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ABSTRACT

While several organs in mammals retain partial regen-
erative capability following tissue damage, the underly-
ing mechanisms remain unclear. Recently, the Hippo
signaling pathway, better known for its function in organ
size control, has been shown to play a pivotal role in
regulating tissue homeostasis and regeneration. Upon
tissue injury, the activity of YAP, the major effector of the
Hippo pathway, is transiently induced, which in turn
promotes expansion of tissue-resident progenitors and
facilitates tissue regeneration. In this review, with a
general focus on the Hippo pathway, we will discuss its
major components, functions in stem cell biology,
involvement in tissue regeneration in different organs,
and potential strategies for developing Hippo pathway-
targeted regenerative medicines.
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INTRODUCTION

Tissue damage, such as traumatic or surgical injury, infec-
tion, or aging, results in the loss of cells and tissue. To
maintain their physiological functionality and morphology,
damaged organs must be repaired or regenerated. Some
lower organisms, such as planarian and salamanders, can
effectively regenerate following injury. However, most mam-
mals have limited regenerative potential, and only a few
organs, such as the liver, skin, and intestine, have some
regenerative capability (Whyte et al., 2012). In some organs,
such as the skin, the limited regenerative capability is com-
pensated by excess fibrosis, which results in tissue scaring
(Gurtner et al., 2012).

Tissue regeneration is a complex process involving mul-
tiple cell types. First, the tissues surrounding the damaged
sites need to induce cell proliferation and differentiation to
supply necessary tissue-specific cells acting as building
blocks for regeneration. Second, the vascular, nervous, and
immune systems as well as the extracellular matrix (ECM)
need to be restored to maintain functionality of the new tis-
sue. Thus, different cell populations are required to work in a
cooperative manner to support a successful tissue regen-
eration (Carlson, 2007).

The origin of these “new” cells during regeneration
remains controversial. At least four different mechanisms
have been suggested: 1) proliferation of terminally differen-
tiated cells (usually polyploid cells); 2) dedifferentiation of
mature cells; 3) expansion and differentiation of resident
progenitor cells; and 4) influx of stem cells from other tis-
sues. It is likely that different organs employ a unique
mechanism in a tissue-specific manner (Carlson, 2007).

Tissue regeneration also involves diverse cellular signal-
ing pathways (Stoick-Cooper et al., 2007). For example, Wnt
signaling plays a vital role in intestinal regeneration (Barker,
2014), hepatocyte growth factor (HGF) signaling is required
for liver regeneration (Borowiak and Wigler, 2004; Huh et al.,
2004), and bone morphogenetic protein (BMP) signaling is
critical in digit tip regeneration (Han et al., 2003). Following
injury, multiple signaling pathways are coordinated spa-
tiotemporally, in a tissue and context-dependent manner, to
ensure a successful regeneration program.

The Hippo pathway is a relatively new signaling pathway
involved in tissue homeostasis, organ size control, and
tumorigenesis (Yu et al., 2015b). Here, we will review what is
currently known about the role of the Hippo pathway in
modulating tissue regeneration.
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THE HIPPO PATHWAY

The Hippo pathway has been established in Drosophila
melanogaster as an important regulator of organ size, and
this pathway is highly conserved in mammals (Pan, 2010;
Halder and Johnson, 2011; Yu and Guan, 2013). The core
Hippo pathway consists of a kinase cascade (Fig. 1). MST1/
2 and MAP4Ks phosphorylate LATS1/2, leading to LATS1/2
activation (Full names of Hippo pathway components are
shown in legends of Fig. 1). Activated LATS1/2 then phos-
phorylate YAP/TAZ, which results in YAP/TAZ inactivation.
As the major downstream effectors of the Hippo pathway,
unphosphorylated YAP/TAZ translocate to the nucleus and
induce target gene transcription by interacting with the
transcription factors TEADs (TEAD1—4). In addition, SAV1
and MOB1 are scaffold proteins for MST1/2 and LATS1/2,
respectively, and upstream regulators such as NF2 can also
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Figure 1. The Hippo signaling pathway. Major mammalian
Hippo signaling pathway components and their Drosophila
orthologues are also shown. Abbreviations: Yes Associated
Protein (YAP), Transcriptional Co-Activator With PDZ-Binding
Motif (TAZ, also known as WWTR1), TEA Domain Transcription
Factor (TEAD), Vestigial Like Family Member 4 (VGLL4), Large
Tumor Suppressor Kinase 1/2 (LATS1/2), Mammalian STE20-
Like Protein Kinase 1/2 (MST1/2, also known as STK4/3), MOB
Kinase Activator 1 (MOB1), Salvador (SAV1), Mitogen-Activated
Protein Kinase Kinase Kinase Kinase (MAP4K), Neurofibromin
2 (NF2, also known as Merlin), Yorkie (Yki), Hippo (Hpo), Warts
(Wts), Merlin (Mer), Misshapen (Msn), Happyhour (Hppy),
Salvador (Sav), Marts (Mats), Scalloped (Sd), Tondu-domain-
containing Growth Inhibitor (Tgi).

