promising therapeutic strategy for both viral diseases and
cancer (21, 22). The first report of successful mRNA delivery
into an in vivo model was done in 1990, where protein levels of
chloramphenicol acetyltransferase, luciferase and b-galactosidase
were successfully detected upon injection of the respective
mRNAs into the skeletal muscle of mice (23). Later, the
therapeutic use of mRNAs was exemplified via the first in vivo
study of a liposome-encapsulated mRNA as a vaccine. The
similarity of immunoprotective outcomes between mouse
models treated with the mRNA-based vaccine and those
challenged with Influenza highlighted the efficacy of the
mRNA vaccine platform (24). In this review, we explore
mRNA vaccine mechanisms, biotechnology, and clinical trials
against select viral infections and cancer to highlight the excellent
prospects of this emerging next-generation vaccination platform.
3Medicine JHU. COVID-19 Dashboard: By the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University (JHU): John Hopkins; 2022
[updated 2022-02-21. Available from: https://coronavirus.jhu.edu/map.html.
4Prevention CfDCa. Disease Burden of Flu [updated 2022-01-07. Available from:
https://www.cdc.gov/flu/about/burden/index.html.
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mRNA VACCINE MECHANISM AND
ROUTES OF ADMINISTRATION

RNA vaccine technology harnesses the simplicity of the central
dogma of molecular biology (23, 25). Upon entering antigen-
presenting cells (APCs), the mRNA is translated by ribosomes to
produce the encoded Ag of interest to then activate humoral
(antibody-dependent) and/or cell-mediated immunity (26).
Humoral immunity is activated when the Ag is secreted in its
native state. Upon arriving at the lymph node, the Ag is
presented on the surface of follicular dendritic cells (DCs) and
subcapsular macrophages to cognate B cell receptors (BCRs),
thereby activating and differentiating B cells into plasma cells
that produce Ag-specific antibodies (27–29). While humoral
immunity is activated by recognition of the epitope on the
native Ag, cell-mediated immunity relies on recognizing the
epitope loaded on Major Histocompatibility Complex (MHC)
molecules. Following translation, the APC can process and
present the Ag on MHC class I (MHC-I) and MHC class II
(MHC-II) to interact with CD8 or CD4 T cells, respectively, to
activate T cell-mediated immunity. Finally, the primary cell-
mediated and humoral immune responses elicited by mRNA
vaccines result in the proliferation of memory T and B cells,
which offer long-term protection against secondary immune
responses. This mechanism is summarized in Figure 1.

Injection is the preferred route of mRNA vaccine
administration. Currently, intramuscular (IM) is the most
common means of local delivery and is particularly common
for DC-independent mRNA vaccines (30). The rich vasculature
of muscular tissue enables efficient re-circulation and movement
of Ags and APCs to activate adaptive immune cells, making IM
injections desirably immunogenic (30). The intradermal (ID)
route is another promising route of administration, as the dense
vascularity and extensive lymphatic drainage of the dermis
provides an ideal microenvironment for efficient Ag trafficking
by APCs (31). Subcutaneous (SC) injection is also a possible
means of local delivery since the loose adipose tissue of the
subcutis can sustain large injection volumes, and cause less pain
(32, 33). Additionally, intravenous (IV) administration may also
be employed to deliver the vaccine systemically, and permits the
largest volume of administration compared to other routes (34).
In the case of cancer treatment, intratumoural (IT) injections are
also being explored (35, 36). Finally intranodal (IN) delivery is
another route, which poses an efficient means of rapid
engulfment of the mRNA payload by APCs (37–39).
mRNA VACCINE
BIOTECHNOLOGICAL DEVELOPMENTS

Synthesis Principles and Encoded
Antigen Targets
mRNA synthesis uses cell-free, in vitro transcription (IVT)-
based platforms, where a DNA plasmid encoding the desired
full-length sequence is transcribed (23). This is advantageous
compared to cell-based platforms as IVT provides increased
May 2022 | Volume 13 | Article 885371
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control over mRNA production and chemical modifications to
improve its stability, bypassing this historical limitation of
mRNA (40). In addition, these modifications served to
optimize mRNA immunogenicity to elicit a robust immune
response, and to bypass innate immune sensors (i.e. Pattern
Recognition Receptors) from driving its premature degradation.

