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Abstract: Several socio-economic problems have been hidden by the COVID-19 pandemic crisis.
Particularly, the agricultural and food industrial sectors have been harshly affected by this devas-
tating disease. Moreover, with the worldwide population increase and the agricultural production
technologies being inefficient or obsolete, there is a great need to find new and successful ways to
fulfill the increasing food demand. A new era of agriculture and food industry is forthcoming, with
revolutionary concepts, processes and technologies, referred to as Agri-food 4.0, which enables the
next level of agri-food production and trade. In addition, consumers are becoming more and more
aware about the origin, traceability, healthy and high-quality of agri-food products. The integration of
new process of production and data management is a mandatory step to meet consumer and market
requirements. DNA traceability may provide strong approach to certify and authenticate healthy food
products, particularly for olive oil. With this approach, the origin and authenticity of products are
confirmed by the means of unique nucleic acid sequences. Selected tools, methods and technologies
involved in and contributing to the advance of the agri-food sector are presented and discussed in
this paper. Moreover, the application of DNA traceability as an innovative approach to authenticate
olive products is reported in this paper as an application and promising case of smart agriculture.

Keywords: artificial intelligence; big data; blockchain; DNA technologies; internet of things; smart
agriculture; olive fruit

1. Introduction

By 2050, the worldwide population is expected to reach over 9 billion, implying a
significant increase in food needs and, therefore, a higher agri-food industry production [1].
The latest developments should be integrated and more accurate data should be better au-
thenticated through new biotechnology in order to fulfill food production requirements [2].
Information sensing, saving, integration and automated analysis will help in making faster
and more efficient decisions. In this regard, the Food and Agriculture Organization of the
United Nations (FAO) focuses on how global agri-food production systems should change
and evolve in order to support the subsistence needs of the worldwide population [3]. The
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essential components of agriculture and food supply chain are tightly connected to one
another, because agricultural products are very often used as inputs in several multi-actor
distribution supply chains, where the consumer is usually the final end user or client [4].
The new concept for agri-food supply chains designed as a “from field to fork” approach
consists of connecting events in the agri-food production, where its process is made of
a succession of chain of elements from production to processing, trading, distribution
and consumption. Over the last decades, several and diverse crises and food safety in-
cidents impaired the food sector [5,6], such as dioxin in poultry [7], bovine spongiform
encephalopathy (well known as mad cow disease) [8], the threat of antibiotic-resistant
pathogens [5], contaminated powdered milk [6] and the controversy over genetically modi-
fied organisms [9–12]. Hence, valuable and important reviews have been already written
about Agri-food 4.0 [2,13–15]. Moreover, the recent COVID-19 pandemic affected and
enhanced the already existing world economic crisis [16–18]. Lockdowns and intermittent
work exacerbated the problems of farming activities and the entire food supply chain.
Indeed, this unprecedented worldwide health crisis imposed restrictions and limitations on
both the medical and food trade supply [18–21]. Although the availability of the COVID-19
vaccine in the world is currently quite limited, food and agricultural workers should be
among the first to be vaccinated in order to protect themselves and their community, and
to preserve the sustainability of the sector [22]. In addition, the agricultural sector is
particularly suffering from the world health and economic crisis [22]. Hence, consumers’
confidence towards food safety is lacking. Therefore, the need for more information on
agri-food products “from farm to fork” is increasingly demanded by consumers. In ad-
dition, among the recommendations made by OECD to build a resilient recovery and
emerge stronger from the COVID-19 pandemic is the necessity to boost confidence in trade
and global markets by improving transparency regarding trade-related policy actions and
intentions [23]. In order to build trust, transparency and, consequently, to improve the
agri-food value chain management in major features, such as manufacturing, traceability,
information security and sustainable water management, and also in order to assemble
agri-food production, it is crucial to adopt and apply, in each phase (production, processing,
distribution, retailing and consumption) of the agri-food supply chain, the most advanced
and latest technologies. This is why a well-documented traceability system has become
a requirement for quality control in the food chain. The key challenges of the agri-food
supply chain stakeholders, in the expected events for the coming years, are to increase
revenues and, in return, to decrease the pressure of handling complex and external factors
beyond their control, for example, rules and policies, market performance, weather and
climate change conditions, but also to react on time by visualizing current trends in needs.
In this worldwide socio-economic context and facing the COVID-19 pandemic scenario,
the main objective of this review is to shed light on how, fundamentally, the exploitation of
advanced technologies, referred to as Agri-food 4.0, could be helpful, and practically, the
case of olive oil traceability by means of DNA markers could be successful.

