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Abstract

Capturing the surface mechanics of musculoskeletal extremities would enhance the realism

of life-like mechanics imposed on the limbs within surgical simulations haptics. Other fields

that rely on surface manipulation, such as garment or prosthetic design, would also benefit

from characterization of tissue surface mechanics. Eight homogeneous tissue models were

developed for the upper and lower legs and arms of two donors. Ultrasound indentation data

was used to drive an inverse finite element analysis for individualized determination of

region-specific material coefficients for the lumped tissue. A novel calibration strategy was

implemented by using a ratio based adjustment of tissue properties from linear regression of

model predicted and experimental responses. This strategy reduced requirement of simula-

tions to an average of under four iterations. These free and open-source specimen-specific

models can serve as templates for simulations focused on mechanical manipulations of limb

surfaces.

Introduction

The musculoskeletal extremities can be grouped into four regions, consisting of the upper leg,

lower leg, upper arm, and lower arm. These regions are highly vulnerable during military com-

bat with surface injuries to the extremities being the most prevalent of all types of wounds dur-

ing recent military operations [1]. Soft tissue in the musculoskeletal extremities is

characterized by a multi-layer tissue structure of skin, fat, muscle and surrounding connective

tissues that respond to deformation non-linearly. Understanding how the limbs respond to

external manipulations at the limb surfaces can be explored through finite element analysis

(FEA). For example, FEA has been used to explore the interaction between limb tissue and

compression clothing in garment design [2, 3]. Analysis of contact pressures of soft tissue in a

limb prosthesis is also commonly done using FEA [4, 5]. Surgical simulations have also

become an important tool for medical education. Virtual training can reduce patient exposure

to inexperienced residents and can improve medical knowledge [6]. Surgical simulations can

provide necessary experience for students learning to perform difficult procedures, such as

echography of the limb [7].

Capturing patient-specific tissue response is an important problem in the realm of surgical

simulation, as representative haptic feedback and realistic tissue deformations are two
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important features within computer-based surgical training [8]. Unfortunately, region-specific

surface response of the musculoskeletal extremities is difficult to generalize across a diverse

population group. Several different studies have reported a wide range of effective Young’s

modulus for the extremities under indentation. For the lower leg region, reported effective

moduli of indentation varied from 0.0104 MPa to 0.0892 MPa in one study [9]. Variation

across studies can be even larger with a modulus as high as 0.194 MPa [10]. Some of this can

be attributed to differences stemming from testing procedures, but predicting soft tissue

response for a patient is challenging even with demographic information readily available [11].

A wide range of patient- or subject-specific extremity models exist in literature. Some sub-

ject-specific models exist with high levels of geometric fidelity [12–14]. High fidelity models

can explore interactions between different tissue types, but these models typically require sig-

nificant time investments to reconstruct and simulate anatomically detailed models. The time

investment needed for simulations of high fidelity models compounds due to the increased

number of model parameters, and therefore the number of simulations required when using

inverse FEA to optimize these models. The lengthy simulation time of high fidelity models

makes simplified models an attractive option for inverse FEA due to their decreased simula-

tion time. This situation is also desirable for simulations targeting medical training, which

necessitate real-time predictions. Prior studies have performed similar actions for inverse

FEA, taking a high fidelity soft tissue model and simplifying it for inverse FEA [12]. Additional

studies have also shown the value of simplified human anatomical models for prediction of

useful deformation metrics [15–19]. These studies highlighted the value of patient- or subject-

specific models for prediction of surface deformations and stresses even when multi-layer

structures were lumped in to a single tissue representation [20–22]. These simplified models

may lack the ability to accurately predict internal deformations and stress, but possess the ben-

efit of reduced build and simulation time, while still being sufficient in the prediction of sur-

face mechanics [23]. Even with simplifications to the models, routine inverse FEA can still

demand a considerable number of iterations and simulation time when using three-dimen-

sional (3D) models [24]. This also motivates further simplification for the execution of inverse

FEA as another avenue to expedite generation of individualized extremity models that can rep-

resent subject-specific surface interactions.