induce LATS1/2 activity. Furthermore, the interaction
between YAP/TAZ and TEADs is antagonized by VGLL4.
The Drosophila orthologues of these Hippo pathway com-
ponents are also shown in Fig. 1.

The Hippo pathway is regulated by a variety of signals
including cell polarity, cell-cell contact, cell-ECM interaction,
mechanical cues, and diffusible signals including a variety of
G-protein-coupled receptor (GPCR) ligands (Yu et al.,
2015b). These upstream signals of the Hippo pathway are
important constituents of the stem cell niche, and undergo
dynamic changes upon tissue injury. Thus, in response to
injury-derived signals, the Hippo pathway may function as an
immediate mechanism to mobilize tissue resident progenitor
cells and initiate tissue regeneration.

THE HIPPO PATHWAY IN STEM CELL BIOLOGY

The proliferation, differentiation, and migration of stem cells
are crucial during tissue regeneration, and the Hippo path-
way has been shown as an important regulator in stem cell
function. The first cell lineage specification during embryonic
development is the emergence of the inner cell mass (ICM)
and trophectoderm (TE), and the Hippo pathway plays an
essential role in this process (Sasaki, 2015). High YAP
activity is required for TE specification, and in mice, the cell
fate of trophoblasts (TE) and embryoblasts (ICM) can be
interconverted by manipulating Yap/Taz or their upstream
regulators (Cockburn et al., 2013; Hirate et al., 2013;
Lorthongpanich et al., 2013). This suggests that the Hippo
pathway plays a key role in regulating stem cell biology at
early embryonic stage.

The function of the Hippo pathway has been well studied
in both embryonic stem cells (ESCs) and induced pluripotent
stem cells (iPSCs). YAP is highly expressed in self-renewing
ESCs but is inactivated during differentiation (Lian et al.,
2010; Tamm et al., 2011). YAP may induce the expression of
pluripotency-associated genes which promote ESC self-re-
newal. Overexpression of Yap inhibits ESC differentiation
and maintains stem-like properties and self-renewal even
under differentiation conditions, while Yap/Taz knockdown is
sufficient to result in the loss of the ESC phenotype (Varelas
et al., 2008; Lian et al., 2010; Tamm et al., 2011; Beyer et al.,
2013). Likewise, knockdown of Lats2 increases the repro-
graming efficiency of iPSCs (Qin et al., 2012). Deletion of
Mst1/2 in ESCs causes enhanced cell proliferation and
impaired differentiation (Li et al., 2013). Moreover, stem cells
overexpressing YAP reveal naive state-like properties
(identical to stem cells from pre-implantation embryos), and
the YAP activator lysophosphatidic acid (LPA) can partially
substitute for YAP to promote the transition to naive state
(Qin et al., 2016).

Several recent studies suggest that YAP is dispensable
for self-renewal but required for differentiation of ESCs.
Knockdown or knockout of Yap does not alter ESC self-re-
newal but impairs their differentiation (Azzolin et al., 2014;
Chung et al., 2016). TAZ and the TEADs are also
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dispensable for ESC self-renewal (Chung et al., 2016). In
addition, deletion of Lats?2 in ESCs impairs both their
pluripotency and ability to differentiate (Aylon et al., 2014).
This discrepancy between these studies is likely due to the
high sensitivity of the Hippo pathway to different cell culture
conditions. Indeed, most experiments on pluripotent stem
cells are performed on cultured cells, and experimental
settings may differ. Thus, further investigations are required
to gain a better understanding of the function of YAP/TAZ in
PSCs. Nevertheless, the mechanisms regulating the Hippo
pathway in PSCs may be shared by tissue-resident pro-
genitor cells involved in tissue regeneration.