These modifications include 5’-cap, 3’Poly(A)-tail and
untranslated region (UTR) alterations, which are important
regulators of mRNA translation (41). Reviewed in (21, 42), 5’
cap modification strategies include designing anti-reverse
synthetic cap analogs and adopting the Vaccinia Virus capping
enzyme (43, 44). Today, however, transcripts are commonly co-
transcriptionally capped using CleanCap developed by TriLink
BioTechnologies (45). Biotechnological approaches to improving
mRNA half-life via the 3’-Poly(A) tail involve extending it by
encoding more adenosine bases in the DNA template or by
enzymatically adding canonical or modified nucleobases to the
Poly(A) tail of the mRNA (46).

Stability and translation of mRNAs can also be improved by
encoding the 5’ and 3’ UTRs with different regulatory sequences,
derived from viral or eukaryotic origins (42, 46–48). Amongst
these sequences are the 3’ UTR of the eukaryotic elongation
factor 1a and Orthopoxvirus Virus-derived 5’ UTR sequences
that prevent decapping and degradation (42). Other
modifications include incorporating modified nucleobases such
as pseudouridine and 5-methylcytidine, which have been shown
Frontiers in Immunology | www.frontiersin.org 3
to improve mRNA translation efficiency (49). Another
modification option is editing the codon region itself but
optimizing the codon region may disrupt potent cryptic
epitope-mediated T cell activation, compromising vaccine-
induced immunity (50, 51).

The mRNA itself encodes an Ag which elicits effective
humoral and T cell-mediated immunity when targeted by the
immune system in vivo. For viral vaccines, the Ag is often a
structural protein required for receptor-binding and/or fusion.
Such mRNA vaccines against viruses often depend on epitope
accessibility and mutation rate. For example, HIV-1 vaccine
development is limited by the highly glycosylated structure of
the envelope protein (Env) that hinders the binding of
neutralizing antibodies (52–56). Env also exhibits high
antigenic diversity both between and within infected
individuals due to the high mutation rate of HIV-1 (57, 58).
Consequently, both of these factors drive the immune escape of
HIV-1 and should also be factors to consider when deciding on
an Ag target for other viral mRNA vaccines.

In cancer, the target is commonly a tumour-associated
antigen (TAA) or a tumour-specific antigen (TSA). In cancer
cells, TAAs are antigenic proteins that are overexpressed, while
TSAs are proteins that are uniquely expressed (59). Due to the
presence of TAAs on both healthy and cancerous cells, mRNA
vaccines encoding TAAs have presented limited efficacy due to T
cell tolerance (60, 61). By contrast, because TSAs (ie.
FIGURE 1 | Viral and Cancer RNA vaccine mechanism. (1) The viral Ag, TAA or TSA-encoding mRNA enters the APC and then the cytosol following endosomal
escape. (2) The mRNA is translated by the host ribosomal machinery into the encoded Ag, which is then either (3A) degraded by the proteasome and enters
the endogenous MHC I pathway; (3B) exocytosed from the APC via the secretory pathway; or (3C) enters the autophagic pathway and is internalized by an
autophagosome. (4A) Proteasome-mediated degradation yields fragments (blue), including the epitope (yellow). Following secretion, the Ag either (4B) enters an
APC via endocytosis and then the exogenous MHC II pathway; or (4C) the native antigen will circulate through the lymphatic system to secondary lymphoid
organs. (5A) The epitope binds MHC I at the rough endoplasmic reticulum (RER) and traffics to the cell membrane for surface presentation via the secretory
pathway. (5B) The Ag, internalized via endocytosis or processed by autophagy, is digested into fragments, including the epitope (red), via lysosome-mediated
degradation. (6) The epitope binds MHC II and displaces class-II associated invariant chain peptide (CLIP), and the complex then traffics to the membrane for
surface presentation. (7) The APCs migrate to secondary lymphoid organs, including the lymph node. The APCs present the epitope-loaded MHC I and MHC II
complexes to activate naive CD8 and CD4 T cells, respectively, and follicular DCs and subcapsular sinus (SCS) macrophages present the native Ag to activate
naive B cells, driving plasma cell differentiation and Ab production. This figure was created with BioRender.com.
May 2022 | Volume 13 | Article 885371
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neoantigens) arise from extensive mutations in cancerous cells
and are considered foreign by the immune system, the peptide/
MHC affinity of T cell-bearing TCRs is greater when TSA
epitopes, rather than TAA epitopes, are loaded, resulting in a
more robust immune response (62–64).

