
cancers

Article

Clinicopathologic and Imaging Features of
Non-Small-Cell Lung Cancer with MET Exon
14 Skipping Mutations

Subba R. Digumarthy 1,*, Dexter P. Mendoza 1, Eric W. Zhang 1, Jochen K. Lennerz 2 and
Rebecca S. Heist 3

1 Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
dpmendoza@mgh.harvard.edu (D.P.M.); ewzhang@mgh.harvard.edu (E.W.Z.)

2 Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston,
MA 02114, USA; JLennerz@partners.org

3 Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General
Hospital, Boston, MA 02114, USA; RHeist@partners.org

* Correspondence: sdigumarthy@mgh.harvard.edu; Tel.: +1-617-724-4254; Fax: +1-617-724-0046

Received: 27 November 2019; Accepted: 12 December 2019; Published: 17 December 2019 ����������
�������

Abstract: MET exon 14 (METex14) skipping mutations are an emerging potentially targetable
oncogenic driver mutation in non-small-cell lung cancer (NSCLC). The imaging features and patterns
of metastasis of NSCLC with primary METex14 skipping mutations (METex14-mutated NSCLC) are
not well described. Our goal was to determine the clinicopathologic and imaging features that may
suggest the presence of METex14 skipping mutations in NSCLC. This IRB-approved retrospective
study included NSCLC patients with primary METex14 skipping mutations and pre-treatment
imaging data between January 2013 and December 2018. The clinicopathologic characteristics were
extracted from electronic medical records. The imaging features of the primary tumor and metastases
were analyzed by two thoracic radiologists. In total, 84 patients with METex14-mutated NSCLC
(mean age = 71.4 ± 10 years; F = 52, 61.9%, M = 32, 38.1%; smokers = 47, 56.0%, nonsmokers = 37,
44.0%) were included in the study. Most tumors were adenocarcinoma (72; 85.7%) and presented
as masses (53/84; 63.1%) that were peripheral in location (62/84; 73.8%). More than one in five
cancers were multifocal (19/84; 22.6%). Most patients with metastatic disease had only extrathoracic
metastases (23/34; 67.6%). Fewer patients had both extrathoracic and intrathoracic metastases (10/34;
29.4%), and one patient had only intrathoracic metastases (1/34, 2.9%). The most common metastatic
sites were the bones (14/34; 41.2%), the brain (7/34; 20.6%), and the adrenal glands (7/34; 20.6%). Four
of the 34 patients (11.8%) had metastases only at a single site. METex14-mutated NSCLC has distinct
clinicopathologic and radiologic features.
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1. Introduction

Targeted therapy using small-molecule tyrosine kinase inhibitors (TKIs) has become the standard
of treatment in non-small-cell lung cancer (NSCLC) harboring specific driver alterations in the
epidermal growth factor (EGFR), anaplastic lymphoma kinase (ALK), rearrangement of the receptor
tyrosine kinase 1 (ROS1), and V-raf murine sarcoma viral oncogene homolog B (BRAF) genes [1,2],
demonstrating improved survival and quality-of-life benefits [3–13]. However, the driver alterations of
a majority of lung adenocarcinomas are unknown [14–17], highlighting the importance of identifying
new targetable mutations. Mesenchymal–epithelial transition (MET) gene exon 14 skipping has
emerged as a promising oncogenic target in lung cancer.
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The MET proto-oncogene is located on chromosome 7q21-q31 and encodes a receptor tyrosine
kinase implicated in RAS/MAPK, Rac/Rho, and PI3K/Akt signaling pathways, mediating cellular
growth, development, anti-apoptosis, and metastasis [18–20]. First described in the 1980s [21,22], MET
amplification and overexpression have been found in a wide variety of malignancies, including colon,
breast, liver, gastric cancers, and sarcomas [23,24]. Overexpression of MET has also been implicated in
25–70% of all NSCLC [14] and as an acquired resistance mechanism in EGFR-mutated NSCLC [25].