THE HIPPO PATHWAY IN MAMMALIAN TISSUE
REGENERATION

The Hippo pathway has been shown to be involved in the
regeneration of several organs following tissue damage. In
this section, we will review the current understanding of the
functions and molecular mechanisms of the Hippo pathway
in regulating tissue regeneration.

Intestine

The intestinal epithelium undergoes rapid turnover, and most
differentiated cells are replaced with newer ones in less than
a week (Barker, 2014). This self-renewal capability is
dependent on intestinal stem cells (ISCs)—the crypt base
columnar (CBC) cells marked with the leucine-rich repeat-
containing GPCR5 (Lgr5) (Fig. 2). Lgr5" ISCs are actively
cycling, and a single cell can grow a complete minigut
comprised of all types of intestinal epithelial cells, including
enterocytes, goblet cells, enteroendocrine, and Paneth cells.
A population of quiescent ISCs (stem cells at +4 positions
relative to the crypt bottom) may give rise to additional Lgr5*
cells in response to tissue damage to promote regeneration
(Li and Clevers, 2010).

To maintain stemness, Lgr5* stem cells require niche
factors provided by surrounding cells such as nearby
Paneth cells and myofibroblasts underneath the epithelial
lining, and the function of these niche factors regulate
diverse signaling pathways such as Wnt, BMP, and EGF
(Crosnier et al., 2006). Wnt signaling is instrumental in
intestinal homeostasis, as indicated by the essential role of
Wnt3, R-spondin, and downstream B-Catenin/TCF tran-
scription regulators in stem cell maintenance, and Lgr5 is
actually a target gene of Wnt signaling (Korinek et al., 1998;
Kim et al., 2005; Sato et al., 2011). Recently, the Hippo
pathway has also been reported to play an important role in
intestinal stem cell self-renewal and regeneration (Yu et al.,
2015a). YAP is mainly expressed in Lgr5" stem cells in
adult intestine (Barry et al., 2012), suggesting a role for the
Hippo pathway in regulating ISC function (Fig. 2). Indeed,
overexpression of Yap, suppression of Lats1/2, deletion of
Mst1/2, or deletion of Sav1 specifically in the intestine all
lead to expansion of ISCs and defective cell differentiation,

as evidenced by the loss of Paneth cells and goblet cells in
the small intestine (Camargo et al., 2007; Lee et al., 2008;
Cai et al.,, 2010; Zhou et al., 2011; Imajo et al., 2014).
Surprisingly, mice with conditional knockout of Yap and Taz
exhibit no visible abnormalities (Cai et al., 2010; Zhou et al.,
2011; Azzolin et al., 2014). Thus, this suggests that in adult
intestine, YAP is not absolutely required for normal tissue
homeostasis, and high YAP activity results in a hyperplasia
phenotype mainly due to the accumulation of immature
cells.

However, the Hippo pathway appears indispensable for
intestine tissue regeneration. In mice, tissue injuries such as
dextran sodium sulfate (DSS) treatment and gamma radia-
tion represent acute colitis and radiation enteritis, respec-
tively. Following injuries, the intestinal epithelium undergoes
an ordered regenerative program. YAP protein levels are
dramatically induced following DSS treatment, and YAP is
distributed in both cytoplasm and nuclei of all cells in
regenerating crypts (Cai et al., 2010). Similarly, YAP is also
activated following gamma irradiation, and YAP shows pre-
dominant nuclear localization (Gregorieff et al., 2015). In Yap
cKO or Yap/Taz dcKO mice following DSS treatment or
irradiation, the intestinal epithelium regeneration is defective
and loss of crypts is profound (Cai et al., 2010; Gregorieff
et al., 2015). Yap deficient mice exhibit a dramatic reduction
of crypt proliferation, and the ISCs marker Olfm4 is strongly
downregulated. Furthermore, transient activation of YAP
may reprogram Lgr5" ISCs by partial inhibiting the Wnt
pathway, which prevents ISCs from differentiating into
Paneth cells and drives a pro-regenerative program through
activation of the EGFR signaling pathway (Gregorieff et al.,
2015), indicating an essential role for YAP (and TAZ) in
intestinal regeneration.

