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Abstract
Objectives Different machine learning algorithms (MLAs) for automated segmentation of gliomas have been reported in the
literature. Automated segmentation of different tumor characteristics can be of added value for the diagnostic work-up and
treatment planning. The purpose of this study was to provide an overview and meta-analysis of different MLA methods.
Methods A systematic literature review and meta-analysis was performed on the eligible studies describing the segmentation of
gliomas. Meta-analysis of the performance was conducted on the reported dice similarity coefficient (DSC) score of both the
aggregated results as two subgroups (i.e., high-grade and low-grade gliomas). This study was registered in PROSPERO prior to
initiation (CRD42020191033).
Results After the literature search (n = 734), 42 studies were included in the systematic literature review. Ten studies were eligible
for inclusion in the meta-analysis. Overall, the MLAs from the included studies showed an overall DSC score of 0.84 (95% CI:
0.82-0.86). In addition, a DSC score 0f 0.83 (95% CI: 0.80-0.87) and 0.82 (95% CI: 0.78—0.87) was observed for the automated
glioma segmentation of the high-grade and low-grade gliomas, respectively. However, heterogeneity was considerably high
between included studies, and publication bias was observed.
Conclusion MLAs facilitating automated segmentation of gliomas show good accuracy, which is promising for future imple-
mentation in neuroradiology. However, before actual implementation, a few hurdles are yet to be overcome. It is crucial that
quality guidelines are followed when reporting on MLAs, which includes validation on an external test set.
Key Points
* MLAs from the included studies showed an overall DSC score of 0.84 (95% CI: 0.82—0.86), indicating a good performance.
* MLA performance was comparable when comparing the segmentation results of the high-grade gliomas and the low-grade gliomas.
* For future studies using MLAs, it is crucial that quality guidelines are followed when reporting on MLAs, which includes
validation on an external test set.
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Introduction

Gliomas are the most frequently occurring primary tumor of the
brain [1]. Accurate segmentation of gliomas on clinical magnetic
resonance imaging (MRI) scans plays an important role in the
quantification and objectivation of diagnosis, treatment decision,
and prognosis [2-4]. In current clinical practice, T1-weighted,
post-contrast T1-weighted, T2-weighted, and T2-fluid attenuated
inversion recovery (FLAIR) sequences are required to character-
ize the different components and to assess the infiltration of the
surrounding brain parenchyma [5, 6]. Glioma segmentation re-
quires the distinguishing of tumor tissue from healthy surround-
ing tissues by the radiologist [7] and the segmented region of
interest or volume of interest can be used to compute feature-
based radiomics and quantifiable measurements [8, 9]. However,
segmentation is a time-consuming task with high inter-observer
variability [10, 11]. Therefore, automatic segmentation methods
have been searched for as these could facilitate consistent mea-
sures and simultaneously could reduce time spent on the task by
radiologists in their daily practice. These developments have
been powered by the organization of the annual multimodal
Brain Tumor Segmentation (BraTS) challenge (http://
braintumorsegmentation.org/). Within the BraTS challenges,
the organization committee released multimodal scan volumes
of a relatively large number of patients suffering from glioma
after which different research groups aim to construct machine
learning algorithms (MLAs) to automatically segment the glio-
mas. The BraTS data were accompanied by corresponding seg-
mentations which served as the ground truth [11]. Recent devel-
opments in automatic segmentation by the use of MLAs helped
to achieve higher precision [12]. Within the BraTS challenges,
the MLAs which yielded the most accurate results included dif-
ferent 2D and 3D convolutional neural networks (CNNs)
[13-17], including 3D U-Nets [18, 19].

Despite the large body of scientific literature covering this
topic, a comprehensive overview and meta-analysis of the
accuracy of MLAs in glioma segmentation is still lacking
[20, 21]. Therefore, factors which enable the further develop-
ment of MLAs for glioma segmentation remain partially elu-
sive. The aim of the current study therefore was to provide a
systematic review and meta-analysis of the accuracy of MLA-
based glioma segmentation tools on multimodal MRI vol-
umes. By providing this overview, the strengths and limita-
tions of this field of research were highlighted and recommen-
dations for future research were made.