This study aims to develop models of extremity regions with the capacity to predict subject-

and region-specific surface mechanics response. A primary contribution is the delivery of

homogeneous template models of extremity regions, in total eight models from two donor

limbs that can serve as template models for prospective studies interested in exploration of sur-

face manipulation of tissue constructs. An additional contribution is the introduction of a

novel inverse FEA method to reduce the number of iterations needed to fit non-linear testing

data, and calibrate the models to faithfully represent subject- and region-specific forces of

indentation. This inverse FEA method is aimed to produce similar results to traditional meth-

ods while decreasing computational burden of tissue property calibration. The open source

nature of both the models and the data provides a readily available resource for model reuse or

adaptation, along with online documentation of the process for generating models with more

realistic surface interactions.

Methods

Using free and open source tools, eight different extremity models were built. Models con-

sisted of a bone surrounded by an anatomically representative flesh mesh that combined mus-

cle, fat, and skin layers to a homogeneous lumped entity, and an ultrasound probe to deform

the tissue. The raw experimental data used to build these are publicly available [25]. Human
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cadaveric specimens were obtained with approval from the Human Research Protection Office

of the U.S. Army. De-identified regulated cadaver specimens were received from suppliers

who obtained donor consent. Data collection methods were approved by the Cleveland Clinic

institutional review board under IRB # 14–1597. De-identified dissemination of data did not

fall under human subjects research under Stanford University IRB # 34361.

The eight finite element representations consisted of all four extremity regions from one

male and one female donor (Table 1). Each cadaver region underwent computed tomography

(CT) imaging [25], which was used as the basis for surface representation of tissue boundaries

(Fig 1). Images were collected at a resolution of 0.5 mm x 0.5 mm x 0.6 mm. Each cadaver

region also underwent a series of indentation trials using a Siemens 9L4 ultrasound probe

equipped with a 6-DoF load transducer, inertial measurement unit, and an optical tracking tri-

axial smart cluster to record three-dimensional forces and displacements (Fig 2) [25, 26]. Full

details of probe assembly [26], data collection and extraction of indentation response can be

found in prior publications [25].

Indentation was performed at the anterior central portion of each region. Probe displace-

ment ranged from 9.5–30.9% of the total tissue thickness with its freehand motion measured

using motion sensors attached to the ultrasound probe from Optotrak Certus (Northern Digi-

tal Inc., Waterloo, Ontario). Registration markers on the bones were digitized and motion

analysis coordinate systems were registered to CT imaging (therefore model) coordinate sys-

tem by alignment of digitized and segmented registration marker centers. Forces experienced

Table 1. Donor demographics.

Sex Age (years) Weight (kg) Height (m) BMI (kg/m2)

Male 65 77.1 1.778 24

Female 62 68.0 1.803 21

https://doi.org/10.1371/journal.pone.0272051.t001

Fig 1. A computed tomography scan image of the female upper leg specimen with segmentation regions shown in

3D slicer. The bone is contained in the green region and the flesh component is contained within the red region.

https://doi.org/10.1371/journal.pone.0272051.g001
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on the probe during free-hand indentation ranged from 6.1–14.4 N. These experimental values

informed simulation boundary conditions, as the ultrasound probe was positioned and dis-

placed in the model coordinate system based on a linear fit from the probes starting position

to its ending position based on the measurements of three-dimensional motion tracking sys-

tem in the experimental coordinate system, assuming no rotation of the probe.

Model development started with 3D Slicer [27]. Manual segmentation was performed on

CT image data to reconstruct anatomy (Fig 1). The surface representation of the flesh and

bone were then processed in MeshLab [28]. Within MeshLab, the initial surface representa-

tions for the flesh and bone component were resampled through mesh parameterization and

then smoothed with Taubin smoothing filters. This process also ensured the mesh was water-

tight. The flesh volumes were generated using NetGen within Salome [29, 30]. Ten node qua-

dratic tetrahedral elements were used. The bone and probe were set to rigid. The lumped tissue

was assumed to be isotropic and was modeled using an uncoupled Neo-Hookean constitutive

model. Previous studies have shown the suitability of the Neo-Hookean model to simulations

of human soft tissue [21, 31–33]. The Neo-Hookean model was also valuable in expediting

parameter optimization, yielding only one variable being manipulated.