MET exon 14 (METex14) skipping is found in approximately 3–4% of NSCLC [14,26] and represents
a unique subset of all MET mutations, whereby DNA mutations affect RNA splicing sites and result in
the loss of the CBL-E3 ligase binding site and sustained activation of the MET receptor [27]. Importantly,
METex14 skipping and other NSCLC driver alterations, including EGFR, ALK, and ROS1 mutations,
are mutually exclusive [26,28]. Furthermore, METex14 skipping has also demonstrated responsiveness
to targeted MET therapies, making it currently the most predictive biomarker of the sensitivity to MET
TKIs [29–31]. Small-molecule TKIs, such as crizotinib and cabozantinib, have shown promise in the
treatment of NSCLC harboring METex14 mutations, in various case reports [29,30,32]. In addition,
multiple clinical trials currently underway, investigating novel MET TKIs such as tepotinib and
capmatinib, have demonstrated promising preliminary results [33–38].

Several studies have investigated the imaging features that may predict the presence of EGFR,
ALK, ROS1, and other potentially targetable mutations in NSCLC [39–48]. To our knowledge, however,
no study has systematically assessed the radiologic features of NSCLC harboring primary METex14
skipping (METex14-mutated NSCLC). The goal of this study was to determine the clinicopathologic
and radiologic features that may suggest the presence of METex14 skipping in NSCLC.

2. Results

2.1. Clinicopathologic Characteristics

The clinicopathologic characteristics for patients with METex14-mutated NSCLC are summarized
in Table 1. Most patients were female (52/84; 61.9%), and more than half were either previous or current
smokers (47/84; 56%). In our cohort, there was equal distribution of stage 1 (34/84; 40.5%) and stage 4
(34/84; 40.5%) disease. A vast majority of the tumors were adenocarcinoma (72/84; 85.7%), followed by
squamous (6/84; 7.1%) and sarcomatoid (3/84; 3.6%) carcinomas.

Table 1. Clinicopathologic characteristics of patients with METex14- NSCLC (n = 84).

Clinical Characteristics

Age
Mean, SD (in years) 71.4 10
Median, range (in years) 72.5 43–89
Sex n %
F (%) 52 61.9
M (%) 32 38.1
Smoking status
Never 37 44.0
Current/Previous 47 56.0
Stage
I 34 40.5
II 9 10.7
IIIA 5 6.0
IIIB 2 2.4
IV 34 40.5
Histology
Adenocarcinoma 72 85.7
Squamous 6 7.1
Sarcomatoid carcinoma 3 3.6
Others 3 3.6
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2.2. Imaging Features of the Primary Tumor

The imaging features of the primary tumor in METex14-mutated NSCLC are summarized in Table 2.
Most tumors presented as masses measuring 3 cm or more (53/84; 63.1%) and were predominantly
located in the upper lobes (59/84; 70.2%) at the periphery (62/84; 73.8%). Approximately one-third of
the tumors were either part-solid (21/84; 25.0%) or pure ground-glass (6/84; 7.1%), while the rest were
solid (57/84; 67.9%). Approximately one in five of the patients had multifocal tumors (19/84; 22.6%).

Table 2. Imaging features of the primary tumor in METex14-mutated NSCLC (n = 84).

Tumor Imaging Features

Size
Mean, SD (in mm) 40.8 21.4
Median, range (in mm) 34.5 10–109
Size n %
Mass (>3 cm) 53 63.1
Nodule (≤3 cm) 31 36.9
Lobar location
RUL 38 45.2
RML 4 4.8
RLL 10 11.9
LUL 17 20.2
LLL 15 17.9
Lobar location
Upper/Middle 59 70.2
Lower 25 29.8
Axial location
Peripheral 62 73.8
Central 22 26.2
Density
Solid 57 67.9
Part-solid 21 25.0
Pure ground-glass 6 7.1
Margin
Smooth 9 10.7
Lobulated 53 63.1
Spiculated 22 26.2
Other Tumor features
Air bronchograms 3 3.6
Cavitation 4 4.8
Cystic component 4 4.8
Calcification 0 0.0
Multifocal 19 22.6

RUL: right upper lobe; RML: right middle lobe; RLL: right lower lobe; LUL: left upper lobe; LLL: left lower lobe.