2. Agri-Food 4.0

All the processes and events from agricultural production to food end product obtain-
ing, including trading and supply chain, are called agri-food industry [2]. The development
of agriculture from a state of primitive self-sufficiency to a capitalistic highly complex
agricultural organization and the progress in the techniques have undergone several cru-
cial steps [24]. Historically, the earliest beginnings of agriculture were mainly based on
human force and animal traction. Starting from the 16th to the 19th century, mechanization,
steam power and traction engines took place, corresponding to the first agri-industrial
revolution [13,25]. The introduction of the Taylorism and Fordism concepts in the early
1900s, with the new labor organization, manufacturing management and standardization
of work [26], together with the empowered engines, new machines, crops and farming
techniques, led to the second industrial revolution at the beginning of the 20th century [25].
The advances in precision agriculture, robots, remote sensing and the management of farm



Plants 2022, 11, 1230 3 of 21

information systems in the context of digital innovation started to appear two decades
ago in the beginning of the 21st century, corresponding to the Agri-food 3.0 era [13]. Fol-
lowing the COVID-19 pandemic crisis, recently developed technologies, such as big data,
blockchain and Artificial Intelligence, have been used and integrated to make agriculture
smart and autonomous, connecting all the steps of food chain recess operations up to the
end users. From hunting and gathering in early times to the industrialization, mecha-
nization, automation, innovation and digitalization of agriculture, a new revolution in
agriculture and food industry has begun the era of “Agri-food 4.0” (Figure 1).
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Agri-Food 4.0 Technologies

The management and the exploitation of big data in the agricultural sector are key
nodes between agricultural concerns and digital transformation capabilities. In fact, the
major issues concern the consolidation of open data, such as weather, soil and nutrients,
governance data, such as local regulation, and data from end users or consumers with a
referential data.

Among the recent advanced technologies are:
Internet of things (IoT): The term “Internet of Things” was invented by Kevin Ashton

in 1999 during his work in supply chain optimization in order to promote radio frequency
identification technology, as a new form of wireless communication [27]. According to
McKinsey, the IoT is defined as sensors and actuators embedded in physical objects that
are linked through wired and wireless networks, often using the same Internet Protocol
that connects the Internet [28]. The IoT is a system of interrelated computing devices,
mechanical and digital machines that are provided with unique identifiers (UIDs) and the
ability to transfer data over a network without requiring human-to-human or human-to-
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computer interactions. In the agri-food sector, IoT technologies appear under labels such
as “precision agriculture” or “smart farming” [29]. The technologies connected with the
IoT have great potential for application in the sector of food and agriculture, but there are
some societal, organizational and technological challenges faced by this field. Regarding
societal challenges, the most important criterion is to convince all stakeholders in the
food chain and to show them that using this technology provides significant benefits to
society at several levels. Additionally, despite the lack of knowledge of technical skills
by the end users, it is necessary to help them to learn and understand the utilization and
applicability of these novel technologies by encouraging them to attend training sessions.
As described in Table 1, there are numerous important challenges, such organizational and
technological. In addition to tacking these challenges and to reduce to the bare bones the
execution of the IoT in the entire supply chain, it is crucial to address several objectives
of the agri-food sector in order to persuade users of the usefulness of these technologies
in agriculture. The main objectives and benefits for farmers are the increase in yields,
obtaining a better quality/quantity with lower production costs, the optimization of the
process and respect of nature by reducing water consumption and other natural resources,
and the improvement in the soil quality as well as the adaptation of crop management to the
requirements of climate change by minimizing the ecological footprint and environmental
impact of agricultural practices. Furthermore, these technologies enhance food safety
and/or food security and ensure effective and fraud-free certification schemes (such as the
organic labeling) across the entire food supply chain. In addition, it offers opportunities for
new business and cooperation opportunities by developing business models personalized
for an IoT environment.

Table 1. New technology challenges and constraints of the agri-food sector.

Technology
Challenges

Social Organizational Technological

IoT

- Persuade all
stakeholders in the
food chain using this
technology that has a
lot of benefits to either
small or large farmers.

- Help farmers to learn
and understand the
utilization and the
applicability of these
novel technologies.

- Heterogeneity of the sector:
no single solution (business
model, technological or
regulatory) for the different
types of actors in the food
system can accommodate
their needs.

- Variability of the farm
sizes and capital
investment costs: the
challenge is making the IoT
offerings suitably appealing
to small size farmers with
restricted investment
available for this technology.

- Business models and
business confidentiality: to
retain control and
ownership of farmer data by
creating an Agricultural
Data Coalition.

- Lack of interoperability: too many
standards emerge.

- Lack of connectivity in rural
regions: Despite the existence of low
power wide area (LPWA)
technologies (for example, LoRa and
SIGFOX) that provide a real
opportunity to overcome such
limitations, these technologies have
the limitation that they cannot
handle large datasets (originating
from satellite imagery). The
challenge is to improve connectivity
with third, fourth or fifth generation
coverage in order to more develop
the IoT in agriculture.

- Data processing power: the
challenge is to set up a data
processing service to help
small-to-medium farmers to access a
large-scale processing power at a
reasonable cost for solving
difficult calculations.

- Lack of clear data governance: the
challenge is to increase the control
and the ownership of farm data.

- Data anonymity, security and
privacy: to adopt IoT in
smart agriculture.



Plants 2022, 11, 1230 5 of 21

Table 1. Cont.

Technology
Challenges

Social Organizational Technological

Blockchain

- Lack of the needed
technical skills.

