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Sleep is highly conserved across evolution, suggesting vital biological functions
that are yet to be fully understood. Animals and humans experiencing partial
sleep restriction usually exhibit detrimental physiological responses, while
total and prolonged sleep loss could lead to death. The perturbation of sleep
homeostasis is usually accompanied by an increase in hypothalamic–
pituitary–adrenal (HPA) axis activity, leading to a rise in circulating levels of
stress hormones (e.g. cortisol in humans, corticosterone in rodents). Such hor-
mones follow a circadian release pattern under undisturbed conditions and
participate in the regulation of sleep. The investigation of the consequences
of sleep deprivation, from molecular changes to behavioural alterations, has
been used to study the fundamental functions of sleep. However, the reciprocal
relationship between sleep and the activity of theHPAaxis is problematicwhen
investigating sleep using traditional sleep-deprivation protocols that can
induce stress per se. This is especially true in studies using rodents in which
sleep deprivation is achieved by exogenous, and potentially stressful,
sensory–motor stimulations that can undoubtedly confuse their conclusions.
While more research is needed to explore the mechanisms underlying sleep
loss and health, avoiding stress as a confounding factor in sleep-deprivation
studies is therefore crucial. This review examines the evidence of the intricate
links between sleep and stress in the context of experimental sleep deprivation,
and proposes a more sophisticated research framework for sleep-deprivation
procedures that could benefit from recent progress in biotechnological tools
for precise neuromodulation, such as chemogenetics and optogenetics, as
well as improved automated real-time sleep-scoring algorithms.
1. What is sleep?
Sleep in mammals, as defined by its behavioural and physiological features,
includes two distinct global activity states: rapid eye movement (REM) sleep
and non-REM (NREM) sleep. These two states are typically characterized by
electrophysiological measures including electroencephalography (EEG) and elec-
tromyography (EMG), as well as electrooculography in humans. NREM sleep,
which is further divided into four substages of increasing depth in humans, is
characterized by high-amplitude, low-frequency EEG oscillations and behavioural
quiescence with a relaxed muscle tone. Apart from the typical ocular movements,
REM sleep (or paradoxical sleep) is characterized by low-amplitude, high-
frequency EEG oscillation in association with muscle atonia. NREM and REM
sleep alternate in cycles, with NREM sleep preceding REM sleep episodes. In
the mammalian brain, the sleep–wake cycle is orchestrated by a complex network
of discrete neuronal populations that induce sleep or wakefulness via promoting
or suppressing effects [1]. Nevertheless, some aspects of sleep homeostasis are
different between humans and rodents. Human sleep ismonophasic and typically
consists of a single block of three to five cycles of sleep stages, usually happening
during the night [1]. Despite variations in the daily duration of sleep and temporal
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pattern of vigilance states across laboratory rodents [2], sleep
in these animals is generally polyphasic with repeated
sleep episodes throughout the 24 h light–dark cycle [1]. In
addition, commonly used laboratory rodents are nocturnal
and preponderantly sleep during the light period [1].
publishing.org/journal/rsfs
Interface

Focus
10:20190092
2. Why do we need to sleep?
If the functions of sleep remain blurry, it has been proposed
to play a key role in optimizing the conservation and utiliz-
ation of energy by reallocating energy reserves to essential
biological processes such as cellular maintenance, anabolism,
immune function and neural plasticity rather than wake-
related features such as vigilance, foraging and reproduction
[3]. Furthermore, by overcoming the energy deficits accumu-
lated during wakefulness and by preparing the organism for
the next wake-related energy expenditure, sleep may further
support fundamental mechanisms such as brain waste clear-
ance via the glymphatic system [4] or daily stress resistance
[5]. The disconnection from the environment during sleep
has also been proposed to be critical for the homeostatic plas-
ticity of the brain. The synaptic homeostasis hypothesis
suggests that the potentiation of synaptic connections through-
out the brain that happens during wakefulness, supporting
learning functions but also increasing the demand for energy
and cellular supplies, is then normalized during sleep that
can restore cellular homeostasis [6]. This re-normalization of
synaptic strength could favourmemoryacquisition, consolida-
tion and integration during sleep [6]. These interrelated
phenomena have been described as vital for the organism,
both ontogenetically and phylogenetically [7].