Methods

The systematic review and meta-analysis was conducted in
accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement
[22]. Prior to initiation of the research, the study protocol was

registered in the international open-access Prospective
Register of Systematic Reviews (PROSPERO) under number
CRD42020191033.

Papers that developed or validated MLAs for the segmen-
tation of gliomas were reviewed. Literature was searched for
in MEDLINE (accessed through PubMed), Embase, and The
Cochrane Library, between April 1, 2020, and June 19, 2020.
No language restrictions were applied. The full search strings,
including keywords and restrictions, are available in the
Appendix. Studies describing MLA-based segmentation
methodologies on MR images in glioma patients were includ-
ed. Additional predefined inclusion criteria were as follows:
(1) mean results were defined as dice similarity coefficient
(DSC) score; (2) study results needed to be validated either
internally and/or externally. Letters, preprints, scientific re-
ports, and narrative reviews were included. Studies based on
animals or non-human samples or that presented non-original
data were excluded.

Two researchers screened the papers on title, abstract, and full-
text independently. Discussions between both researchers were
held to resolve all disagreements about non-consensus papers.
The investigators independently extracted valuable data of the
included papers using a predefined data extraction sheet after
which the data was cross-checked. Data extracted from the includ-
ed studies comprised the following: (a) first author and year of
publication; (b) size of training set; (c) mean age of participants in
the training set; (d) gender of participants in the training set; (e) size
of internal test set; (f) whether there was an external validation; (g)
study design, including the used MRI sequences and the segmen-
tations which formed the ground truth; (h) architecture of the Al-
algorithm(s); (i) target condition; (j) performance of the algo-
rithm(s) in terms of DSC score, sensitivity, and specificity for both
the training and the internal and/or external test sets. When studies
performed external validation of the described Al-system(s), ex-
ternally validated data were included in data extraction tables. Data
from the internal validation were used when studies solely carried
out the internal validation of the reported MLAs.

The quality of the included studies was not formally
assessed, as a formal quality assessment is a well-known chal-
lenge in this area of research [23-25]. Nevertheless, Collins
and Moons (2019) announced their initiative to develop a
version of the transparent reporting of a multivariable predic-
tion model for individual prognosis or diagnosis (TRIPOD)
statement tailored to machine learning methods [26]. Pinto
dos Santos suggested on the European Society of Radiology
website various items to take into consideration when
reviewing literature regarding machine learning [27]. These
items were included in this review.

Statistical assessment

An independent statistician was consulted to discuss the sta-
tistical analyses and approaches with regard to the meta-
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analysis. To estimate the overall accuracy of the current MLAsS,
a random effects model meta-analysis was conducted. To be
included in the meta-analysis, studies needed to have reported
the outcome of interest (i.e., DSC score), in combination with a
standard deviation (SD), standard error (SE), and/or the 95%
confidence interval (95% CI). For studies reporting the SE and/
or the 95% CI, the SD was statistically assessed [28]. Meta-
analysis was performed on aggregated data of all studies pro-
viding suitable outcomes. Then, subgroup analyses were con-
ducted on two separate target conditions, for studies describing
the segmentation of either HGGs or LGGs.

Statistical analyses were carried out by use of IBM SPSS
Statistics (IBM Corp. Released 2017. IBM SPSS Statistics for
Windows, Version 25.0. IBM Corp.). Variables and outcomes
of'the statistical assessment were presented as mean with + SD
when normally distributed. When data were not normally dis-
tributed, they were presented as the median with range (min-
imum—maximum). Statistical tests were two-sided and signif-
icance was assumed when p < 0.05.

The DSC score represents an overlap index and is the most
used metric in validating segmentation images. In addition to
the direct comparison between automated and ground truth
segmentations, the DSC score is a common measure of repro-
ducibility [29, 30]. The DSC score ranges from 0.0 (no over-
lap) to 1.0 (complete overlap). In this meta-analysis, a DSC
score of > (0.8 was considered good overlap. A DSC score of <
0.5 was considered poor.

The quantitative meta-analysis was partially carried out
using OpenMeta[Analyst] software, which is the visual
front-end for the R package (www.r-project.org, Metafor)
[31]. Forest plots were created to depict the estimated DSC
scores from the included studies, along with the overall DSC
score performance. When the 95% CI of the different
subgroup analyses overlapped, no further statistical analysis
was carried out.