- Blockchain requires
the buy-in of its
operators and users
since this technology
implies a total
shift to a
decentralized network.

- Large consumption of
the energy.

- Complex legal frameworks
as well as uncertain
regulatory status.

- Environmental challenges

- The infrastructure is defiant by
boosting and encouraging the
availability of the Internet
connection that is still deficient in
some developing countries.

- Enhancing the security and control of
the personal data, especially before
its address to the general public.

- Enlarging the capacity of the block
size and the time interval used to
generate new blocks in order to rise
the number of the transaction
process in real time.

- Modify the transition strategy by
changing or replacing the current
system in order to offer the best
solution by applying the
blockchain system.

- To rely on a suitably combination of
the different other technologies (such
as IoT and big data).

BD

- The availability of
human resources that
advance knowledge
and skills on
BD analysis.

- Explore the ethical
implications of BD
technology in the
agriculture and
food sectors.

- Encouraging agri-food
actors (either
companies or
individuals) to apply
this BD tool in
their agri-food
supply chain.

- BD decentralization.
- Enhancement of BD control.
- Increase in BD trust, security

and privacy among actors.
- Transfer of data

appropriately and correctly.

- Developing new computational tools
to solve the problem of storage
capacity because data volumes are
increasing exponentially.

- To better combine data from different
sources (IoT, social network,
sensors, etc.).

- Enhance real-time data treatment.
- Guarantee reliability and excellence.
- Provide more data value.
- Support data connectivity.
- Combine the three levels of analytics

(perspective, predictive and
descriptive).

- Open new technological platforms as
a service to companies.

AI
- Increase in

unemployment

- Lacking thinking out of the box: lack
of flexibility and ability of machines
to solve such problems, which are
not programed or available in the
algorithms designed.

- High costs of creation and
maintenance of the smart machines
and cleaver computers.

- Perform the correct combination and
interconnection with the different
other technologies (such as IoT) by
enhancing IoT with machine learning
techniques to analyze data captured
by sensors in real time in agriculture.

IoT applications in agriculture are multiple and diverse, whether to make cultivation,
livestock and fishing smart, or to increase the precision in farming through a global net-
work system established by communications and interconnections between the network
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devices [30]. As for smart cultivation, drones could be used to optimize several farming
processes using real-time data transmission from drone to the ground control platform [31].
With the assistance of IoT-based sensors, it is possible to monitor livestock better, and, for
example, to localize and control the health and physical condition of livestock [31].

Regarding the olive oil industry, and through an Artificial Intelligence algorithm, the
IoT was applied to determine the origin and traceability of Italian Extra Virgin Olive Oil
(EVOO) in order to protect the ‘Made in Italy’ trademark [32]. As per the example, a multi-
criteria evaluation method was developed in order to obtain a sustainable configuration
of the Tunisian olive oil supply chain, synthesizing data and collecting information from
agricultural production to oil extraction [33].

Blockchain: Blockchain is a digital transparent and secure transaction ledger tech-
nology that allows the storage and the transmission of the information. Although it is an
emerging topic, it has been largely reported in the agricultural literature [34–44]. This new
and innovative technological approach to realize decentralized trustless systems was devel-
oped in the year 2009 as the underlying platform for bitcoin exchange and has now evolved
into a mainstream technology. The blockchain system uses a mixture of different tools that
have been applied in computer science, for instance, in cryptography hash functions and
database technology. There are three types of blockchain: open to all; private blockchain,
whose access and use is limited to a certain number of actors; and the hybrid blockchain.
The most well-known public blockchains, open to everyone, are the bitcoin blockchain
and the Ethereum blockchain. Examples of private blockchains, whose access and use are
limited to a number of players, are Hyperledger Fabric and Corda. Hybrid systems are
also possible, where the protocol provides public access to the blockchain that serves as an
infrastructure for the design of confidential private networks with authorization systems.
Blockchain technology offers many advantages, including creating trust between two par-
ties without an intermediate because the transmission of value between network users is
based on asymmetric cryptography, drastically reducing transaction costs, particularly in
the finance sector, and allowing the automation of immutable contracts. In practice, the
blockchain ledger allows the implementation of “smart contracts” whose conditions are
set in advance between two thirds, such as the public blockchain Ethereum, and another
advantage of this technology is that it offers a new mode of governance by establishing a
tamper-proof and ergonomic voting system. Moreover, this novel digital technology has the
benefits of providing a coherent digital representation of physical assets and autonomous
transaction executions as well as fault tolerance, immutability, secure, transparency and
full traceability of the stored transaction records. This digital transaction ledger finds
application in various fields. In fact, in order to make their business more efficient and
transparent, many companies are venturing into the development of blockchain technology,
especially in the fields of healthcare or finance. The application of this technology in the
agri-food supply chain has been progressively expanded due to their benefits in this sector
especially by providing an innovative solution to achieve food traceability, transparency,
safety and security. Despite all its promises, blockchain technology has limits: firstly, a
blockchain does not completely replace intermediaries; in fact, the smart contracts present
on the blockchain are dependent on the entries manually introduced by the user and the
user remains dependent on the platform that offers a user interface for this blockchain.
Secondly, projects revolving around a blockchain are not infallible; indeed, despite the
law code, there may be a malfunction, and the exploitation of a flaw by a hacker is a risk
that should always be considered. Thirdly, some blockchains consume energy, such as
the case of Proof of Work used by several blockchains, including Bitcoin; therefore, some
initiatives have started to solve this problem by using the Proof of Capacity or the Proof of
Stake. Finally, blockchain is theoretically not invulnerable to attacks. Blockchain technology
has several revolutionary societal, business and governmental aspects, but, due to their
weakness mentioned below, they might pose novel challenges that need to be predicted.
Among these challenges, there are especially organizational, societal and technological
problems, such as the large consumption of the energy, complex legal frameworks as well
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as uncertain regulatory status, lack of the needed technical skills and also the fact that
blockchain requires the buy-in of its operators and users since this technology signifies a
total shift to a decentralized network.