Delivery Strategies
Immunogenicity has been observed with direct inoculation of
naked mRNA, as seen in the first naked mRNA vaccine clinical
trial by Weide et al. in 2008, where successful injections of
autologous mRNA in melanoma patients demonstrated its safety
and feasibility. Additionally, an anti-tumour humoral immune
response was also elicited in some patients, but clinical regression
was not observed (65). These observations could be attributed to
the fact that mRNA is often unstable in vivo, undergoing
degradation by extracellular RNases before they can be
internalized (66).

To address mRNA stability, delivery strategies include
encapsulating mRNA within lipid nanoparticles (LNPs), DCs
or DC extracellular vesicles (DEVs). LNPs are now widely used
as a vehicle for mRNA delivery, and initial iterations were
composed of cationic amphipathic lipids that strongly bound
the negatively charged mRNA to protect it during delivery. The
first major breakthroughs typifying the use of cationic lipids
came from an in vitro study by Malone et al., when he
successfully transfected Photinus pyralis Luciferase mRNA into
human and other animal cells using cationic liposomes as a
delivery system (67). In vivo mouse model studies more recently
performed by Kranz et al. in 2016, demonstrated that Ag-
encoding mRNAs in complex with liposomes (RNA-LPX)
induce robust effector and memory T cell immunity, and
tumour rejection. This was due to the liposome facilitating
efficient DC uptake upon injection. Additionally, they also
initiated a Phase I trial using their RNA-LPX technology, the
first ever clinical trial of an mRNA-encapsulated liposome
vaccine, a milestone that set the precedent for several following
studies using liposome-encapsulated RNA vaccines (68). While
they greatly improve mRNA stability, LNPs have been reported
to still trigger damaging immunostimulation and oxidative stress
(69, 70). As such, newer LNP technologies use ionizable lipids,
which aid in improved mRNA delivery and safety. Upon
injection, these LNPs are neutral under the physiological pH of
the bloodstream, thereby mitigating toxicity and prolonging
circulation time compared to cationic LNPs (71). Following
endocytosis, the LNP polarizes in the acidic endosome, driving
the release of the mRNA into the cytosol for translation (46). The
first case where ionizable LNPs were demonstrated to be an
effective alternative lipid-based delivery method in the 2006
landmark experiment by Zimmerman et al. that used this
system to deliver apolipoprotein B (ApoB)-specific siRNA into
hepatocytes (72). Following intravenous administration,
successful silencing of ApoB was observed.

mRNA virus and cancer vaccine delivery can also be
accomplished by loading DCs, which is accomplished either
via an ex vivo or in situ approach. The establishment of DCs
as a vehicle for mRNA vaccine therapeutics can be attributed to a
Frontiers in Immunology | www.frontiersin.org 4
study done by Boczwoski et al. in 1996, where in vivo mouse
models that received an mRNA-loaded DC vaccine were
adequately protected from subsequent tumour challenge, and
immunocompromised mouse models immunized with the
vaccine were shown to have substantially fewer metastases
(73). In 1996, Hsu et al. of the Stanford University Medical
Center performed the first DC-based mRNA vaccine clinical
trial. Upon injecting the ex vivo-loaded vaccines, all four B cell
lymphoma patient participants developed detectable antitumour
responses with one patient undergoing complete tumour
regression. These results signified a major breakthrough in the
development of DC-based mRNA vaccines (72). In the ex vivo
approach, autologous DCs are transfected with the mRNA
encoding the Ag and co-stimulatory molecules through
electroporation to drive differentiation and activation. Upon
reinfusion, the DCs present the encoded Ag to activate
lymphocytes. In the in situ approach, the mRNA vaccine is
injected directly into the lymph nodes where they enter into DCs
and present the Ag. This technique is exemplified by experiments
that intranodally injected TAA-encoding and immunomodulating
TriMix mRNA intranodally in several different cancer mouse
models, which led to marked Ag-specific T cell stimulation and
CTL antitumour activity (74). Although promising, one concern
regarding DC-based vaccines is that while large numbers of DCs are
required for effective treatment, while there is only a limited number
of naturally circulating DCs.