YAP/TAZ have been shown to induce both proliferation of
crypt cells and differentiation of ISCs into goblet cells, in
which YAP and the TEADs regulate ISCs proliferation, while
YAP and Kruppel-like factor 4 (KIf4) regulate goblet cell dif-
ferentiation (Imajo et al., 2014). However, an inhibitory role
for YAP in intestinal regeneration has been observed in
another study: overexpression of a constitutively-active Yap
(S127A mutant) in the mouse intestine leads to the loss of
proliferative crypts, and Yap knockout results in hyperplastic
crypts after whole-body irradiation. In the Yap KO intestine,
Whnt target genes are upregulated which leads to expansion
of ISCs and Paneth cells (Barry et al., 2012). Considering the
pivotal role of Wnt signaling in ISCs, the discrepancy
between this study and others may be due to the differences
in the extent and duration of Wnt inhibition by YAP/TAZ. In
addition, intestinal epithelial cells consistently communicate
with resident immune cells, and a role of the Hippo pathway
in immune response has been revealed recently (Moroishi
et al., 2016), thus the differences in mouse immune back-
ground and immune-epithelial interaction may also con-
tribute to inconsistent results. Nevertheless, further
investigation is required to fully understand the function of
YAP/TAZ in intestinal regeneration.
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Figure 2. Localization of tissue resident stem cells and YAP
expression in intestine, liver, and skin. The cellular organi-
zation of intestine crypt, portal area of liver, and epidermis are
depicted. Cells shaded in green indicate tissue resident stem
cells, and red paint indicates YAP expressing. Abbreviations: A,
hepatic artery; V, portal vein; B, bile duct.

Liver

The liver has a remarkable regenerative capacity following
chemical injury or partial hepatectomy. In response to liver
injury, mature hepatocytes proliferate to compensate for cell
loss, and tissue resident progenitors also emerge and par-
ticipate in the regenerative process (Fig. 2). Different popu-
lations of cells around the portal area have been suggested
as liver progenitor cells, such as bipotent oval cells which
give rise to both hepatocytes and cholangiocytes (Miyajima
et al., 2014). Recently, the Hippo pathway has been recog-
nized as an essential regulator for regulating liver home-
ostasis and regeneration.

The Hippo signaling is a crucial regulator in controlling
liver development and tumorigenesis. YAP upregulates TGF-3
signaling to trigger proliferation of biliary epithelial cells
(BEC), and reduces Hnf4a expression to inhibit hepatocyte
differentiation (Lee et al., 2016). Liver-specific deletion of
Yap leads to the loss of biliary epithelial cells, and the liver
failed to develop bile ducts (Zhang et al., 2010; Lee et al.,
2016). On the other hand, YAP activity is decreased during
hepatocyte differentiation, and mature hepatocytes have low
YAP expression and nuclear accumulation (Yimlamai et al.,
2014; Yi et al., 2016). Conditional activation of YAP leads to
liver overgrowth and cancer (Camargo et al., 2007; Dong
et al., 2007). Similarly, liver-specific deletion of Mst1/2, Lat-
s1/2, Sav1, or Nf2 results in expansion of progenitors, liver
enlargement, and liver cancer. The tumor nodules display
oval cell accumulation and characteristics of hepatocellular
carcinoma (HCC) and cholangiocarcinoma (Zhou et al.,
2009; Benhamouche et al., 2010; Lee et al., 2010; Lu et al.,
2010; Song et al., 2010; Zhang et al., 2010; Lee et al., 2016;
Yi et al., 2016). Surprisingly, YapS'?A knock-in mice are
phenotypically normal despite that YAP shows prominent
nuclear accumulation (Chen et al., 2015). Further analysis
reveals that YAP/TAZ could induce a negative feedback
regulation of the Hippo pathway by inducing the expression
of LAST1/2 and NF2, which in turn leads to decrease of YAP/
TAZ protein level (Chen et al., 2015; Moroishi et al., 2015).