In the olive oil sector, several farmers have adopted the blockchain system and trusted
its aptitude for tracing in the entire supply chain, from the plantation, farming techniques,
production, packaging and conservation to the customer, while enabling olive oil traceabil-
ity, extra virgin quality certification and most importantly providing a guarantee of quality
and safety to the final consumers [45–47].

Finally, there are several technological challenges that should be anticipated:
Firstly, the infrastructure challenge by boosting and encouraging the availability of

an Internet connection, which is still deficient in some developing countries. Secondly,
the enhancement of the security and the control of the personal data, especially before
it is addressed to the public. Thirdly, enlarging the capacity of the block size and the
time interval used to generate a new block in order to rise the number of the transaction
processes in real time. Fourthly, the modification of the transition strategy by changing or
replacing the current system in order to offer the best solution by applying the blockchain
system. Fifthly, and most importantly, a technological challenge is to make this digital tool
a strength. It is important to rely on a suitable combination of different technologies (such
as IoT and big data) with the purpose of improving the data-driven agri-food supply chain
by making them more secure, efficient, informed, resilient and sustainable (Table 1).

Big data (BD): Big data refer to large, speed and complex data which are unable to
be processed and managed by classical and traditional techniques [48]. These data are so
vast, diverse and fast-changing that conventional technologies, tools and systems are not
capable to address them efficiently [49]. Therefore, the big data term is also used to refer
to technological tools and computer systems able to store, manage and process such big
data [50]. In 2001, Gartner [51] defined “big data” as high-volume, -velocity and -variety
information assets that demand cost-effective, innovative forms of information processing
for enhanced insight and decision making [52]. More recently and according to the Big
Data Value Association, volume, velocity, variety, veracity and value are the five ‘V’ keys
making big data a vast business [13,53]. In fact, the five ‘Vs’ refer to the high volumes of
low-density unstructured data, the fast velocity at which data are received and acted on,
the variety of the availability of many types of data, level of trust and data quality and,
finally, to detect exploited values from BD to support decision making. Several factors were
at the origin of the appearance of the BD concept, especially the rapid generation of a large
volume of data in 2005, after the emergence of numerous online services, such as Facebook.
In addition, the advent of the Internet of Things (IoT) and machine learning produced
more data. The greatest advantages of data analytics and BD are the possibility of users
gaining more complete answers when they have more information, especially since BD
provide more complete responses, so there is more confidence in the data. For these reasons,
we characterize BD as a completely different approach used to tackle complex problems.
Despite their benefits, BD have numerous general challenges. Firstly, every two years, the
big data size is doubled, in spite of the development of new technologies for data storage.
Moreover, industries and companies still struggle to keep up to speed with their data and
discover the tools to efficiently stock them. Secondly, the challenge is not just stocking the
data, but it is more important to curate the data well. In fact, data scientists spend 50 to 80%
of their time preparing and curating data before their real use. Finally, because the big data
approach changes at a rapid pace, technological tools must always be improved to handle
big data. Over the past years, scientific research activity in BD technology began to provide
pertinent results in several fields of application, such as marketing, manufacturing and
healthcare. Recently, several technologies and tools have been identified and developed
to continue research, for example, transformation algorithms, clustering methods, the
management performance of data sources and storage.