2.3. Metastatic Patterns

In patients with metastatic METex14-mutated NSCLC, there was a higher propensity for
extrathoracic metastases (28/34; 82.4%) compared to intrathoracic metastases (13/34; 38.2%).
Most patients only had extrathoracic metastases (23/34; 67.6%), while only one (2.9%) had only
intrathoracic metastases, and the rest had both intrathoracic and extrathoracic metastases (10/34; 29.4%).
The most common metastatic sites were the bones (14/34; 41.2%), the brain (7/34; 20.6%), and the
adrenal glands (7/34; 20.6%). Four of the 34 patients (11.8%) with metastatic disease had a single site of
metastasis. Patterns of lymphadenopathy and metastases are presented on Table 3.
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Table 3. Patterns of lymphadenopathy and metastases in patients with stage IV METex14-mutated
NSCLC (n = 34).

Metastatic Site n %

Nodal metastasis
Ipsilateral hilar 29 85.3
Ipsilateral mediastinal 19 55.9
Contralateral hilar/mediastinal 12 35.3
Supraclavicular 7 20.6
Intrathoracic metastasis 13 38.2
Lung 5 14.7
Lymphangitic carcinomatosis 4 11.8
Pleural 10 29.4
Pericardial 2 5.9
Extrathoracic Metastasis 28 82.4
Adrenal 7 20.6
Liver 3 8.8
Gastric 2 5.9
Splenic 0 0.0
Bone (Lytic) 14 41.2
Brain 7 20.6
Soft tissue 1 2.9
Distant lymph node 4 11.8
Metastatic Distribution
Intrathoracic only 1 2.9
Extrathoracic only 23 67.6
Intra- and extrathoracic 10 29.4
Number of sites
One 4 11.8
Two or more 30 88.2

3. Discussion

We present the first systematic assessment of the imaging features and patterns of metastasis
in NSCLC with METex14 skipping mutations. We found that METex14-mutated NSCLC tumors
commonly present as peripheral masses and that a considerable proportion of patients had multifocal
lung cancer at presentation. In addition, among patients with metastatic disease, extrathoracic
metastases were common, with the most common sites being the bones, brain, and adrenal glands.

In our cohort, the average age of 71.4 years was higher than those previously reported for other
targetable driver mutations [46,48,49]. This advanced age was reported in another study, which found
a similar median age of 72.5 years [26]. In our cohort, the mutation did not appear to have a gender
predilection and affected smokers and nonsmokers nearly evenly, in contrast to EGFR and ALK
mutations that are more common in never and light smokers. From a pathological standpoint, a vast
majority of the tumors were adenocarcinoma. Although still rare, there was a relatively increased
frequency of sarcomatoid carcinoma (3.6%; Figure 1). While METex14 alterations have been described
in up to 4% of lung cancers, they can be seen in approximately one-third of sarcomatoid carcinoma,
which has generally been associated with a poorer prognosis [50].
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Figure 1. Oligometastatic NSCLC with sarcomatoid histology in a 70-year-old male former smoker. 
(A) Axial computed tomography (CT) image shows a large solid mass in the right upper lobe (A, 
arrow). (B) Coronal CT image shows the right upper lobe mass (B, arrow) and a right adrenal nodule 
(B, arrowhead). Biopsies and molecular testing of the right upper lobe mass and adrenal metastasis 
confirmed the presence of a METex14 skipping mutation. 

With respect to imaging features, in our cohort, most of the primary METex14-mutated tumors 
were solid masses that were typically located in the periphery of the upper lobes. Air bronchograms, 
cavitation, and cystic changes were seen in less than 5% of the tumors. These features are not unique 
to METex14-mutated NSCLC and have been described in other mutated NSCLC, including those 
with ALK or ROS1 rearrangements [42,45,48,51]. This, however, is in contrast to EGFR-mutated 
NSCLC, reported to have increased incidence of subsolid and pure ground-glass lesions and 
increased frequency air bronchogram in the tumor [41]. For instance, our group has previously 
reported the presence of air bronchograms in up to 28% of EGFR-mutated NSCLC tumors [46], in 
contrast to their presence in less than 4% of METex14-mutated tumors in our current cohort. 