Indeed, the evidence that sleep serves essential functions is
founded on several fundamental observations. First, sleep was
spared by evolutionary pressures, indicating a crucial function,
or functions, that cannot be easily circumvented [8]. Second,
extended wakefulness beyond the normal sleep period
necessarily leads to compensatory sleep rebound, underlying
regulatory homeostatic mechanisms and the absolute need for
a minimum amount of sleep [8]. Third, sleep loss has many
harmful consequences for the organism, and, to date, investi-
gations on the functions of sleep have mainly relied on
studies of the consequences of sleep deprivation [8–10]. Finally,
sleep is ubiquitous in the animal kingdom if one defines sleep to
be simply a state of reduced activity, and/or reduced respon-
siveness to external stimuli [8]. However, in the absence of
electrophysiological signs resembling those of mammals and
birds, sleep in some animals such as reptiles, amphibians, fish
and invertebrates may serve a function that is quite distinct
from that served by human or mammalian sleep [8].

The noxious consequences of the lack of sleep have been
known for a long time and have been used as a form of torture
throughout history. However, the first reported experimental
studies of sleep deprivation, especially the total absence of
sleep, were published at the end the nineteenth century [11].
Conducted on dogs kept awake by constant activity or by
using a bespoke cage keeping the animals awake without
forced locomotion, they showed that total sleep loss led to ‘psy-
chic exhaustion’, severe brain degenerations and was lethal
after 4–17 days. The second half of the nineteenth century
also saw the emergence of clinical observations revealing the
adverse effects of prolonged sleep deprivation and insomnia,
provoking severe psychic disturbances such as delirium,
hallucinations and emotional disruption [11,12]. Later studies
on the effects of extended sleep loss in healthy people
documentedmore detailed sleep-deprivation-induced psycho-
pathological symptoms, including perceptual distortions,
mood changes and psychosis [12].

These early studies shed light on the multiple deleterious
effects of sleep loss, confirming the vital aspect of sleep and
triggering the emergence of a growing interest in sleep in the
scientific community. After the characterization of the homeo-
static mechanisms underlying the stress response by Hans
Selye in 1936 [13], some studies started to investigate the mul-
tiple facets of sleep, and in particular the consequences of sleep
loss in the context of the so-called stress and coping processes
[14,15].
3. Is sleep deprivation stressful?
Stress was initially defined as a ‘general adaptation syndrome’
whereby an organism reacts to nocuous stimuli by non-specific
physiological or behavioural responses [16]. The main neuro-
endocrine systems involved in the stress response are the
autonomic sympatho-adrenal system and the hypothalamic–
pituitary–adrenal (HPA) axis [17]. In this review, we only
focus on the latter because it is responsible for the core hormo-
nal response to homeostatic challenge [18], as well as it being,
by far, the most studied aspect of sleep deprivation in the
context of stress.

During a stressful situation, the brain of mammals responds
by activating the HPA axis, which releases corticotropin-
releasing hormone (CRH) from the hypothalamus. When
CRH reaches the pituitary, the latter releases adrenocorticotropic
hormone (ACTH), which triggers the secretion in the blood-
stream of the steroid hormone glucocorticoids by the adrenal
cortex (cortisol in primates and corticosterone in rodents) [18].
Glucocorticoids are essential for the adaptive response to
stress, ultimately leading to the normalization of glucocorticoid
release by the inhibition of theHPA axis activity through a nega-
tive feedback signal [18]. The basal activity of the HPA axis, and
therefore glucocorticoid release, is largely orchestrated by the
internal circadian clock located in the suprachiasmatic nucleus
of the hypothalamus and exhibits a daily rhythm in both
humans and rodents [19,20]. The secretion of glucocorticoid
peaks just before the end of the resting period and decreases
throughout the active phase until reaching a trough at the begin-
ning of the sleeping period [20]. Interestingly, the exogenous
administration of CRH induces an increase in wakefulness and
a reduction in NREM sleep in humans [21] and rodents [22,23],
and inhibits sleep-activeneurons in thepreoptic areaof thehypo-
thalamus [22].The reductionor the increaseofcorticosteronealso
alter sleep architecture in rats [24], and human studies showed
that sleep itself slightlydampens cortisol releasewhereas arousal
is associated with cortisol burst [25,26]. However, while an
increase in CRH suppresses the homeostatic response following
sleep deprivation, the change of circulating corticosterone
concentration does not seem to affect sleep rebound [24].