Currently, the BD applied in the agri-food sector have received increased attention.
In fact, previously, the storage, processing and analysis of information were impossible,
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owing to technological limitations. However, with the fourth industrial revolution and the
apparition of the advanced technological and computational tools, BD management has
become easier. In order to create new knowledge by extending farmer data and to generate
innovative processes and services, the integration of BD technologies in agri-food projects
has become crucial. Nowadays, there are numerous BD repositories that promise access
to and the exploitation of agri-food data, i.e., OpenCorporates, NASA Earth Exchange,
National Climatic Data Center, Soil Water and geospatial data from the National Resources
Conservation Service (US). There are several positive impacts of the use of BD in the agri-
food sector, such as functional (what should happen); predictive (what could happen);
descriptive (what has happened); economic (enhance farm productivity by optimizing
novel models by means of historical data, such as weather, soil, seed and fertilizer; improve
decision making through business; the cheaper and faster delivery of high quality products
and improve the operational efficiency in real time); business (develop a shorter supply
chain, offer a new operating model, understand better the preference of the end users or
consumers and solve problems more rapidly); social (transform the traditional skills-based
agriculture into digital agriculture and decrease risks); environmental (better resource
use and the minimization of waste); and technological (to deal with the five ‘V’). BD
technology is still in the testing stage and its implementation in agri-food value chain
management has a number of constraints that need to be tracked. Firstly, there are some
technological challenges, especially those related to improving the capability of dealing
with the five ‘V’ by developing new computational tools to solve the problem of storage
capacity because data volumes are increasing exponentially, to better combine the data from
different sources (i.e., IoT, social network and sensors), to enhance real-time data treatment,
to guarantee reliability and excellence, to provide more data value, to support the data
connectivity and to combine the three levels of analytics. The effectiveness and performance
of the perspective simulated models depend on those of the descriptive and predictive
analyses and, lastly, on accelerating solution innovation and development by opening
technological service platforms. Secondly, there are many organizational challenges that
we would take into account in the near future in order to improve the management of the
agri-food supply chain, such as BD decentralization, enhancing BD control, especially when
involving heterogeneous actors, increasing BD trust, security and privacy among actors
and appropriately and correctly transferring data. Finally, concerning the social challenges,
similar to all new technologies, their suitable employment requires the availability of
human resources who have advanced knowledge and skills on BD analysis. Additionally,
it is important to explore the ethical implication of BD technology in the agriculture and
food sectors. As a final social challenge, it is important to encourage agri-food actors,
either companies or individuals, to apply this BD tool in their agri-food supply chain by
demonstrating to them the value of innovation compared to its costs.

Artificial intelligence: The history of AI started in the early nineteenth century, in
1920, when the term ‘robot’ was coined in a fiction play in which android hands substituted
human workers [54]. However, the most significant example of this powerful technology
is the defeat of Garry Casparov, the ten times world chess champion, by the deep blue
chess computer program. Making computer, machine or robot intelligent and smart in
a similar way to human thinking is the objective of artificial intelligence. AI refers to
a panel of technologies based on electronic devices, computer systems and robots that
perform functions, increasing and enhancing the acuity, speed, precision and efficiency
of the user’s activity [55,56]. AI applied to technology should be able to identify things,
recognize objects, analyze profiles, find solutions, make decisions, order actions, predict
anomalies and learn and memorize for the subsequent steps in the supply chain. The main
goals of AI are to generate smart and autonomous systems through the implementation
of human-like intelligence in machines, and therefore, automated decisions and actions.
Automation and precise farming practices have become an urgent need to meet the very
fast increase in worldwide food needs [57]. Agriculture faces several constraints, abiotic
and biotic, in addition to the COVID-19 crisis and socio-economic circumstances, which
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increase the vulnerability of food production and supply chains [22,55,56]. Indeed, since
World War II, the global agricultural sector has faced great disturbances and disruptions,
whether concerning food product supply, market stability or even changes in consumer
behavior and preferences [58]. The integration of AI systems would greatly help to mitigate
these risk factors, and therefore improve food security and achieve self-sufficiency, whilst
reducing poverty, minimizing hunger and preserving natural resources [56]. Emerging
technologies based on AI can contribute to enhance productivity and food supply chain
efficiency, while optimizing farming and sustaining biodiversity.

A final technological challenge of AI technologies is the making of these clever tools
strong, rather than the other digital approaches; it is important to trust in the correct
combination and interconnection with the different other technologies (such as IoT) by
enhancing IoT with machine learning techniques to analyze the data captured by the
sensors in real time in the agricultural sector. Table 2 shows a myriad of AI applications in
the agricultural sector.

In the case of olive oil, adulteration could be detected through chemical analyses, but it
is an expensive cost and lengthy procedure. Therefore, in order to reduce both cost and time,
machine-learning- and artificial-intelligence-based methods combined with fluorescence
sensor, ultrasound approaches, dielectric/laser spectroscopy, or even electronic noise, were
developed to control the quality and authentication of olive oil with high accuracy [59–66].

Table 2. Different kinds of recent AI applications in agriculture.