Extracellular vesicles (EVs), derived from various cell
populations, including dendritic cells and tumour cells, or
synthesized artificially, have exhibited some promising cancer
and viral vaccine applications (75–79). DEVs are vesicles formed
and secreted by DCs, either via direct budding or within
exosomes, to act in an autocrine, paracrine or endocrine
manner (80). DEVs contain co-stimulatory molecules, cell
adhesion molecules, immune cell-activating ligands, and MHC
I- or MHC II-loaded TAAs/TSAs or viral antigens to activate
lymphocytes (76). Additionally, DEVs can also express TNF
super family ligands, hence allowing them to facilitate the direct
killing of tumours and activation of NK cells (81).
Therapeutically, DEVs loaded with antigenic peptides and full
antigens have shown significant efficiency at activating T cells,
reducing tumour size and increasing overall survivability in
animal models (76, 80). In terms of viral diseases, recent
research has demonstrated that administration of DEVs
presenting Respiratory Syncytial Virus (RSV) M, L and NS
proteins elicited a robust Ag-specific CD8+ T cell response in
mice (82). Their therapeutic effects towards cancer and viral
disease when loaded with mRNA have not yet been explored, but
preliminary studies have suggested that DEVs will excel at rapid
delivery of vaccine materials (83). There are several advantages of
DEVs over traditional DC-based mRNA vaccines, reviewed in
(80). Firstly, the molecular composition of DEVs is more
controllable than those of whole-cell systems. Secondly,
compared to DCs, DEVs have a longer shelf-life, allowing
them to systemically persist for longer and induce more robust
immune responses. DEVs can also be engineered to target to
secondary lymphoid organs independent of any chemotactic
May 2022 | Volume 13 | Article 885371
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factors, unlike DCs that depend on chemokine-mediated
migration. Lastly, DEVs transfer its Ag-MHC complex onto
different host DC subpopulations, increasing the number of
DCs carrying this specific Ag and thus amplifying T cell
activation in the downstream adaptive immune response (84).

In addition to the use of LNPs and DCs, there exists other
strategies of mRNA delivery, including the use of polymer-,
peptide-, and squalene-based systems. Cationic polymers are
capable of forming structurally heterogeneous complexes with
mRNA called polyplexes, which can be endocytosed by cells to
ultimately deliver mRNA into the cytosol through an unclear
endosomal escape mechanism. Polyethylenimine is currently the
most well-studied polymer used for this purpose, but faces
challenges around its cytotoxicity despite offering compelling
transfection efficiency (85). Poly(beta-amino ester)s, poly
(amidoamine)s and ionizable aminoethylene-conjugated poly
(aspartamide)s are other polymers being investigated as
polyplex delivery systems. Cationic or amphipathic peptide
systems are another alternative for delivery. Peptides with
arginine-alanine-leucine-arginine (RALA) motifs effectively
form nanocomplexes with mRNA and facilitate subsequent
mRNA endosome escape in a pH-dependent manner. This
method is exemplified when this delivery system was used to
successfully transfect DCs in vitro, and induce T cell-mediated
immunity in vivo (86). In addition, PepFect14 is another cell-
penetrating peptide which can transfect mRNA in vivo, including
in ovarian cancer xenograft models and insofar as outperforming
lipid-mediated transfection (87). Protamine is another important
peptide serving not only as an mRNA delivery agent, but also as a
potential vaccine adjuvant due to its marked immunostimulatory
properties when complexed with mRNA (35, 88–90). Protamine-
protected mRNA was also the first non-lipid nanocomplex
mRNA vaccine to undergo clinical trials (91). Lastly, squalene-
based cationic nanoemulsions to deliver mRNA are also
emerging as a promising delivery system. Structurally, this is
formulated by a squalene core with a lipid shell onto which the
mRNA payload is localized, and was shown to elicit remarkable
antibody and T-cell responses when introduced into
primates (92).
5Venkatesan P. Preliminary phase 1 results from an HIV vaccine candidate trial.
The Lancelet: Microbe2021 [Available from: https://www.thelancet.com/journals/
lanmic/article/PIIS2666-5247(21)00042-2/fulltext.
CLINICAL TRIALS OF VIRAL mRNA
VACCINES