In this context, it is no wonder that alterations in glucocor-
ticoid secretion following sleep deprivation or restriction have
been documented [27]. However, in humans, moderate sleep
loss has modest effects on HPA axis activity, which is affected
differently among studies. For instance, chronic sleep restric-
tion of 5 h or more per night for four to eight consecutive
nights does not alter the cortisol release pattern,most probably
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because of endogenous compensatory mechanisms during
sleep [28–31]. However, greater sleep loss characterized by a
maximum of 4 h of sleep per night for one to six consecutive
nights has been associated with dampened morning cortisol
awakening response and increased afternoon/evening cortisol
level [32–37], as well as reduced reactivity and slower recovery
of the cortisol response [38]. Furthermore, a longitudinal
study showed that recurrent short sleep is associated with
an adverse cortisol secretion pattern [39]. The effect of sleep
restriction on cortisol release seems to be dependent on
when sleep loss occurs during the night and if subjects are
usually awake or asleep at the time of sleep deprivation
[40,41], highlighting the influence of complex interactions
between sleep pressure and the subject’s endogenous
circadian and ultradian rhythms on HPA axis activity [42].

The flattening of the circadian release of cortisol has also
been observed after one night of total sleep deprivation [43],
despite most of the reports describing either an increase
[33,44–47] or a decrease [48–52] in cortisol level following
sleep loss. The same disparity is observed with sleep frag-
mentation and REM sleep deprivation [53,54]. These
discrepancies could be explained by possible methodological
limitations which might prevent an accurate assessment of
the effect of sleep deprivation on cortisol release rhythmicity.
However, and interestingly, some studies also failed to show
a change in the HPA axis activity following total sleep depri-
vation when the experimental conditions were designed
to avoid stress [55–57]. This shed light on the potential
confounding effects of stress per se in sleep-deprivation exper-
iments. Indeed, in addition to the immediate effects of sleep
deprivation on the HPA axis activity, sleep loss has also
been shown to affect subsequent stress reactivity. If one
night of sleep deprivation did not increase responsiveness
to an acute psychosocial challenge despite increased stress
levels [58,59], poor sleep habits were associated with higher
blood pressure and cortisol level during psychosocial stress
[60]. Sleep quality seems to play a more important role in
stress reactivity than sleep quantity [61].

The increase in HPA axis activity that is exhibited by
some sleep-deprived individuals might be the direct conse-
quence, at least in part, of the mental and physical load the
subjects experience in order to stay awake rather than the
effect of sleep loss alone. One could even consider sleep
deprivation as a stressor sensu stricto (strictly speaking) in
the event of a stress response beyond what is expected
during relaxed wakefulness. This is no trivial matter consid-
ering the complex and reciprocal relationship between
sleep and HPA axis activity [62,63], in addition to the well-
established effects of stress on sleep homeostasis [64,65].
Whether the activation of the neuroendocrine stress system is
the result of forced wakefulness or the stressful nature of the
sleep-deprivation procedure is a fundamental question, and
the absence of a clear answer has serious consequences for
sleep research involving sleep deprivation. This is particularly
true in animals, for whom sleep deprivation is necessarily
achieved by subjecting them to potentially stressful move-
ment-restricting novel environments or external stimulation
[9]. Several sleep-deprivation protocols for rodents have been
designed and used during the last 50 years, and understanding
their specificities is crucial for the development of novel pro-
cedures to suppress sleep while minimizing, and even
eliminating, any stress-associated confounding effects on the
experimental outputs.
4. Do sleep-deprivation procedures in rodents
affect the level of stress?

With the growth of sleep science from the 1970s and given the
acknowledged, but poorly understood, bidirectional link
between sleep and stress, some studies thus started to control
for the stress-associated effects of their sleep-deprivation pro-
cedures in rodents as they became the model of choice for
sleep studies [66,67]. Thereafter, the increasingly documented
effect of sleep loss on the activity of the HPA axis, measured
by the level of stress hormones, provided insight into the
complex interrelated processes underlying sleep homeostasis
and stress.