The material model was defined with a strain-energy function (Eq 1).

C ¼ C1 � ð
~I1 � 3Þ þ 0:5 � K � ln ðJÞ2 ðEq1Þ

In Eq 1,C is the strain-energy, C1 is the Neo-Hookean material coefficient, Ĩ1 is the first

invariant of the deviatoric right Cauchy-Green deformation tensor, K is a bulk modulus-like

parameter used to enforce near incompressibility, and J is the determinant of the deformation

gradient tensor. A ratio of 100–10000 is recommended by the FEBio User Manual, the simula-

tion software utilized in this study. The K parameter was kept to be 1000 times larger than the

C1 value to keep the model at a constant Poisson’s ratio near 0.5. A ratio of 1000 provided a

balance between simulation runtime and enforcement of near incompressibility while captur-

ing load prediction (Table 2). At this ratio, no element experienced larger than a 1% change in

volume, representing reasonable enforcement of incompressibility. Increasing the ratio can

lead to numerical ill conditioning. Initially C1 was initially set to 0.01 MPa for lumped tissue of

all extremity models, based on a prior study’s Young’s modulus of 0.060 Mpa [34]. This was

calculated by using the relationship between C1 and shear modulus, as well as a relationship

between shear modulus and Young’s Modulus (E in the following), C1 can be converted to

Fig 2. Ultrasound images of female upper leg. The thickness of the tissue (unloaded image on the left, loaded on the

right) changes as force is applied by the instrumented ultrasound probe from a starting force of 0.14 N to an end force

at 9.93 N.

https://doi.org/10.1371/journal.pone.0272051.g002
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Young’s Modulus with the assumed Poisson Ratio (ν) of 0.5 (Eq 2).

C1 ¼ E=ð4 � ð1þ uÞÞ ðEq2Þ

The complete assembly of bone, lumped tissue, and probe was converted through a series of

Python scripts into input files for FEBio [35]. These Python scripts provided automated set

definitions (node and element sets) to prescribe interactions and loading and boundary condi-

tions [36]. FEBio 2.8.0 was used to perform implicit static simulations. Contact between the

ultrasound probe and the flesh was modeled with a frictionless, penalty based, sliding-elastic

contact formulation. The automated penalty factor computation combined with a penalty scal-

ing factor of 100 provided a reasonable balance between runtime and convergence against

probe penetration. The bone was fixed and the probe movement was informed by free-hand

indentation of experiments.

Initial simulations involved conducting a mesh convergence test to determine the appropri-

ate mesh density (Table 3). The flesh component’s tetrahedral count was increased by generat-

ing finer surface representations within MeshLab. The female upper leg model was used for

these simulations and the probe was given an arbitrary displacement of 15 mm into the

lumped tissue. The three-field element formulation in FEBio is well suited for modeling nearly

incompressible materials and no volumetric locking was observed in the mesh convergence

test when employing second order tetrahedra. Convergence was achieved for a coarser mesh

when the following two finer mesh densities had an average change in probe reaction force

that was less than 5%. Mesh size of all other models were chosen to match the element size of

this converged mesh.

Given the availability of force-displacement indentation data, inverse FEA was performed

to find individualized Neo-Hookean parameters for the lumped flesh for each model. FEBio

Table 2. Sensitivity of female upper leg model to changes in the K/C1 ratio under experimental loading.

K/C1 ratio Largest Relative Element Volume Change (%) Simulation Runtime (s) Indentation Reaction Force (N)

100 2.73 79889 22.00

1000 0.60 96627 23.01

10000 0.26 104418 24.67

Simulations were performed on FEBio 2.8.0 on a single CPU with an i7-6700 @ 3.40GHz processor with 16 GB RAM. The bolded row represents the selected K/C1 ratio

of 1000, which provided a largest relative volume change of below 1%. Increasing the K/C1 ratio results in superior enforcement of incompressibility but inferior

simulation runtimes.

https://doi.org/10.1371/journal.pone.0272051.t002

Table 3. Mesh convergence results on female upper leg model.