The heterogeneity of the included studies was tested with
the Higgins /-test. The Higgins /*-test quantifies inconsisten-
cy between included studies, where a value > 75% indicates
considerable heterogeneity between groups. A low heteroge-
neity corresponds with a Higgins I° between 0 and 40% [28].
Both the meta-analyses of the aggregated groups as the meta-
analyses of the subgroups were performed using a random
effects model, due to an observed high heterogeneity
(Higgins I* > 75%) between included studies [32].

To showcase possible publication bias, a funnel plot was
created by means of Stata (StataCorp. 2019. Stata Statistical
Sofiware: Release 16.: StataCorp LLC.).

Results

Initially, 1094 publications were retrieved through database
searching. An additional ten publications were identified
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through cross-referencing. After removing duplicates, the re-
maining 734 publications were screened. Based on the title
and abstract, 509 papers were excluded. A total of 225 full-
text articles were assessed for eligibility and 42 studies were
included in the systematic review. Ten studies were eligible
for inclusion for the meta-analysis as they provided sufficient
quantitative data (e.g., only these studies provided the DSC
score along with SD for the performance of the MLA) (Fig. 1).
Publications describing the use of (automated) segmentations
to apply MLAs to classify molecular characteristics of glio-
mas (n = 135) were excluded. Fourteen papers were excluded
as they described the use of MLAs on gliomas to perform
texture analyses. Eleven papers did not report the DSC score
and another 11 studies showed unclarities in data reporting.
Contacting the authors of these papers did not result in the
acquisition of the needed data. Five studies did not report
results of internal or external validation steps, whereas an
additional three studies did not report data from the training-
group. Three studies described separate combined features,
instead of a coherent MLA methodology. One study was ex-
cluded due to the inclusion of other brain tumors next to gli-
omas (e.g., metastases) (Fig. 1).

Review of the included studies

Based on the full-text analysis, 42 segmentation studies [13,
17, 33-72] were included for the systematic review, from
which the participant demographics and study characteristics
are depicted in Table 1. The used MLAs are presented in
Table 1 and comprised different types of CNNs [13, 17, 34,
35,3743, 4547, 49-53, 55-57, 60, 61, 63-65, 67] and ran-
dom forest model [68—70], multiple classifier system [33, 44],
and an adaptive superpixel generation algorithm [60]. In ad-
dition, one study used semi-automatic constrained Markov
random field pixel labeling [64], one study used an end-to-
end adversarial neural network [71], and one study used a 3D
supervoxel-based learning method [56].

Thirty-eight studies combined different combinations of
MRI sequences for brain tumor segmentation (Table 1) [13,
17, 3342, 44, 45, 47-57, 59-72]. Only 3 studies used one
MRI sequence for the algorithm to segment [43, 46, 58]. One
conference paper did not report on the used MRI sequences
[56]. Four studies reported not to have used (any part of) the
BraTS datasets [36, 46, 50, 51]. Two of these papers used
original data [46, 51]. The other two papers used either data
from the Cancer Imaging Archive (TCIA) [50] or a combina-
tion of TCIA data and original data [36].

In 36 studies, the ground truth (i.e., segmentations) was
derived from the BraTS dataset [13, 17, 33-36, 3845,
47-49, 52-55, 57-72]. In two of these studies, the researchers
added segmentations of additional original data.
Segmentations were manually annotated by two experienced
professionals independently following the BraTS
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Fig. 1 PRISMA flowchart of systematic literature search

segmentation protocol[54, 64]. In one paper, only original
data with corresponding segmentations were used. These seg-
mentations were made independently by two experienced pro-
fessionals following the BraTS segmentation protocol [51].
Three papers used segmentations which were obtained with-
out adhering to the BraTS segmentation protocol [36, 46, 50].
In one conference paper, the segmentation methodology was
not described [56]. Please note that the ground truth segmen-
tations of BraTS 2015 were first produced by algorithms and
then verified by annotators, whereas the ground truth of
BraTS 2013 fused multiple manual annotations.