Sector Application Tool/Technology References

Farming

Improvement of the resilience of
agriculture production systems

Remote sensing, unmanned vehicle, unmanned
aerial systems, next-generation sequencing, high

throughput phenotyping
[67,68]

Yield and productivity prediction
Field imaging, deep learning approach,
biological and environmental indicators

integration
[69–71]

Intelligent control system for the
determination of the watering time of

turfgrass plants

Computer vision system, artificial
neural network [72]

Grain crops: disease detection, grain
quality, phenotyping

Computer vision, graphics processing unit, deep
belief networks, artificial bee colony, extreme

learning machine
[73,74]

Energy consumption forecasting Mathematical models [75]

Determining the precise work area of
agriculture machinery IoT [76]

In-field estimation of strawberry ripeness Hyperspectral imaging, deep learning approach [77]

Weed management Machine vision, graphics processing unit [78,79]

Crop evapotranspiration equations
and modeling

Symbolic regression technique, artificial neural
network, extreme learning machine,

meteorological data
[80–83]

Prediction of the hydration
characteristics of wheat

Adaptive neuro-fuzzy inference system, artificial
neural network [84]

Water detection on the Earth’s surface Remote sensing technique, reflectometry data [85]

Optimization of irrigation monitoring,
pesticides and herbicides applications

Automated robotic systems, machine learning
algorithms, wireless sensor network [86,87]

Non-destructive determination of the
soluble solids content of citrus

Near infrared transmittance technology, variable
selection algorithm [88]

Disease diagnosis, detection and control
(paddy crop, olive, grapevine, apple

and orchards)

Automated vision, image processing, neural
network architectures [89–94]



Plants 2022, 11, 1230 10 of 21

Table 2. Cont.

Sector Application Tool/Technology References

Irrigation water demand forecasting Runoff simulation method [95]

Soil temperature assessment Satellite imagery, regression-based models [96]

Health diagnosis of agriculture vehicles Lightweight artificial intelligence technology,
artificial neural networks, genetic algorithm [97]

Obstacle detection for agricultural
machinery vehicle Infrared binocular stereo vision system [98]

Perception of tractor implement
performance in the plowing process Soft computing workplace, non-linear equations [99]

Mechanical transplantation of
pot seedlings Robotics, mechatronics [100]

Crop damage avoidance during
weed eradication Mechatronics [101]

Citrus rootstock evaluation Unmanned aerial vehicle-based remote sensing [102]

Detection of seed germination Low-power embedded system [103]

Detection of post-harvest apple
pesticide residues

Machine vision technology, AlexNet–CNN deep
learning network [104]

Non-destructive detection of
seed viability

Near infrared spectroscopy, infrared
thermography, multispectral imaging [105]

Determination of the best drought
tolerance indices Artificial neural network [106]

Carbon sequestration and emissions
mitigation in paddy fields Denitrification–decomposition model [107]

Plant identification Visual features of leaves, artificial neural
network, support vector machine, algorithms [108]

Livestock
monitoring

Poultry monitoring Computer vision systems [109]

Bird nest localization Drone-borne thermal imaging [110]

Fishing/
Aquaculture

Separation of dead and live rainbow
trout fish eggs

Visual machine technology-based intelligent
system, imagery processing [111]

Fisheries management Data collection and interpretation [112]

Forestry
Spatial prediction of wildfire probability neuro-fuzzy system and metaheuristic

optimization algorithms, mathematical modeling [113,114]

Tree volume prediction Machine learning [115]

Trade
marketing

Prediction of agricultural produce prices Convolutional neural networks, artificial
neural networks [116,117]

Input–output analysis of agricultural
economic benefits Big data [118]

Food industry
and

transformation

Predicting optimum moisture content
reduction in drying potato slices

Adaptive neuro fuzzy inference systems,
artificial neural network, response

surface methodology
[119]

Modeling and optimization of
Terminalia catappa L. kernel oil extraction Artificial neural network [120]

Optimization of refrigerated transport Computational fluid dynamics turbulence [121]

Applications for the food of electronic
noses and tongues Biosensors, chemical sensors [122–124]

Climatology Early warning of agricultural
meteorological disasters Big data [125]
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3. Advantages in Adopting DNA-Based Technologies in Agri-Food Supply
Chain Traceability

The food industry is one of the most critical industries for human safety. However,
in the future, food and agriculture will face numerous uncertainties, such as income
distribution, climate change, population growth, technological progress, dietary choices,
the sustainability of peace and the state of natural resources, especially since no one can
know with precision the evolution of these factors over time and which certainly influence
our future. Therefore, these factors pose serious problems concerning the performance and
the sustainability of this vital sector. Consequently, it is time that researchers, international
organizations and civil society increasingly perform an authoritative foresight exercise that
outlines alternative scenarios and highlights potential pathways for food and agricultural
systems. Because of these reasons, agri-food companies must invest more in a powerful
and effective traceability system. In addition, in order to minimize risks and manage any
issues quickly and efficiently, and also to achieve processing, managing and food product
storing ensuring safety and quality assurance, it is crucial to propose an efficient traceability
system. Multidisciplinary traceability, by combining advanced digital technologies (AI,
blockchain, IoT) and DNA-based traceability, allows transparency and ensures the quality
of services and products, to encourage the innovation of processes and products and to
guarantee cognitive bases for decision making. To provide an unequivocal investigation of
food authentication, to implement and to develop an effective and complete traceability
system across the agri-food supply chain, advanced DNA-based analysis techniques are
actually the most efficient approaches and are the subject of great interest (Figure 1).
In the past, DNA examination techniques were used in different studies, such as the
forensic and anthropology fields, whereas the application of this approach has been applied
recently in the food production chain, especially after the appearance of several food safety
scandals and incidents. The use of DNA-based methods in the field of food authenticity
is gaining increasing attention and have been used to study the authenticity, traceability
and adulteration of virgin olive oils [126], to test a variety of ground meat products sold
on the U.S. commercial market for the presence of potential mislabeling [127], to identify
and to authenticate fish products in Taiwan [128], to identify the potential toxicity of puffer
fish species highlighting health concerns [129], and to verify cereal food composition and
to detect adulterations [130]. However, in all these cases, both the quality and quantity
of DNA extraction from complex matrices may represent a fundamental task in order to
attain reliable and reproducible results.