YAP activity also influences liver cell fate during regen-
eration. In adult liver, YAP is mainly localized to the bile
ductal epithelium (Yimlamai et al., 2014) (Fig. 2). Upon liver
injury and inflammation, YAP is transiently activated, which
promotes proliferation of progenitors and represses hepa-
tocyte differentiation. Deletion of Yap in the adult liver causes
inhibition of hepatocyte and bile duct proliferation after cho-
lestatic injury (Bai et al., 2012; Su et al., 2015). On the
contrary, acute deletion of Lats1/2 in adult mice leads to
rapid immature BEC expansion, hepatomegaly, and lethality
(Lee et al., 2016). Hepatocyte-specific activation of YAP
causes the emergence of cells sharing a similar identity with
ductal cells, which is likely due to hepatocyte dedifferentia-
tion as a result of Notch activation (Yimlamai et al., 2014).
Taken together, appropriate YAP protein levels are crucial for
controlling hepatoblast proliferation and differentiation.

Skin

The skin is the largest organ that protects the organism from
external lesions. The epidermis is continuously renewed to
maintain skin homeostasis. Epidermal tissue self-renewal
and wound healing are mainly dependent on epidermal stem
cells (Solanas and Benitah, 2013; Goodell et al., 2015).
YAP is highly expressed and predominantly nuclear in the
early embryonic epidermal progenitors, and is essential for
the proliferative capacity of progenitors and the development
of the epidermis (Fig. 2). Epidermis-specific deletion of Yap
at early embryonic stage causes lethality, the skin of these
mice is thinner and deficient in epidermal tissue, a
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notable reduction of both progenitor cells and proliferative
basal cells are also observed (Schlegelmilch et al., 2011).
On the other hand, the mice carrying a constitutively-active
form of YAP (S127A) shows significantly increased prolifer-
ation of basal epidermal progenitors, a thicker epidermis,
and hyperkeratinization of skin (Schlegelmilch et al., 2011).
MST1/2 are activated during keratinocyte differentiation,
deletion of their scaffold protein encoded by Sav? also
causes perinatal lethality and the embryonic epidermal
hyperplasia (Lee et al., 2008). Previous work has identified
GPCRs as crucial upstream regulators of Hippo signaling
(Yu et al., 2012; Yu et al., 2014). Epidermal-specific deletion
of Gnas leads to expansion of stem cell compartments and
basal-cell carcinoma-like lesions due to PKA inactivation and
in part, YAP activation (lglesias-Bartolome et al., 2015).

High YAP activity also affects differentiation of epidermal
progenitors and wound healing. Deletion of Yap leads to a
reduction of cell growth, inhibition of keratinocyte differenti-
ation, and delay in wound healing (Elbediwy et al., 2016). In
contrast, terminal differentiation of keratinocytes is blocked
in Yap (S127A) transgenic mice (Schlegelmilch et al., 2011;
Zhang et al., 2011). Thus, these studies demonstrate that
YAP activity is crucial to maintain epidermal homeostasis
and is indispensable for the wound healing process.

Heart

Heart growth is strictly restricted and it can be generally
divided into two phases: 1) fetal heart growth is mainly due to
the proliferation of cardiomyocytes; 2) soon after birth, car-
diomyocytes stop proliferating, and heart size is principally
controlled by the size of cardiomyocytes. Cardiomyocyte
loss is a major pathogenic mechanism leading to heart fail-
ure. However, unlike other organs, the heart has been con-
sidered as a non-regenerative organ. Recently, some
studies have reported that cardiomyocytes also maintain
limited regenerative capacity, and cardiac progenitors which
may contribute to cardiac regeneration have also been
identified at different developmental stages (Laflamme,
2011; Porrello and Olson, 2014; Zhou et al., 2015). More-
over, several studies have shown that the Hippo pathway
plays a crucial role in maintaining basal heart homeostasis
and regulating cardiomyocyte proliferation and cardiac
regeneration. It's noteworthy that the regenerative potential
of adult heart is very low, and the limited recovery of mor-
phology and function of heart following injury may be better
referred as tissue repair.