From the 1960s onward, several automated methods based
on forced locomotion emerged in an attempt to standardize
sleep-deprivation protocols. Treadmills or rotating wheels
that can either move continuously or as soon as the animal dis-
plays behavioural and/or electrophysiological signs of sleep
were used in rats [68,69]. However, after spending some time
in the apparatus, the animals often find strategies to get some
rest, such as running in the opposite direction to that of the
treadmill or wheel and having short sleep episodes before
waking up to avoid falling. If the amount of sleep suppression
obviously depends on the movement speed imposed on the
animals, it has been shown that an animal could sleep on aver-
age almost 40% of the time [70]. More importantly, major
concerns have been raised about the confounding effects of
exercise and fatigue on output measures [27], and particularly
their associated stressful components. Using a rotating cylin-
der, an early study showed that 21.5 h of sleep deprivation in
rats caused no significant increase in corticosterone compared
with control animals with ad libitum (as much and as often as
desired) sleep [71]. However, the release of corticosterone
was greatly increased after 20 min of forced locomotion.
Despite this study’s conclusion stating that the overall low
level of stress was unlikely to substantially alter sleep patterns
during recovery, the immediate but transient effects of forced
locomotion on corticosterone release, and thus subsequent
effects on sleep parameters and underlying sleep-regulating
mechanisms, cannot be ignored. Furthermore, other studies
have shown that sleep deprivation, fragmentation or restriction
by forced locomotion for 11–48 h in ratsmarkedly increased the
release of corticosterone [72–77]. In mice, 24 h of sleep depri-
vation using an activity wheel did not cause a significant
increase in corticosterone [78], while another study showed
that chronic sleep interruption during 14 days using a rotating
drum induced an increase in corticosterone [79]. More recently,
other paradigms have been developed in order tominimize the
stress and/or physical fatigue of previous forced locomotion
sleep-deprivation protocols. An apparatus consisting of two
platforms alternatively moving below and above a water sur-
face was designed to keep mice in constant motion without
locomotion [80]. However, 10 h of total sleep deprivation
using this novel paradigm did not prevent a significant rise
of corticosterone [81]. Other methods, based on real-time
EEG or EMG biofeedback systems triggering the rotation of
cylindrical cages or running wheels when NREM sleep, REM
sleep or inactivity are detected, were able to prevent sleep for
6–11 h in male rats and mice with a mild but non-significant
increase in corticosterone [77,82].

The disc-over-water (DOW) apparatus was introduced in
order to better control the influence of physical stimuli on
experimental and control rats or mice [83–85]. In this
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paradigm, a sleep-deprived animal and its yoked control
counterpart are housed on each side of a two-chambered
cage separated by a central wall. The floor of the cage consists
of a single flat disc, suspended over a tank of water, so that
each animal lay on one half of the disc. When behavioural
or electrophysiological signs of sleep are observed in the
experimental individual, the disc rotates around the central
axis of the apparatus and forces both animals to walk in
the opposite direction in order to avoid falling into the
water. This method ensures similar physical stimulation
and locomotor activity for both experimental and control ani-
mals, while allowing the latter to sleep whenever the
experimental one is awake and the disc immobile. However,
the yoked control is inevitably partially sleep deprived when
attempting to sleep at the same time as its experimental
counterpart, with a respective reduction of total sleep time of
around 30% and 90% [86]. The DOW paradigm is usually per-
formed over an extended period of time, ranging from 2 days to
one month. When not leading to the death of the experimental
animals, the DOW applied for several days induced a severe
stress syndrome including a decrease in bodyweight, enlarged
adrenals and stomach ulcers, despite a reduction in corticoster-
one compared with baseline in male rats [85]. The decrease or
the absence of alteration of the corticosterone level following
sleep restriction by theDOWparadigmhas also been observed
in other studies in male rats [87–89]. However, male rats sub-
jected to the DOW paradigm for days in order to achieve
total sleep deprivation exhibited an increase in ACTH and
corticosterone, while displaying only an increase in ACTH
when deprived of REM sleep specifically [83]. In addition,
one study showed that an increase in corticosterone level can
be observed after 2 days of sleep deprivation in female rats
compared with control animals that were not subjected to the
DOWdevice [90]. Other protocols based on the sameprinciples
as the DOW, but without water, were also developed. In these
apparatuses, experimental and yoked male mice subjected to a
9-dayexperiment displayed a significant increase in corticoster-
one only during the first day of sleep deprivation [91], while
male rats sleep-deprived during 12 h by means of a gradual
increase in the speed and the variability of the disc’s rotation
exhibited a slight increase in brain corticosterone concentration,
but this did not exceed the normal circadian peak [92].