While there was no primary tumor imaging feature unique to METex14-mutated NSCLC in our 
cohort, there was an increased frequency of multifocality, with more than one in five patients having 
multifocal adenocarcinoma at the time of initial presentation (Figure 2). This incidence was higher 
than the prevalence of ALK and concomitant ALK and EGFR alterations in multifocal lung 
adenocarcinomas [52]. It is possible that the multifocality reflects multiple synchronous 
adenocarcinomas with distinct splice site mutations, a finding which has been previously described 
in the literature for METex14-mutated primary lung adenocarcinomas [53]. Multifocal 
adenocarcinomas at presentation may help indicate the possibility of METex14-mutated NSCLC and 
lead to more rapid triaging for molecular screening. These synchronous lung adenocarcinomas are 
increasingly being recognized and can be a diagnostic and management challenge [52]. Detection of 
these potentially targetable mutations in multifocal NSCLC may prove to be beneficial when these 
malignancies progress and metastasize. 

Figure 1. Oligometastatic NSCLC with sarcomatoid histology in a 70-year-old male former smoker.
(A) Axial computed tomography (CT) image shows a large solid mass in the right upper lobe (A, arrow).
(B) Coronal CT image shows the right upper lobe mass (B, arrow) and a right adrenal nodule
(B, arrowhead). Biopsies and molecular testing of the right upper lobe mass and adrenal metastasis
confirmed the presence of a METex14 skipping mutation.

With respect to imaging features, in our cohort, most of the primary METex14-mutated tumors
were solid masses that were typically located in the periphery of the upper lobes. Air bronchograms,
cavitation, and cystic changes were seen in less than 5% of the tumors. These features are not unique
to METex14-mutated NSCLC and have been described in other mutated NSCLC, including those with
ALK or ROS1 rearrangements [42,45,48,51]. This, however, is in contrast to EGFR-mutated NSCLC,
reported to have increased incidence of subsolid and pure ground-glass lesions and increased frequency
air bronchogram in the tumor [41]. For instance, our group has previously reported the presence of air
bronchograms in up to 28% of EGFR-mutated NSCLC tumors [46], in contrast to their presence in less
than 4% of METex14-mutated tumors in our current cohort.

While there was no primary tumor imaging feature unique to METex14-mutated NSCLC in
our cohort, there was an increased frequency of multifocality, with more than one in five patients
having multifocal adenocarcinoma at the time of initial presentation (Figure 2). This incidence
was higher than the prevalence of ALK and concomitant ALK and EGFR alterations in multifocal
lung adenocarcinomas [52]. It is possible that the multifocality reflects multiple synchronous
adenocarcinomas with distinct splice site mutations, a finding which has been previously described in
the literature for METex14-mutated primary lung adenocarcinomas [53]. Multifocal adenocarcinomas
at presentation may help indicate the possibility of METex14-mutated NSCLC and lead to more rapid
triaging for molecular screening. These synchronous lung adenocarcinomas are increasingly being
recognized and can be a diagnostic and management challenge [52]. Detection of these potentially
targetable mutations in multifocal NSCLC may prove to be beneficial when these malignancies progress
and metastasize.
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Figure 2. Multifocal lung adenocarcinomas in an 80-year-old female former smoker. (A) Axial CT 
through the upper lobes shows a part-cystic, part-solid nodule in the right upper lobe (A, arrow) and 
a faint ground-glass nodule in the left upper lobe (A, arrowhead). (B) Axial CT slice through the lower 
lobes shows an additional ground-glass nodule in the left lower lobe (B, arrowhead). Findings are 
consistent with multifocal adenocarcinomas. The patient went on to have a right upper lobectomy. 
Pathology and molecular testing revealed an adenocarcinoma with METex14 skipping mutation. 

With respect to metastatic patterns, in our cohort, there were twice as many patients who had 
extrathoracic metastases compared to those with intrathoracic metastases. Most patients also had 
only extrathoracic metastases without intrathoracic metastases, while only one patient had only 
intrathoracic metastases without extrathoracic metastases. The most common sites were the bones, 
brain, and adrenal glands. This pattern of metastasis is in contrast to that of EGFR-mutated and ALK-
rearranged NSCLC, which have been associated with an increased propensity for intrathoracic 
metastases. For example, in our group’s previous work, we reported a frequency of 69% for lung 
metastases in patients with EGFR-mutated NSCLC, which tended to be diffuse and miliary-like when 
present [46]. In comparison, the frequency of lung metastases in our cohort of patients with METex14-
mutated NSCLC was less than 15%. Similarly, we reported frequencies of lymphangitic 
carcinomatosis of 37% in patients with ALK-rearranged NSCLC [45] and of 42% in those with ROS1-
rearranged NSCLC [48], in comparison to less than 12% in our current cohort.  