While measures such as social distancing and mask mandates
slowed COVID-19 transmission, vaccines continue to be an
essential means of reducing morbidity and mortality in the
pandemic (93). Current mRNA vaccines are designed against
the viral spike (S) protein, encoding it either as a transmembrane
full-length protein or secreted receptor binding domain (RBD).
The Pfizer-BioNTech BNT162b2 and Moderna mRNA-1273
vaccines are the only approved mRNA vaccine candidates,
conferring 95% and 94.1% vaccine efficacy, respectively, in
Phase III trials (94, 95). Although their efficacies have waned
since their introduction, full vaccination continues to protect
against hospitalization and death, especially with recent variants,
Frontiers in Immunology | www.frontiersin.org 5
with a booster dose enhancing this outcome (96–100). Several
other mRNA vaccines against COVID-19 are also in
development. Phase I trials of the nucleoside-unmodified, S
protein RBD-encoding mRNA vaccine candidate ARCoV
reported remarkable levels of anti-RBD and neutralizing
antibodies 7 to 14 days after the second dose, and an elevated
T cell-mediated immune response 14 to 28 days after (101).
Interestingly, administering 15mg of the vaccine elicited higher
levels of neutralizing antibodies compared to those of naturally
infected patients. In addition, CVnCoV is also in ongoing Phase
III trials, preliminarily reporting a 70.7% vaccine efficacy against
moderate-to-severe disease with an acceptable safety
profile (102).

The influenza virus Types A and B cause seasonal epidemics,
and the mRNA platform is emerging as a flexible means of
countering the antigenic drift of new strains. Currently, these
vaccines encode the Haemagglutinin (HA) protein as the Ag
target. There are multiple influenza mRNA vaccines in clinical
trials pursued by Moderna, Pfizer, and Translate Bio/Sanofi. The
Moderna mRNA-1011 candidate is an LNP-encapsulated,
quadrivalent mRNA vaccine encoding for four seasonal
outbreak influenza virus HAs and is currently leading Phase II
trials. In Phase I, mRNA-1011 successfully yielded neutralizing
antibody titers against all target influenza strains 29 days after
vaccination at 50 µg, 100 µg and 200 µg doses in young (age 18–
49) and old (age 50+) patient cohorts without severe side effects
(103). In addition to these candidates, current research is also in
the midst of using this platform to develop a universal influenza
vaccine (104).