Node Count Element Count Predicted Reaction Force (N) Average Percent Difference Runtime (s)

44968 27693 115.6 6.7 4558

72904 47856 110.6 6.05 4976

113836 75077 100.5 1.7 21668

173068 116220 97.5 N/A 47801

244551 166042 97.9 N/A 99916

Simulations were performed on FEBio 2.8.0 on a single CPU with an i7-6700 @ 3.40GHz processor with 16 GB RAM. Models were considered converged for a coarse

mesh when the two subsequent finer mesh densities had an average probe reaction force that differed by less than 5%. Bolded row represents the converged mesh

density, which was generated using a MeshLab remeshing sample rate of 5. Percent difference calculations were not performed above the node count of 113,836 because

this value reached convergence criteria. Runtime of bolded row differs from Table 2 due to change in boundary conditions.

https://doi.org/10.1371/journal.pone.0272051.t003
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simulation predictions were generated at 0.01 ratio increments of the total displacement mag-

nitude. Both the experimental and simulation force-displacement data were approximated

with least square regression lines for comparison and in following, update of the tissue prop-

erty. This inverse FEA methodology required fewer iterations than a more traditional inverse

FEA, as the optimization process uses linear fit data as an educated guess to explore the solu-

tion space, rather than a bracketing algorithm [37]. The probe reaction force vs. probe dis-

placement data was used to find the slope of linear fits from both the FEBio simulation and the

prior experimentation. These values were then used to update the C1 parameter by dividing

the current C1 value by the ratio of the simulation’s slope and the experiment’s slope. Iterations

of the C1 value continued until there was less than 2.5% difference between the slopes of both

linear fits. Fig 3 shows a flowchart for the optimization workflow. Traditional inverse FEA

using Brent’s method within Scipy was also performed as a baseline of comparison to test

whether the optimization workflow was faster than standard methods [38].

To capture the experimental range of probe loading and displacement, simulations were

performed for a larger displacement and cropped based on initial loading at the start of experi-

ment and the total movement of the probe. The simulation data is first aligned with experi-

mental data based on initial probe force (as the ultrasound was already in contact with the

tissue in experiments). After this alignment, simulated probe displacement greater than the

maximum magnitude of the experimental displacement was not included in the linear fit.

Results

Eight extremity lumped tissue models were built (Fig 4), based on cadaver mechanical data

and biomedical imaging data (Figs 1 & 2).The inverse FEA method applied was shown to be a

quick yet effective method of calibrating a model in a subject-specific manner (Table 4). In

general, the required number of iterations was around 4 to find a C1 value within convergence

criteria. The female upper leg took two iterations to reach a C1 value of 0.00779 with the novel

calibration method, while Brent’s method took eight iterations to reach a C1 value of 0.00808,

yielding a percent difference of only 3.65% between the two material parameters.

Fig 3. Flowchart of the optimization process. All models received the same initial guess. Simulations were repeated until there was less than a 2.5% difference

between the linear regression fits.

https://doi.org/10.1371/journal.pone.0272051.g003

PLOS ONE Template models for simulation of surface manipulation of musculoskeletal extremities

PLOS ONE | https://doi.org/10.1371/journal.pone.0272051 August 15, 2022 6 / 15

https://doi.org/10.1371/journal.pone.0272051.g003
https://doi.org/10.1371/journal.pone.0272051