The high propensity for brain metastases is a feature that has also been reported for tumors with 
other potentially targetable mutations, including EGFR, ALK, ROS1, and RET [54–57]. An increased 
frequency of brain metastases has also been reported for METex14-mutated NSCLC [58]. In our 
cohort, 20% of patients with metastatic disease had brain metastases at the time of initial diagnosis. 
In our group’s previous works, we reported frequencies of brain metastases of 40% in patients with 
EGFR mutations [46], 24% in those with ALK rearrangements [45], 10% in those with BRAF mutations 
[44], and 9% in those with ROS1 rearrangements [48]. The high incidence of brain metastases in these 
mutational subgroups highlights the need for agents that can reliably penetrate the blood–brain 
barrier. 

Notably, there were four patients (11.8%) who only had one site of metastasis (i.e., 
oligometastatic disease). Three of the patients had only adrenal metastases (Figure 1), while one 
patient only had a soft tissue metastasis. Although a standardized, unified definition for 
oligometastatic NSCLC has yet to be agreed on, several studies have reported improved outcomes in 
this subset of patients with limited metastatic burden when subjected to radical treatment with 
curative intent [59,60]. The true incidence of oligometastatic NSCLC is unknown, which is largely 
due to the lack of a precise definition. The relatively high incidence of oligometastatic disease in our 
cohort may partly be a result of referral bias, although further study as to the possible association 
with METex14 skipping mutations should be considered. To date, no specific molecular genotype 
has been associated with oligometastatic NSCLC. 

Figure 2. Multifocal lung adenocarcinomas in an 80-year-old female former smoker. (A) Axial CT
through the upper lobes shows a part-cystic, part-solid nodule in the right upper lobe (A, arrow) and a
faint ground-glass nodule in the left upper lobe (A, arrowhead). (B) Axial CT slice through the lower
lobes shows an additional ground-glass nodule in the left lower lobe (B, arrowhead). Findings are
consistent with multifocal adenocarcinomas. The patient went on to have a right upper lobectomy.
Pathology and molecular testing revealed an adenocarcinoma with METex14 skipping mutation.

With respect to metastatic patterns, in our cohort, there were twice as many patients who had
extrathoracic metastases compared to those with intrathoracic metastases. Most patients also had only
extrathoracic metastases without intrathoracic metastases, while only one patient had only intrathoracic
metastases without extrathoracic metastases. The most common sites were the bones, brain, and adrenal
glands. This pattern of metastasis is in contrast to that of EGFR-mutated and ALK-rearranged NSCLC,
which have been associated with an increased propensity for intrathoracic metastases. For example,
in our group’s previous work, we reported a frequency of 69% for lung metastases in patients with
EGFR-mutated NSCLC, which tended to be diffuse and miliary-like when present [46]. In comparison,
the frequency of lung metastases in our cohort of patients with METex14-mutated NSCLC was less
than 15%. Similarly, we reported frequencies of lymphangitic carcinomatosis of 37% in patients with
ALK-rearranged NSCLC [45] and of 42% in those with ROS1-rearranged NSCLC [48], in comparison to
less than 12% in our current cohort.

The high propensity for brain metastases is a feature that has also been reported for tumors with
other potentially targetable mutations, including EGFR, ALK, ROS1, and RET [54–57]. An increased
frequency of brain metastases has also been reported for METex14-mutated NSCLC [58]. In our cohort,
20% of patients with metastatic disease had brain metastases at the time of initial diagnosis. In our
group’s previous works, we reported frequencies of brain metastases of 40% in patients with EGFR
mutations [46], 24% in those with ALK rearrangements [45], 10% in those with BRAF mutations [44],
and 9% in those with ROS1 rearrangements [48]. The high incidence of brain metastases in these
mutational subgroups highlights the need for agents that can reliably penetrate the blood–brain barrier.