To date, there are no licensed vaccines targeting HIV-1. As
previously mentioned, vaccine development is limited by its high
mutation rate and antigenic variability that manifests both
between and within patients as heterogeneous “quasi-species”
(57, 58). mRNA, however, has the potential to become an
efficacious vaccine platform because its IVT-based production
system is rapidly adaptable to encode new Ags to counter this
diversity. As mentioned, current mRNA vaccines target Env, and
emerging data maintains this as a promising approach for next-
generation vaccination strategies. Four mRNA vaccine
candidates are currently in early clinical trials, with some
promising results emerging. In particular, Moderna and the
International AIDS Vaccine Initiative (IAVI) are developing an
mRNA vaccine encoding the eOD-GT8 60mer, a 60-subunit,
self-assembling nanoparticle targeting the Env outer domain
(105). Preliminary phase I data from the Moderna-IAVI trials
reported that after two priming doses with this candidate, 97% of
participants developed IgG B cells, precursors to broadly
neutralizing antibodies against HIV-15 (106). Alternatively,
some work had also been done to use mRNA to encode for
broadly neutralizing antibodies against conserved receptor-
binding regions on Env to confer passive immunity against
HIV-1 (107).
May 2022 | Volume 13 | Article 885371
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mRNA vaccines against several other viruses are also being
pursued by different groups. Zika virus, Rabies Virus, RSV,
Chikungunya Virus, Human Metapneumovirus and
Cyclomegalovirus all have mRNA vaccine candidates in
clinical trials, with many developed by Moderna. A self-
amplifying Ebola glycoprotein-encoding mRNA vaccine
successfully elicited Ag-specific IgG production and T cell
response (108). CureVac is also developing a capsid protein-
encoding rotavirus mRNA vaccine (109). Taken together, mRNA
is an invaluable tool for the development of next-generation viral
vaccines that could be readily adjustable to accommodate the
high genetic and antigenic variation generally seen in RNA
viruses (110).
CLINICAL TRIALS OF CANCER
MRNA VACCINES

mRNA vaccines are also currently being explored as a
therapeutic intervention to cancer. Several pharmaceutical
companies are hosting clinical trials for mRNA cancer vaccine
candidates. BioNTech has the BNT111–115 candidates in clinical
trials. Currently in Phase II, BNT111 is designed to treat
advanced melanoma, and is administered in a LNP in
combination with the cell cycle checkpoint inhibitor and PD-1
blocker Celiplimab. The BNT111 mRNA itself encodes four
different TAAs (NY-ESO-1, MAGE-A3, tyrosinase, TPTE) and
was shown, alone and in combination with Celiplimab, to be safe
and to preliminarily improve survival and elicit a robust T cell
response in phase I trials (111). Like BNT111, BNT113 is also in
Phase II trials. Designed to treat Human Papillomavirus 16
(HPV16)-positive head and neck cancers, BNT113 encodes
HPV16-derived neoantigens E6 and E7. Mouse model
experiments have indicated that mRNA vaccines encoding E7
induce complete tumour regression, successfully prevent relapse,
and trigger robust immune infiltration into the tumour
microenvironment (112). Currently, BNT113 is being
administered alone and in combination with the PD-1 blocker
Pembrolizumab. There are several other BioNTech mRNA
cancer vaccines being studied: BNT112 and BNT115 are
candidates currently in Phase I designed to treat prostate and
ovarian cancers, respectively.

Due to the flexibility of mRNA design, these vaccines can be
tailored to treat patient-specific cancers. Both BioNTech and
Moderna have invested in designing personalized vaccines. From
a patient tumour sample, neoantigens are characterized through
high-throughput sequencing and immunologic screening to
evaluate the immunogenicity of each neoantigen candidate
(113). In particular, BioNTech, in collaboration with
GeneTech, has launched the individualized Neoantigen specific
Immunotherapy (iNeST) platform, headlined by the BNT122
candidate designed for various local and metastatic solid
tumours. After a successful Phase Ib trial in which significant
neoantigen-specific immune responses were observed, BNT122
is now undergoing Phase II trials as a monotherapy and in
combination with monoclonal PD-1/PD-L1 antibody blockers
Frontiers in Immunology | www.frontiersin.org 6
(114). Similarly, Moderna has designed mRNA-4650, a
personalized vaccine that can encode up to 20 defined patient-
specific antigens, that is being tested on melanoma,
gastrointestinal and genitourinary cancer patients (113).
mRNA-4157 is another personalized vaccine by Moderna that
uses an LNP as the delivery vehicle. Currently, mRNA-4157 is in
Phase II trials to treat head and neck squamous cell carcinoma
following Phase I trial success, where it was shown that when
administered in combination with anti-PD-1 antibody
Pembrolizumab, this candidate was more effective than
Pembrolizumab alone (115). Using bioinformatics and exome
sequencing, Moderna is also exploring the potential of encoding
driver gene mutations detected in autologous tumours such as
p53 and KRAS. mRNA-5671 encodes mutated KRAS to treat
colorectal, NSCLC and pancreatic cancers induced by one of four
of the most common cancer-driving KRAS mutations (G12D,
G12V, G13D and G12C) (116, 117). Currently, mRNA-5671 is in
Phase I trials, in which its safety is being evaluated as a
monotherapy and in combination with Pembrolizumab.