The performance of the MLAs, in terms of sensitivity,
specificity, and DSC score, is displayed in Table 1. All studies
used retrospectively collected data. Nine studies focused spe-
cifically on the segmentation of HGGs, whereas seven studies
focused on the segmentation of LGGs. The remaining studies
(n = 31) described the segmentation of gliomas in general
without the subdivision of LGG and HGG. Five of the includ-
ed studies [33, 35, 38, 62, 65] described segmentation of mul-
tiple target conditions (i.e., segmentation of both HGG and
LGG). For these studies, the results of each different target

characteristics (n = 135)

- MLA-models that perform classification of texture features
(n=14)

- missing report of DSC score (n=11)

- unclear description of data (n=11)

- no validation-group (n =5)

- no training-group (n = 3)

- separate features combined, instead of an MLA-model (n = 3)

- not only glioma (n=1)

are displayed in Table 1 as well. All of the included studies
conducted some version of cross-validation on the MLAs;
however, only four studies [35, 36, 51, 64] performed an ex-
ternal validation of performance.

Nine studies [33, 35, 36, 38, 51, 62, 64, 65, 72] described
the segmentation of HGGs in particular, with four studies [35,
36, 51, 64] externally validating the performance of the re-
ported MLAs. Performance evaluation of the included studies
in terms of the validated DSC score ranged from 0.78 to 0.90.
MLA sensitivity ranged from 84 to 85% (n = 3) [33, 51, 64].
Only one study [33] presented the specificity rate (i.e., 98%).

Seven studies [33, 35, 38, 46, 50, 62, 65] described the
segmentation of LGGs. External validation of the MLA was
performed by one study [35]. The validated DSC score for the
included studies ranged from 0.68 to 0.85. Sensitivity was 89%
(n = 2) [33, 46], whereas specificity was 98% (n = 1) [33].

Meta-analysis of the included studies

The aggregated meta-analysis comprised twelve MLAs, de-
scribed in ten individual studies [33, 36, 44, 47, 51, 54, 58, 62,

@ Springer
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Studies Estimate (95% C.I.) .

Amirmoezzi, Y. (model 1) 2019 0.810 (0.788, 0.832) N T

Amirmoezzi, Y. (model 2) 2019  0.800 (0.778, 0.822) —h— i

Choi, Y. 2020 0.780 (0.740, 0.820) = 5

Dvorak, P. 2015 0.810 (0.751, 0.869) - :

Jiang, J. 2013 0.845 (0.807, 0.883) »

Liu, Y. 2018 0.870 (0.856, 0.884) ' ——

Perkuhn, M. 2018 0.860 (0.838, 0.882) —

Soltaninejad, M. 2018 0.840 (0.805, 0.875) -

Wu, Y. 2019 0.849 (0.831, 0.867) — B

Zhao, L. (model 1) 2013 0.835 (0.803, 0.867) —.—

Zhao, L. (model 2) 2013 0.848 (0.817, 0.879) —

Zikic, D. 2012 0.900 (0.844, 0.956) -

Overall (12=8040 % , P< 0.001) 0.837 (0.820, 0.855) <>
r T I T T 1
0.75 0.8 0.85 0.9 0.95

Fig. 2 Forest plot of the included studies that assessed the accuracy of
segmentation of glioma. Legend: DSC, dice similarity coefficient; CI,
confidence interval. Forest plot shows that the performance of the

66, 72], and showed an overall DSC score of 0.84 (95% CI.:
0.82 — 0.86) (Fig. 2). Heterogeneity showed to be 80.4%,
indicating that studies differed significantly (p < 0.001).

For the subgroup analysis of segmentation studies focusing
on HGGs, the results are depicted in Fig. 3. Overall, DSC
score for the five included studies [33, 36, 51, 62, 72] was
0.83 (95% CI: 0.80 — 0.87). The estimated /* heteroge-
neity between groups showed to be 81.9% (p = 0.001).
Two studies [33, 62] focusing on the segmentation of
LGGs were included in another subgroup meta-analysis.
Overall, the DSC score was found to be 0.82 (95% CI:
0.78-0.87) (Fig. 4). The estimated heterogeneity of in-
cluded groups was 83.62% (p = 0.013). Hence, the het-
erogeneity was determined as high for both subgroup
meta-analyses.