YAP is expressed in the myocardium of both the fetal and
postnatal mouse heart (von Gise et al.,, 2012; Lin et al.,
2016). From neonatal to adult stage, the expression of YAP
decreases, whereas the expression of VGLL4 (a competitive
inhibitor of YAP, Fig. 1) increases gradually, suggesting a
decrease in YAP activity with age (Lin et al., 2016). YAP
simulates cardiomyocyte proliferation in a TEAD-dependent
manner (von Gise et al., 2012; Morikawa et al., 2015; Lin
et al., 2016), and YAP is crucial for the development of the

embryonic heart, as deletion of Yap in the embryonic heart
leads to lethality at E10.5 (Xin et al., 2011). Postnatal dele-
tion of Yap also leads to increased myocardial fibrosis, car-
diomyocyte apoptosis, and decreased cardiomyocyte
proliferation, thereby resulting in dilated cardiomyopathy and
premature death (Del Re et al., 2013; Xin et al.,, 2013).
Embryonic deletion of Sav7 leads to the enlargement of the
heart and excessive cardiomyocyte proliferation (Heallen
et al., 2011). Overexpression of Lats2 in the mouse heart
represses cardiac hypertrophy and reduces ventricle size
without influencing myocardial apoptosis (Matsui et al.,
2008). Thus, the Hippo pathway is indispensable for regu-
lating embryonic heart development and maintaining basal
heart homeostasis.

Recently, several groups have reported that the Hippo
pathway plays a role in cardiac regeneration. Activated YAP
could reduce myocardia injury and promote cardiac function
(Lin et al., 2014). Inhibition of endogenous Lats2 reduces
myocardial apoptosis under stress (Matsui et al., 2008).
Overexpression of Mst1 in mice induces apoptosis and leads
to lethal cardiomyopathy (Yamamoto et al., 2003; Delre
et al., 2014). Suppression of endogenous Mst1 prevents
cardiomyocyte apoptosis, cardiac dysfunction, and fibrosis in
the remodeling heart without influencing cardiomyocyte
hypertrophy (Odashima et al., 2007). Cardiac-specific dele-
tion of Mst2 does not affect cardiomyocyte proliferation in the
neonatal or adult heart, but reduces the pathological cardia
hypertrophic response under pressure overload (Zi et al.,
2014). Loss of Sav1 in adult mouse cardiomyocytes pro-
motes cell cycle entry and cytokinesis and enhances car-
diomyocyte regeneration after myocardia injury (Heallen
et al., 2013; Morikawa et al., 2015). Thus, YAP activation
represents an attractive approach for promoting heart
regeneration.

YAP activity may promote heart regeneration by multiple
mechanisms. Expression profiling analysis shows that YAP
induces expression of genes related to cell proliferation,
DNA synthesis, and cytoskeletal remodeling (von Gise et al.,
2012; Morikawa et al., 2015). In addition, YAP stimulates
IGF-1 and Akt signaling to reduce cardiomyocyte apoptosis
(Xin et al., 2011; Del Re et al.,, 2013; Xin et al.,, 2013).
Moreover, YAP also binds with different transcriptional fac-
tors in the heart, such as FoxO1 and Pitx2, and promotes the
expression of genes involved antioxidant response (Shao
et al., 2014; Tao et al., 2016).

Together, all these studies demonstrate that appropriate
YAP activity is crucial for embryonic heart development and
basal heart homeostasis, and YAP could stimulate car-
diomyocyte proliferation and cardiac regeneration in
response to heart injury such as myocardial ischemia.
However, recent studies have principally focused on the
effect of the Hippo pathway on cardiomyocytes but not on
cardiac fibroblasts or potential cardiac stem cells. Cardiac
fibroblasts form one of the largest pools of cells in the heart
and contribute to the normal structure and function of the
myocardium (Souders et al., 2009). It is reported that cardiac
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fibroblasts could be directly reprogrammed into adult car-
diomyocyte-like cells (Qian et al., 2012). Therefore, it will be
important to study the relationship between Hippo pathway
and non-myocyte cells in the heart.