The Case of Olive Oil

Olive oil has become a highly desired product and its demand extends to all continents,
especially extra virgin olive oil, whose quality fulfils strict international standards.

Nowadays, particular attention is paid to the study of the origin and authenticity
of olive oil in order to gain the consumer’s confidence and to guarantee added value in
terms of both quality and healthy products. The traceability of olive oils has therefore been
developed and the subject of much research in recent years. It is an approach that involves
tracing the different stages in the life of a product, from its creation to its consumption
and destruction. Several techniques based on the analysis of the chemical composition of
olive oil (fatty acids, polyphenols and antioxidants), such as gas or liquid chromatography
and nuclear magnetic resonance (NMR), have been applied and introduced in the olive
sector to study the authenticity and varietal origin of olive oils. Over the last decade,
NMR has merged as a very attractive technique to record information about the origin
and authenticity of food products [131,132], particularly olive oil traceability [133–135],
showing high resolution and fidelity. However, it requires the use of isotopes such as
13C [136,137], 31P [138] and 1H [132,139,140], and is rather dedicated to the organic matrix
of the non-volatile components of olive oil [133]. Moreover, NMR often needs to be coupled
with other technique [140] and combined with chemometric methods and strong statistical
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analyses [141], which make it more a complementary approach than a real alternative for
olive oil traceability and authentication [134].

In addition, several difficulties were encountered in distinguishing olive varieties, since
their physico-chemical characteristics are strongly influenced by environmental conditions.
Therefore, this analytical traceability of olive oil has proved to be insufficient due to its
instability linked to the interaction with environmental factors. The technological progress
associated with molecular biology has made possible to develop reliable and effective
tools, particularly molecular markers based on DNA polymorphism. However, in order to
succeed in the study of the traceability of olive oil, it is important to have efficient DNA
that is extracted from the olive oil samples. With the possession of the knowledge that
the task of DNA extraction from olive oil is very complicated, due to the characteristics of
olive oil as a complex matrix, Ben Ayed et al. [126,142] not only succeeded in extracting
an appropriate amount of DNA, but also obtained good quality residual DNA in order to
provide regular PCR amplifications.

The molecular markers based on DNA polymorphism have shown a remarkable
ability to study the traceability of olive oil. Different molecular markers have been applied
(Table 3) as Random Amplified Polymorphic DNA (RAPD), Amplified Fragment Length
Polymorphism (AFLP) and Simple Sequence Repeats (SSRs).

Table 3. The DNA-based technologies for olive oil traceability.

DNA Marker
Technologies Advantages Limits References

Random Amplified
Polymorphic DNA

(RAPD)

The Polymerase Chain Reaction (PCR)
is realized by using short primers (8–12

nucleotides) and amplifying random
segments of DNA.

Very sensitive to DNA concentration
and amplification conditions.

Lack of reproducibility.
[143,144]

Amplified Fragment
Length Polymorphism

(AFLP)

AFLP is possible with a smaller
quantity of the genomic template.

As restriction sites are present across
the entire genome of an individual,
which allows the AFLP marker to

analyze multiple loci at once.

Inconsistent results and unreliable
AFLP profiles.

AFLP cannot be performed with poor
quality DNA or degraded DNA.

As AFLP are dominant markers in
nature, they cannot detect homozygous

or heterozygous individuals.

[145]

Simple Sequence
Repeats (SSRs)

Codominant, multi-allelic and highly
abundant in the genomes of eukaryotes.

High discriminatory power
between the varieties.

The results are highly reproducible, but
this depends on the quality of DNA

as the input.

The extraction of DNA from a liquid
lipid matrix.

The selection of appropriate molecular
markers that can lead to

significant results.

[126,142–153]

RAPD DNA markers are also used for the study of the authenticity and traceability of
olive oil, but the researchers determined the non-reproducibility of RAPD markers in the
authentication of olive oil, which resulted in an incompatible electrophoretic pattern.