There are also several other platforms that BioNTech and
Moderna are exploring. These include the cytokine-encoding
mRNAs (BioNTech BNT 151–153 and Moderna mRNA 2752)
that induce amplified T cell responses and overcome tumour-
mediated immunosuppressive effects. Pre-clinical data
demonstrated mRNAs encoding pro-inflammatory cytokines
induced enhanced cytolytic CD8 T cell activity and rendered
the tumours more sensitive to checkpoint inhibitor therapy. This
led to delayed tumour growth independent of any encoded TAA
or TSA (36, 118). BioNTech is also exploring bispecific
monoclonal antibody-encoding mRNAs (i.e. BNT141), termed
RiboMabs, which can propagate immune responses by recruiting
immune cells to tumours. Clinical trials where such mRNA-
encoded antibodies were directly administered showed higher
success rates compared to those of chemotherapy (119). These
platforms are currently in Phase I clinical trials.

In addition to BioNTech and Moderna, CureVac has several
mRNA cancer vaccines in trial, including the CV9202 candidate
that was shown to be safe when administered in combination
with checkpoint inhibitor therapy against NSCLC (120).
Additionally, CV8102, their new vaccine against melanoma
and other cancers, is currently undergoing Phase I testing
alone and in combination with anti-PD-1 therapy. CureVac is
exploring RNActive vaccines, which elicit a four to five-fold
increase in protein expression capacity compared to regular
mRNA vaccines. RNActive mRNA is also complexed with
protamine to produce a self-adjuvanting mRNA vaccine that
induces a stronger immune response in a TLR7-dependent
manner (121). Argos Therapeutics is another company that
explored mRNA vaccines against cancer and infectious disease.
They used a DC-based platform, into which they inserted the Ag-
encoding mRNA into DCs via electroporation. In 2008, they
reported that the combination of cytokine-induced DC
maturation, followed by co-insertion of the Ag-encoding and
CD40L-encoding mRNAs via electroporation, effectively
induced elevated IL-12 expression and a robust inflammatory
response with Ag-specific T cells that exhibited memory
May 2022 | Volume 13 | Article 885371
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phenotype (122). They had several vaccines in trials that have all
since terminated, including one in 2018 that was stopped in
Phase III due to lack of efficacy. They have not initiated any new
cancer vaccine trials as of the time of writing.

Other active clinical trials are being hosted by groups
including the University of Campinas against acute myeloid
leukemia, the University Hospital Erlangen against Melanoma,
the Olso University Hospital against prostate and other cancers,
and the Memorial Sloan Kettering Cancer Center against
multiple myeloma (21). Beyond the aforementioned, there are
numerous institutions studying mRNA vaccine efficacy against
cancer. There is a notable number of clinical studies to treat
melanoma, many of which use DC-based platforms. Refer to
Table S1 for a full list of completed and active mRNA vaccine
clinical trials against viruses and cancers.
CONCLUDING REMARKS

While the use of mRNA as a therapeutic strategy has been
studied for several decades, it was the emergence of SARS-CoV-2
that renewed interest in its potential. Currently, varying types of
general and personalized mRNA vaccines are being developed
against both viral diseases and cancer in tandem with work in
optimizing mRNA synthesis, delivery, stability, efficacy and
safety standards. Having previously been neglected due to its
Frontiers in Immunology | www.frontiersin.org 7
perceived instability, RNA-based therapy now spearheads an
exciting new chapter in vaccinology.
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