Nervous system

Neural stem cells (NSCs) are capable of self-renewal and
generate multiple neuronal and glial lineages, which exist in
both the fetal and adult nervous system in mammals. The
cell cycle is strictly coordinated in NSCs to ensure precise
neurogenesis (Bond et al., 2015). Recent findings indicate a
crucial role for Hippo signaling in controlling NSC prolifera-
tion, fate determination, differentiation, and maturation.
YAP is selectively expressed in NSCs and astrocytes, but
not neurons. In astrocytes, YAP is required for astrocytic
proliferation. Deletion of Yap in NSCs or astrocyte leads to
impaired astrogliogenesis and increased neocortical neu-
rodegeneration (Huang et al., 2016). In the neural tube of the
mouse, chicken, and frog, YAP is expressed in the ventric-
ular zone progenitor cells and co-localizes with the neural
progenitor cell marker Sox2. YAP activation leads to
decreased neuronal differentiation and expansion of the
neural progenitor cell population, which in part is due to the
upregulation of stemness genes such as cyclin D1 (Cao
et al.,, 2008). On the contrary, repression of either YAP or
TEADs in the neural tube causes a significant increase in
cell death, cell cycle exit, and differentiation of neuronal cells
(Cao et al., 2008). In addition, YAP is necessary for prolif-
eration of ependymal progenitor cells, apical attachment of
progenitor cells, and maintaining the integrity of the ventric-
ular lining of the aqueduct. Nervous-specific deletion of Yap
in the brain obstructs the rostral aqueduct and leads to
hydrocephalus (Park et al., 2016). Moreover, YAP/TAZ are
also important for the morphogenesis of peripheral nerves,
Schwann cells specific knockout of YAP/TAZ in mice leads to
reduced cell proliferation, impaired radial sorting, and
defective myelination (Poitelon et al., 2016). NF2 is localized
in the apical region of NPCs and plays a crucial role in
restricting NPC expansion by negatively regulating YAP/TAZ
activity. NF2 promotes corpus callosum development and
hippocampal morphogenesis, and deletion of Nf2 in the
mouse dorsal telencephalon causes a significant expansion
of the NPCs at hippocampus and neocortex, resulting in
dysgenesis of the corpus callosum and malformation of the
hippocampus (Lavado et al., 2013; Lavado et al., 2014).

THE HIPPO PATHWAY IN DROSOPHILA TISSUE
REGENERATION

The function of the Hippo pathway in tissue regeneration
has also been studied in Drosophila. The Drosophila midgut
is equivalent to the small intestine in mammals. In Droso-
phila, the Hippo pathway is also critical for maintaining
midgut homeostasis. The Hippo pathway restricts

proliferation of ISCs under normal physiological conditions.
Suppression of Wts or Hpo, mutation of the Kibra binding
partner Pez, or loss of Msn increases ISC proliferation and
causes a significant hyperplasia phenotype in the midgut
(Ren et al.,, 2010; Shaw et al., 2010; Staley and Irvine,
2010; Poernbacher et al., 2012; Li et al., 2014). However,
high Yki activity is required for injury-related proliferation of
ISCs (Karpowicz et al., 2010; Ren et al., 2010; Staley and
Irvine, 2010; Poernbacher et al., 2012). The activation of
Yki leads to the production of unpaired (Upd) family
cytokines and EGFR ligands, which then activate Jak/Stat
and EGFR signaling and accelerate ISC division during
intestine regeneration (Karpowicz et al., 2010; Ren et al.,
2010; Shaw et al., 2010).

In Drosophila nervous system, NSCs remain quiescent at
early larval stages and proliferate at embryonic and adult
phases, and the Hippo pathway has been shown to control
the quiescence of NSCs. Yki is inactive and localized in the
cytoplasm when NSCs are quiescent, and Yki will relocate to
the nucleus to regulate NSC proliferation and growth during
NSC reactivation. Suppression of Hippo pathway upstream
regulators such as Wis leads to premature exit from quies-
cence and reactivation of NSCs (Ding et al., 2016). Poon
et al. also demonstrated that the Hippo pathway restricts
proliferation of neural stem cells, controls neuroblast reacti-
vation from quiescence during postembryonic neurogenesis
of Drosophila, and perturbation of Tao, Hpo, or Wits, or
overexpression of Yki, leads to brain overgrowth (Poon et al.,
2016). Moreover, the Hippo pathway can modulate asym-
metric cell division of NSCs (Keder et al., 2015) and regulate
glial cell proliferation (Reddy and Irvine, 2011). In the future,
it will be interesting to study the function of the Hippo path-
way in neural degenerative diseases or neural regeneration
following injuries.