The calibration process is explained in here using the female upper arm as an example. The

experimental force displacement data was fit with a linear regression that had an intercept of

zero. The slope of the experimental data came out to 1.5265. Simulations were run until the

material parameters produced a force-displacement curve within 2.5% of 1.5265. As with all

models, an initial guess of C1 = 0.01 and K = 10 was provided to the model. The model was

simulated with these material parameters. After simulation was completed, the simulation

force-displacement is cropped to exclude values below the initial experimental force. Simula-

tion points are gathered until the displacement from this point is equal to the maximum exper-

imental displacement. Any points beyond this are also excluded from the regression

procedure. A linear regression was performed on this cropped simulation force-displacement

data and produced a slope of 3.0807. The ratio of the simulation slope divided by the experi-

mental slope was 2.0181. The material parameters were divided by this value, since the initial

guess was too stiff and new parameters were provided at C1 = 0.004955 and K = 4.955. The

model was then simulated for iteration two with these new parameters. Four iterations were

required to reach the convergence criteria, with an overview for each iteration of the female

Fig 4. Overview of the built lumped models. A. Layout of the probe, bone, and flesh components for the female and

male upper leg models. B. Bone and flesh components for the remaining six models.

https://doi.org/10.1371/journal.pone.0272051.g004

Table 4. Inverse FEA results to calibrate models to capture region-specific surface mechanics response.

Gender Body Region Soft tissue thickness at indentation site

(mm)

Iterations to

Completion

Final C1 (MPa) Final K (MPa) Effective Young’s Modulus

(MPa)

Female Upper arm 18.93 4 .00358 3.58 .02148

Female Lower arm 9.19 8 .00133 1.33 .00798

Female Upper leg 21.17 2 .00779 7.79 .04674

Female Lower leg 26.09 4 .00808 8.08 .04848

Male Upper arm 38.32 4 .00342 3.42 .02052

Male Lower arm 40.60 3 .00596 5.96 .03576

Male Upper leg 31.49 3 .01143 11.43 .06858

Male Lower leg 32.43 3 .00830 8.30 .04980

Effective Young’s Modulus relates to C1 = E/(4�(1+υ)), where E is Young’s Modulus and ν is Poisson’s Ratio, assumed to be equal to 0.5. Simulations were performed in

FEBio 2.8.0 on ten CPUs with a Xeon E5-2680v2 @ 2.40GHz processor with 60 GB RAM allocated.

https://doi.org/10.1371/journal.pone.0272051.t004
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upper arm listed in Table 5. The data portion of the repository contains the FEBio text file out-

put for each iteration, listed as a separate run from 1 to 4 for this model. Only the Postview

files (.xplt) for the first and last simulation runs are uploaded, representing the literature prop-

erties and converged material properties respectively. The Postview files are not a match of the

experimental conditions, due to the cropping method utilized and described above.

The initial guess of a 0.06 MPa effective Young’s modulus was stiffer than the tissue was in

experimentation in seven of the eight models (Fig 5). Only the male upper leg was stiffer, with

an effective modulus of 0.0686 MPa (Table 4). The extremities of the male donor had a higher

effective modulus on average than the female, at 0.0437 MPa against 0.0312 MPa. The upper

arm and lower leg regions had similar effective moduli across the subjects, with the discrep-

ancy between the two donors lying in the lower arm and upper leg. The mean effective modu-

lus for the leg regions were nearly 2.5 times stiffer than the arm regions, with a mean modulus

of 0.534 MPa to 0.0214 MPa.

In addition to structural biomechanical metrics, i.e., haptic response (Fig 5), post-process-

ing provides an opportunity to explore other metrics related to localized tissue surface

mechanics. These lumped tissue models are unreliable for internal deformation and stress pre-

dictions, but surface mechanics are representative. Surface strains, stresses, and contact pres-

sure can provide valuable information about tissue response and are readily available in

FEBio’s post-processing capabilities. Contact pressure and effective stress are shown as an

example in Fig 6. The range of peak simulation probe reaction forces was from 7.9 N in the

female lower arm to 27.5 N in the male upper leg. Intuitively, contact pressure and effective

stress from the probe during simulation was higher on average for simulations with higher

probe forces. Effective stress tended to be higher on one edge of the probe, likely the result of

probe orientation not being perfectly parallel to the flesh surface.