The AFLP technique has been used to study the genetic structure of olives. This
technique was also used to study genetic diversity. However, only 3 studies attempted to
use the AFLP technique to study the traceability and authenticity of olive oil [151,154]. The
results obtained were different, as Busconi et al. [154] reported that the AFLP profile of
olive oil is partially superimposable with that of the variety from which the oil is extracted;
on the other hand, the studies of Pafundo et al. [145] confirmed that the AFLP profiles of
DNA purified from leaves and single variety oil of the same cultivar were comparable. This
is probably due to the poor quality of the DNA, which is responsible for the inconsistent
results and low reliability of the AFLP profiles due to the inhibition of restriction enzymes
and DNA polymerase activity.
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SSRs are excellent genetic markers applied in the study of the traceability of olive
oil due to their numerous advantages, such as reproducibility, high polymorphism and
discriminatory power, codominance and multi-allelic properties. In fact, SSR DNA-based
markers have become available and reliable molecular markers to answer traceability
questions, define the origin of olive oil and to detect the presence of undesirable varieties
and fraudulent practices. Most of these publications also aimed to optimize the extraction
of good quality DNA from olive oil and identify the most interesting SSR markers for
variety discrimination.

In the case of the olive oil supply chain (Figure 2), Ben Ayed et al. [126] unveiled the
DNA code present in trace amounts in the olive oil samples. They developed an inno-
vative system based on multidisciplinary tools to study the traceability, authentication,
adulteration and labeling of commercial olive oil. The results of this work allow for the
accurate, rapid and cheap provision of the genetic and molecular identities of the product.
This, in turn, will grant economic benefits to these olive oils through the application of
this labeling strategy for their authentication. However, following the developments of
new technologies (e.g., Blockchain, IoT, AI and BD) and biotechnological progress, these
analyses, based on the analytical techniques, soon became outdated, hence the interest and
the need to improve, develop and modernize them. To help alleviate these difficulties, the
method for studying the traceability of olive oils can only be effective through a multidisci-
plinary approach involving several fields: molecular biology, genetics, plant biotechnology,
bioinformatics and biostatistics. Moreover, the use of DNA molecule-based analyses in
olive oil is a novel approach. The efficiency of this innovative tracking system requires the
registration of the varieties and their characteristics in an organized and hierarchical way,
and it is therefore necessary to have a database. Indeed, with the emergence of advanced
computer tools, the conservation of the genotypes and characteristics of different olive
varieties is becoming a necessity, and, in this context, Ben Ayed et al. [151] implemented
the first database of olive genotypes, from all over the world, named the OGDD (Olive
Genetic Diversity Database). This molecular multidisciplinary approach has successfully
overcome the problem of the traceability of commercial monovarietal and multivarietal oils,
and complemented the contribution of biochemical and organoleptic characteristics for the
characterization and traceability of olive oils. In fact, the use of DNA-based technologies is
of a great interest to meet the needs of consumers and will become essential for studying
the traceability of olive oil, especially after the emergence of the COVID-19 pandemic. The
implementation of the molecular DNA Label will not only allow for better authentication
and a more reliable characterization of the added value, but, above all, it will engender a
more trustworthy relationship in relation to the olive oil sector.

The utmost objective is to facilitate exports through the differentiation of the products
by means of original and innovative scientific techniques. The particularity of this inno-
vative system aims to establish strong authentication for the consumers and producers.
Nowadays, the urgency related to the apparition of the COVID-19 pandemic requires
targeted and intelligent interventions. Hence, these analyses occupy a strategic position
in relation to trade, increase corporate income, improve access to the global competitive
environment and win new markets. Due to their high variability, according to environ-
mental conditions, the higher error percentage, neither the morphological characteristics
of different the groups nor the analyses of the chemical composition of major and minor
compounds can provide reliable results for olive oil traceability.
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4. Conclusions, Vision and Key Advice

The impact of COVID-19 on the agriculture and food industry, together with the
increase in the worldwide population and the growth of the agri-food market stimulate
the innovation of technology in the field of production to fulfill the needs of the end user.
The succeeding technologies involving IoT, blockchain, big data, artificial intelligence
and molecular and nanotechnologies have the common aims of increasing system pro-
ductivity, ensuring healthy products and optimizing trade markets and benefits, while
ensuring sustainability and plant–soil preservation, and avoiding environmental pollution
and degradation. Almost all the sectors of the agriculture and food industry have been
concerned by this revolutionary approach, implementing innovate technologies and highly
sophisticated equipment. The revolutionary devices and advanced technologies used in
agriculture would increase productivity and income, save on cost production and energy,
reduce labor and the expenditure of time and expand trade and the market; however, there
are some disadvantages and drawbacks to this Agri-food 4.0 trend. Indeed, since this
requires a constant Internet connection with a high flow, this could be problematic in rural
regions and developing countries, in which the Internet connection is frustratingly slow. In
addition, the smart farming approach requires a high level of technical skills and abilities
that some farmers lack, or for whom they are expensive to acquire. Moreover, the excessive
use of chemicals, whether for plant and animal nutrition, soil fertilization, or weeds and
pest treatments, is opposed to sustainable agriculture. The mechanization and digitaliza-
tion of the agri-food sector represent a serious risk of human job displacement. Agri-food
production and industry still face challenges worldwide, climate change, a fast-growing
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global population and, most importantly, the COVID-19 crisis. Developing the agri-food
sector with highly efficient and sustainable practices, combined with the next generation of
molecular tools, is inevitable to meet the current challenges and future needs.
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