THE HIPPO PATHWAY AND REGENERATIVE
MEDICINE

Regenerative medicine refers to medical approaches which
promote functional regeneration of damaged tissues or
organs, such as stimulation of intrinsic regenerative/repair
mechanisms by molecular therapy, or transplantation of tis-
sues or stem/progenitor cells cultured in laboratories (Lane
et al., 2014). Due to the shortage of donors compared to the
increasing needs of tissue/organ transplantation, there is an
urgent need for the development of novel regenerative
medicines.

YAP/TAZ activity is generally high during embryonic
development, but soon declines to a basal level after birth.
During tissue injury, YAP/TAZ activity is immediately reacti-
vated in a transient manner, and transient activation of YAP/
TAZ can promote expansion of progenitors or dedifferentia-
tion of mature cells to facilitate tissue regeneration (Fig. 3A).
Thus, activation of YAP/TAZ is a potential strategy to pro-
mote tissue regeneration.
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Figure 3. The Hippo signaling in tissue regeneration and regenerative medicine. (A) YAP/TAZ activity is declined to a base line
level after birth, and immediately reactivated in a transient manner following tissue injuries. (B) The potential of YAP/TAZ activation in
regenerative medicine. YAP/TAZ activators or effectors (either small or macro molecules) directly induce tissue regenerative program
in vivo; in addition, YAP/TAZ activation may promote expansion of tissue resident stem cells or iPSCs in vitro, which in turn can be
transplanted back to injury sites to facilitate tissue regeneration.

The Hippo pathway consists of a kinase cascade, and
therefore, inhibiting upstream kinases represents an ideal
approach to activate YAP/TAZ. Systematic or local delivery
of Hippo pathway kinase inhibitors could, in principle, induce
this regenerative program (Fig. 3B). Recently, an MST1/2
inhibitor has been discovered and has shown good efficacy
in promoting liver and intestinal regeneration (Fan et al.,
2016). Inhibitors for MAP4Ks or LATS1/2 may have a similar
effect in promoting regeneration. Gene therapy is an effec-
tive approach in regenerative medicine (Ruiz and Regueiro,
2012), introducing small interfering RNA or microRNA mim-
ics targeting the pathway components or YAP target genes
by viral- or viral free- approaches may benefit tissue regen-
eration (Yin et al., 2014).

An alternative approach is to deliver macromolecules to
damaged tissues to facilitate tissue regeneration. Some
YAP/TAZ targeting genes encode secretory proteins, and
these proteins may have regenerative potential. Indeed, YAP
targets Epiregulin and CTGF have been shown to promote
tissue repair in the mouse intestine and zebrafish spinal
cord, respectively (Gregorieff et al., 2015; MH et al., 2016).

In addition to in vivo reprogramming of regenerative pro-
cess using a molecular approach, regeneration may also be
promoted by transplantation of in vitro expanded progenitors,
organoids, or tissues (Fig. 3B). In recent years, a variety of
organoids have been cultured successfully in vitro, including
the stomach, liver, kidney, lung, gut, brain, and retina (Cle-
vers, 2016). However, it is still difficult to control the com-
plicated biological parameters such as the cell type,
organization, and cell-cell or cell-matrix interactions within an
organoid system (Yin et al., 2016). In a recent study,
intestinal organoid formation has been fine-tuned by

differential YAP activity associated with matrix stiffness
(Gjorevski et al., 2016). Moreover, YAP/TAZ transient acti-
vation can efficiently convert differentiated mammary, neu-
ronal, and pancreatic cells into a progenitor cell state, and
these cells can form organoids and be used for transplan-
tation (Panciera et al., 2016). Thus, modulating the Hippo
pathway may represent a useful approach for enrichment of
progenitor cells or differentiated organoids for regenerative
medicine.

Given the importance of the Hippo pathway in cell plas-
ticity, novel and specific activators of YAP/TAZ may be a
powerful tool for promoting tissue regeneration. While the
Hippo field is largely focused on developing YAP/TAZ inhi-
bitors for treating cancer (Gong and Yu, 2015), it might be
equally important to develop YAP/TAZ activators for regen-
erative medicine. Moreover, long term activation of YAP/TAZ
may lead to tumorigenesis, thus caution should be taken
when using YAP/TAZ activators in regenerative medicine.
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