Discussion

Eight template models were developed in a semi-automated fashion to act as anatomically and

mechanically representative models of musculoskeletal extremities. The models have the

capacity to predict subject- and region-specific mechanical response against surface interac-

tions. Assuming literature properties proved inadequate in capturing surface mechanics,

highlighting a need to tune material parameters for each region and the subject. Models were

calibrated to experimental data using a simplified inverse FEA approach. This inverse FEA

approach was designed to reduce the number of iterations required to find representative

material coefficients. The models were developed in an open-source manner, with all data and

software used available online, allowing for other researchers to use any portion of the project

that may be of interest. Models calibrated to indentation data could be used to assess local

mechanics in a manner similar to Fig 5 to assess the contact pressure between compression

garments and soft tissue [2, 3, 14, 39].

Table 5. Inverse FEA results to calibrate the female upper arm model overview.

Iteration Number C1 Value (MPa) Simulation Slope Fit Ratio of Simulation Slope Fit over Experimental Slope Fit

1 0.01 3.0807 2.0181

2 0.004955 1.9580 1.2826

3 0.003863 1.6454 1.0779

4 0.003584 1.5265 1.0000

Experimental slope was 1.5265. The initial guess was over twice as stiff as the experimental parameters and took four iterations to converge below the 2.5% difference

threshold.

https://doi.org/10.1371/journal.pone.0272051.t005
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Fig 5. Force-displacement characteristic for all eight regions. Simulation results are shown with the initial guess (blue dots) vs.

calibrated material parameters (red plus signs), compared to experimental data (black circles). FEBio simulation data was gathered

at 100 increments over the total displacement. Plot does not show all 100 points due to cropping method, which excluded points

below the initial experimental probe force and above the experimental probe displacement. Simulation displacement points cover

the same range as the experimental data, but do not occur at the exact experimental displacement points.

https://doi.org/10.1371/journal.pone.0272051.g005
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The simplified inverse FEA strategy employed was effective in providing a reasonable fit to

the mechanical testing data with reduced computational burden. Less than a handful of itera-

tions were needed to find the optimal material parameters (Table 4). This is a significant

improvement over traditional inverse FEA methods used in literature, as well as a separate

Fig 6. Effective stress and contact pressure for all eight models after calibration, at maximum probe indentation.

Note that displacements and reaction forces extend past experimental conditions. This is because the end point of

simulation and experimentation do not match due to the clipping of simulation data, which occurred during the post

processing of simulation data upon the completion of the simulation.

https://doi.org/10.1371/journal.pone.0272051.g006
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optimization method applied to these models. Other studies reported as many as 117 iterations

for inverse FEA convergence [24]. Using a bracket method provided by Scipy, the female leg

model took four times as many iterations to converge to a similar value to our optimization

method. Reducing the amount of iterations required can save computational resources and

provide calibrated models more quickly. While the usage of linear fits on nonlinear data may

seem counter intuitive, this is solely done for scaling of the nonlinear response based on

adjustments inferred from gross mechanical behavior. We expected (and confirmed by the

success of our calibration) that the scaling of the nonlinear data will be close to linear. Addi-

tionally, the constant ratio between C1 and K of 1000 resulted in only a single parameter that

needed to be manipulated. Having only one parameter to optimize for guarantees that the

material fit will be unique, whereas multiple parameter optimization may have multiple viable

solutions. Reducing the number of parameters to manipulate reduces the dimensions of the

solution space, highlighting the attractiveness of a single parameter to manipulate. Given the

time consuming nature of optimization with an inner loop for finite element analysis, mini-

mizing the number of iterations required while providing a subject-specific response to experi-

mental data was an added value of this work.

Use of converged meshes was important to establish to properly evaluate the relevance of

literature material properties to be used for different subjects and regions. The densities of

converged meshes would be nonviable for real-time simulation, due to the relatively large

model size. To address this, coarser meshes would need to be generated. The drawback of

these coarse meshes is seen in Table 2, as less refined meshes behave stiffer than the converged

mesh density. The calibration method used would be viable for use with a coarsened mesh, as

effects from mesh density can be compensated by inverse FEA. Generating calibrated coars-

ened models provides a method to improve haptic feedback in real-time simulation when

compared to assigning assumed literature properties in this scenario that cannot account for

the additional stiffness introduced from mesh effects.