Publication bias

Studies included in the funnel plot were the ten studies
that were meta-analyzed (Fig. 5). The funnel plot

Overall DSC score

MLAS to segment gliomas are centered around a DSC of 0.837 with a
95% CI ranging from 0.820 to 0.855

showed an asymmetrical shape, giving an indication
for publication bias among included studies. Besides,
not all studies were plotted within the area under the
curve of the pseudo-95% CI, supporting the indication
of possible publication bias [28].

Discussion

Various MLAs for the automated segmentation of gliomas
were reviewed. Although heterogenous, MLAs showed to
have a good DSC score with no differences between the seg-
mentation of LGG and HGG. However, there were some in-
dications for publication bias within this field of research.
Currently, segmentation of tumor lesions is a subjective
and time-consuming task [58]. By replacing the current man-
ual methods with an automated computer-aided approach, im-
provement of glioma quantification and subsequently
radiomics can be achieved. However, automated segmenta-
tion of gliomas is a challenging task, due to the large variety

Studies Estimate (95% C.I.) !

Amirmoezzi, Y. 2019 0.810 (0.788, 0.832) —.—

Choi, Y. 2020 0.780 (0.740, 0.820) ' .

Perkuhn, M. 2018 0.860 (0.838, 0.882) —._

Zhao, L. 2013 0.835 (0.803, 0.867) —

Zikic, D. 2012 0.900 (0.844, 0.956) »

Overall (1*2=81.93 %, P<0.001) 0.834 (0.802, 0.867) —_—
T T . T T 1
0.75 0.8 0.85 0.9 0.95

Fig. 3 Forest plot of the included studies that assessed the accuracy of
segmentation of high-grade glioma. Legend: DSC, dice similarity
coefficient; CI, confidence interval. Forest plot shows that the

Overall DSC score

performance of the MLAs to segment HGGs are centered around a
DSC of 0.834 with a 95% CI ranging from 0.802 to 0.867

@ Springer
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Studies Estimate (95% C.I.)

Amirmoezzi, Y. 2019 0.800 (0.778, 0.822)

Zhao, L. 2013 0.848 (0.817, 0.879)

Overall (1*2=8362 % , P=0.013) 0.823 (0.776, 0.870)

T
0.78

Fig. 4 Forest plot of the included studies that assessed the accuracy of
segmentation of low-grade glioma. Legend: DSC, dice similarity
coefficient; CI, confidence interval. Forest plot shows that the

of morphological tumor characteristics among patients [11].
As HGGs usually show more heterogeneous MRI character-
istics, their automated segmentation could be expected to be
more challenging compared to LGGs. Furthermore, the low
proliferative state of LGGs likely results in lower perfusion
and higher diffusion values in affected tissue [73, 74]. No
performance difference was observed between the segmenta-
tion of HGGs and LGGs. Given the differences between
HGGs and LGGs, it was expected that significant differences
would arise in automatic segmentation tasks. Nevertheless,
the ground truth segmentations were based on manual delin-
eation by a (neuro)radiologist, indicating that the performance
of automatic segmentation could only be as good as the
ground truth segmentations. In addition, the ground truth of
BraTS 2015 was first produced by algorithms and then veri-
fied by annotators, whereas the ground truth of BraTS 2013
fused multiple manual annotations.

Although MLAs performing automated segmentation
show quite promising results (overall DSC score of 0.84;
95% CI: 0.82—0.86), there is still no wide acceptance and
implementation of these methodologies in daily clinical prac-
tice. One of the explanations for this can be found in the
different MLA methodologies; different MLA approaches
and their exact details have a significant impact on the

o
e
s L
2= e o °
Q.)
S
3 o |o
5 .
DY . o
°
8 °
T T T T
.75 8 .85 £9)
DSC score
Pseudo 95% Cl @ Studies

Estimated effect

Fig. 5 Funnel plot of the included studies. Legend: DSC, dice similarity
coefficient; CI, confidence interval. DSC score was displayed on the
horizontal axis as the effect size; SE was plotted on the vertical axis of
the funnel plot

@ Springer

T T T 1
08 082 0.84 0.86
Overall DSC score

performance of the MLAs to segment LGGs are centered around a
DSC of 0.823 with a 95% CI ranging from 0.776 to 0.870

outcomes, even when applied to the same dataset. For exam-
ple, in the BraTS 2019 challenge, the top three with regard to
the segmentation task comprised a two-stage cascaded U-Net
[75], a deep convolution neural network [76], and an ensem-
ble of 3D-to-2D CNNs [77].