Notably, there were four patients (11.8%) who only had one site of metastasis (i.e., oligometastatic
disease). Three of the patients had only adrenal metastases (Figure 1), while one patient only had a
soft tissue metastasis. Although a standardized, unified definition for oligometastatic NSCLC has
yet to be agreed on, several studies have reported improved outcomes in this subset of patients with
limited metastatic burden when subjected to radical treatment with curative intent [59,60]. The true
incidence of oligometastatic NSCLC is unknown, which is largely due to the lack of a precise definition.
The relatively high incidence of oligometastatic disease in our cohort may partly be a result of referral
bias, although further study as to the possible association with METex14 skipping mutations should be
considered. To date, no specific molecular genotype has been associated with oligometastatic NSCLC.

Our study has several limitations. Although this is the largest study to date to assess the
imaging features and metastatic patterns in METex14-mutated NSCLC, our cohort was still relatively
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small due to the rarity of METex14 skipping mutations in NSCLC overall. The data were collected
retrospectively from a single institution, predisposing to selection and referral bias and potentially
limiting its generalizability to larger populations. Despite these limitations, our findings add to the
growing understanding of the clinical and radiologic features of METex14-mutated NSCLC.

4. Materials and Methods

4.1. Patient Identification and Selection

Under an institutional review board-approved protocol (Partners Human Research protocol
number 2019P000198), we identified patients who presented to our thoracic medical oncology clinic
between January 2013 and December 2018, who met the following criteria: (1) confirmed non-small-cell
lung cancer by histology; (2) confirmed METex14 skipping found in the primary tumor or a metastatic
lesion; and (3) availability of pre-treatment imaging data for review, obtained either at our institution
or at another institution, with the images uploaded into our picture-archiving and communication
system (AGFA Impax 6, Mortsel, Belgium). We collected clinicopathologic data, including age, sex,
smoking history, tumor histology, and stage of disease at the time of diagnosis.

4.2. Molecular Testing

Molecular testing was performed on tissue samples obtained from either the primary lung tumor
or a metastatic lesion. METex14-skipping status was determined using anchored multiplex PCR (AMP)
based on next-generation sequencing.

The laboratory-developed test was performed in a Clinical Laboratory Improvement Amendments
(CLIA)-certified laboratory, and its performance was validated for samples showing tumor purity of
5% or higher.

4.3. Imaging Protocol and Image Analysis

All patients had imaging studies performed prior to the initiation of cancer-specific treatment.
All computed tomography (CT) examinations were performed on multidetector CTs utilizing helical
acquisition with automatic exposure control or fixed mA and tube potentials of up to 120 kV.
Unless contraindicated, iodinated intravenous contrast was routinely administered. Positon emission
tomography (PET) images when available (n = 53/84) was also reviewed.

CT images closest to diagnosis and prior to any anti-cancer treatment were selected for review.
An experienced thoracic radiologist and a fellow in thoracic imaging (SRD and DM) reviewed the
images concurrently, and imaging findings were determined and recorded by consensus.

CT features of the primary lung tumor, when identifiable, and patterns of metastases were assessed.
The features of the primary tumor that were assessed were: size, density (solid, mixed, ground-glass),
location (lobar location and central versus peripheral), and the presence of cavitation, cystic changes,
air bronchograms, or calcifications. The tumors involving or at the lobar bronchus were considered
central tumors.

The lymph nodes that measured greater than 10 mm in the short axis and/or with increased
fluorodeoxyglucose uptake in PET imaging were considered malignant. The presence of metastases in
the lungs, pleura, bones, brain, liver, adrenal glands, and other visceral organs was also documented
following a review of other imaging studies, including a CT of the abdomen and pelvis, a CT or
magnetic resonance imaging (MRI) of the brain, and a whole-body PET. Note was also made of
pulmonary lymphangitic carcinomatosis. When available, imaging findings were also correlated with
surgical pathology to verify nodal and distant metastases.

5. Conclusions

NSCLC with primary METex14 skipping mutations more commonly affected older individuals,
without preponderance with respect to sex or smoking status. The primary tumors in NSCLC with
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primary METex14 skipping mutations tended to present as solid, peripheral masses. While the
tumors harboring these mutations mostly have adenocarcinoma histology, there was an increased
frequency of tumors with sarcomatoid features. There was also a high frequency of multifocality and
extrathoracic metastases, commonly affecting bones, brain, and adrenal glands. A combination of
these clinicopathologic and imaging features may suggest the presence of METex14-mutated NSCLC
and help identify the subset of patients who may benefit from further molecular genotyping.
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