The importance of individualization of material properties can be seen in the variation of

optimized parameters from Table 4, where the final C1 parameter ranged from 0.0013 to

0.0114 MPa when comparing the female lower arm to the male upper leg. This highlights the

individualized nature of surface response of soft tissue regions, something supported in litera-

ture. Several studies offer different and often conflicting evidence on which factors may be sig-

nificant in tissue response. Neumann et al. reported a difference across the musculoskeletal

extremities, yet a minimal difference across demographic groups with no correlation between

body mass index (BMI), and age, while reporting lumped tissue thickness alone was not a

descriptor of variations of indentation response [11]. Teoh et al. also reported no difference

across genders, but did find a weak correlation between BMI and tissue response [40]. This

contrasts with other studies that did find a difference across genders [9], as well as studies that

found strong correlations between soft tissue response and age [41]. These studies emphasize

that tissue response can be difficult to infer even with demographic information. Drawing con-

clusions based on the comparison between a single male and female specimen would lead to

erroneous conclusions, but as Table 4 highlights, surface response from indentation trials on

the male and female donor cannot be attributed to gender or region alone. The male donor

upper arm was less stiff than the female donor upper arm, while the three other musculoskele-

tal regions were stiffer in the male donor. Models that aim to provide region-specific feedback

in the realm of patient-specific haptics should consider using experimental indentation to

inform surface response.

While this study showed how an open source development approach could be used to cre-

ate simplified models that faithfully replicate surface anatomy and the mechanics of surface

indentation, there are several clear limitations with the development process used. One
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limitation was the use of loaded cadaver models as the starting state of simulation. The extrem-

ity regions were under the influence of gravity when imaged and application of this prestrain

to the model within FEBio introduced model convergence problems. Another limitation of

this study is that analysis was limited to two subjects. With only two subjects, any attempt to

draw conclusions between the genders and the four regions will be speculative. Cofounding

factors certainly exist, with differences in indentation trials or factors specific to each cadaver

providing a possible explanation for the difference in surface response. Testing of a larger and

more diverse collection of regions would be needed before drawing conclusions on trends

related to region, BMI, gender, or age, potentially leveraging recently available public data

[11]. Perhaps the most significant drawback for this collection of models is their inability to

capture some of the more intricate details of tissue response. For instance, the models do not

attempt to capture layer-specific interactions or viscoelasticity. The underlying ultrasound

data did not capture directional tissue response as well. Without data on directional response,

the anisotropy of the extremities could not be modeled and it had to be assumed that the

lumped soft tissue was isotropic as done in previous studies [12, 14, 42]. Assuming the tissue is

isotropic limits the applications of the models to surface response of each region. Further

mechanical testing of the limbs or more in-depth measurement of local surface deformations

could allow for implementation of different types of loading, directional response, and/or vis-

coelasticity. Further, testing of isolated tissue samples from the specimens can validate the

results of the inverse FEA approach. The constitutive model and the resulting material coeffi-

cient fits of this study may not be appropriate for other loading scenarios such deformations

exceeding those of experiments or shear loading, which further mechanical testing could

address. This work can serve as a framework for future model development. Future work will

include generation of layered tissue models that can capture the interactions between tissue

layers.

Conclusion

The work highlighted in this paper shows a viable framework for generating open source

lumped tissue models for the musculoskeletal regions in a semi-automated fashion, primarily

focusing on capturing the individualized surface mechanics behavior. Given the variability

across the musculoskeletal extremities’ material properties across demographics, inverse FEA

was required to generate subject-specific models. The calibration process used a simplified

inverse FEA approach that allows for models to be fit to experimental mechanical data in only

a few iterations. This process was used to generate eight extremity models that captured ultra-

sound indentation surface mechanics. These template models can serve as reference for real-

time surgical simulation software involving situations of surface interactions with the limbs.

Lumped tissue models can provide individualized haptic feedback while acting as a deforma-

tion model for a realistic visual model in surgical simulations, providing realistic haptics for

patient-specific surgical simulations.
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