Another reason may be the absence of standardized proce-
dures on how to properly use these segmentation systems.
There are substantial differences between advanced systems
that offer computer-aided segmentation and the current stan-
dards for neuroradiologists, which impedes the integration of
MLA methods. CE-certified software is limitedly available in
clinical practice, which is one of the reasons for the impedi-
ment. Also, the purpose for the use of MLAs varies; where
radiologists mainly use these techniques for follow-up, neuro-
surgeons mostly use MLAs for therapeutic planning. In addi-
tion, direct integration into the neuroradiologist’s daily prac-
tice without extra time spent on the task will be needed to
make automatic glioma segmentation feasible. Moreover,
the current automated segmentations still need to be super-
vised by trained observers. It seems more likely that imple-
mentation of MLAs in neuroradiology will lead to an interac-
tion between doctor and computer so that neuroradiologists
will utilize more advanced technologies in the establishment
of diagnoses [78]. The future implementation of MLAs in the
diagnosis of glioma is of great clinical relevance, as these
algorithms can support the non-invasive analysis of tumor
characteristics without the need of histopathological tissue
assessment. More specifically, automatic segmentations form
the basis of further sophisticated analyses to clarify meaning-
ful and reliable associations between neuroimaging features
and survival rate [79, 80]. In conclusion, as automated seg-
mentation of glioma is considered to be the first step in this
process, the implementation of MLAs holds great potential for
the future of neuroradiology.

Various publications were found with regard to the auto-
mated segmentation of gliomas in the post-operative setting
[81-84]. Quantitative metrics are believed to be needed for
therapy guidance, risk stratification, and outcome prognosti-
cation in the post-operative setting. MLAs could also repre-
sent a potential solution for automated quantitative measure-
ments of the burden of disease in the post-operative setting. As
shown in Table 2, however, the DSC scores of these studies
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are lower as compared to the DSC scores of the pre-operative
MLA-based segmentations [81-84]. An explanation for these
differences in performance could be the post-surgical changes
of the brain parenchyma and the presence of air and blood
products in the post-operative setting. Together these factors
have been reported to affect the performance of MLAs [81].

Several methodological shortcomings of the present meta-
analysis should be considered. First, various studies were ex-
cluded for the quantitative synthesis, due to missing data.
Besides, heterogeneity of all analyses was considerably high,
probably caused by technical variances of different MLA
methodologies for segmentation. Lastly, only four out of 42
studies performed an out-of-sample external validation, em-
phasizing the importance of external validation to assess the
robustness. It is probable that publication bias was present as
there is no interest in the publication of poorly performing
MLA:s. In addition, differences in MR sequence input, ground
truth, and other variables could play a role with regard to the
outcomes, although this was considered a minor limitation as
the source data across studies was similar in most studies.

Future gains of research on this topic may include an en-
semble approach, as this might significantly boost the perfor-
mance of segmentation. Thus, in addition, to focus current
research on training individual segmentation systems, it may
be interesting to investigate the fusion of multiple systems as
well (i.e., segmentation of different imaging features in order to
obtain different imaging biomarkers) [11]. Lastly, all included
studies used retrospectively collected data, most of which using
data from the BRATS databases. In order to further validate the
performance of segmentation systems in clinical practice,
larger-scale and external validated studies are preferred. In ad-
dition, data availability and providing online tools or down-
loadable scripts of the used MLAs could enhance future devel-
opments within this field of research significantly.

score code
openly
available?

SN SP DSC Data/
(+
SD)

2D Subgroups

Vs.
3D

deep features together
together via a standard
back-propagation.

to produce the
segmentation result.

The whole network

combined these two
was optimized

Summary of DLA

Reference
segmentations
methods

MR Sequences

Dataset

Conclusion

Target condition

In this study, a systematic review and meta-analysis of differ-
ent studies using MLA for glioma segmentation shows good
performance. However, external validation is often not carried
out, which should be regarded as a significant limitation in this
field of research. Therefore, further verification of the accura-
cy of these models is recommended. It is crucial that quality
guidelines are followed when reporting on MLAs, which in-
cludes validation on an external test set.

validation

Test set

age
(years)

N Mean M-F N External

Training set
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