Other automated approaches involving tactile stimulations
have been employed to fragment sleep in mice. A cage with a
sweeping horizontal bar just above the floor was used to
achieve 6 h of sleep fragmentation without altering corticoster-
one level [93], but later studies showed that the same procedure
applied for 1–3 days induced an increase in corticosterone
[94,95]. However, 3 days of sleep fragmentation using a
rotating lever providing tactile stimulations did not seem to
increase circulating corticosterone concentration in adolescent
mice [96].

Nowadays, one of the most popular methods to achieve a
total suppression of sleep in rodents is the ‘gentle handling’
(GH) procedure, in which behavioural and/or electrophysio-
logical signs of sleep are actively monitored by a trained
experimenter who keeps the animal awake using gentle sen-
sory stimulations [97–99]. When properly performed, the GH
procedure can suppress almost all sleep activity [98]. The GH
method has never been formally standardized across labora-
tories and encompasses a variety of different stimulations.
Animals can be kept awake using external stimuli such as
gentle tapping and/or shaking of the cage, mild noises,
bedding disturbance or by touching the animal with a brush
or directly with the hand [98,99]. Despite having been initially
designed to minimize the spurious consequences of stress on
sleep, the effects of GH on theHPA axis activity ismore contro-
versial than the consensually recognized stressful effects of
sleep-deprivation protocols based on forced locomotion. The
exposure to external stimuli between 2 and 24 h has been
shown to induce an increase in corticosterone levels in male
mice [100–105] and rats [106–110], as well as for very short
periods of time in neonatal rats [110]. However, this increase
was usually mild and within the range of normal amplitude
observed during the undisturbed period. Standardizing GH
protocols is not an easy task, as it is often necessary to adapt
the amount of stimulation depending on the sleepiness and
the drowsiness of each subject, which inevitably introduces
variability. The number of stimulations applied to the animal
typically increases throughout the sleep-deprivation procedure
[103]. It has been shown that mice kept awakewith as little dis-
turbance as possible display lower corticosterone levels than
animals kept awake using social stimuli or regular direct hand-
ling [111,112]. If rats seem to be less affected by stress during
GH procedures [109,113], conflicting results have been
reported regarding the habituation of mice to GH. Compared
with undisturbed animals, 3 min of daily GH during 6 days
in male mice induced no alteration in corticosterone release
during the first day then an increase in corticosterone by the
end of the sixth day [114], while the exact opposite was also
described [115]. In addition, the familiarity an animal has
with the experimenter can influence the consistency of the
experimental results [116], while exposure to male exper-
imenters is associated with a higher physiological stress
response than exposure to female experimenters [117].

An alternative milder procedure to GH, aiming at indu-
cing sleep deprivation by spontaneous exploratory and
locomotor behaviour in rodents using novel objects or nesting
material, has also been proposed [118–121]. Despite minimiz-
ing the number of external stimuli as well as allowing a more
natural and spontaneous arousal state, the ‘novel objects’
sleep-deprivation paradigm performed during 4 h in male
rats has been shown to increase free corticosterone in hippo-
campal dialysates [122]. Furthermore, the presence of novel
objects may be associated with learning effects [123]. Of
note, the introduction of novel objects in the cage of sleep-
deprived animals is most of the time used in combination
with more classical GH techniques [101,113].

The inverted ‘flowerpot’methodwas originally established
in the 1960s to suppress REM sleep in cats [124] and was later
adapted to rodents [125,126]. The experimental animal is
placed on a small platform emerging from a water tank,
while the control animal is usually placed on a larger platform.
The size of the small platform allows the animal to squat and
enter into NREM sleep. However, at the onset of REM sleep
and associated muscle relaxation, the animal loses its balance
and falls into the water, causing it to awaken. By contrast, the
control individual can sleep ad libitum on the larger platform.
The stressful aspects of this procedure have been raised in a
number of studies, and an early report showed that male rats
deprived of REM sleep (and food) for 24 h exhibited an
increase in corticosterone and gastric ulceration [127]. Later
studies also highlighted that selective REM-sleep deprivation
for 1–5 days using the single platform method induces an
increase in corticosterone and ACTH in male rats [128–135].
REM-sleep restriction for three consecutive days, 6 h daily,
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also induced an increase in corticosterone. Recently, a
study showed that the administration of the single platform
method onmalemice for 1 day induced an increase in corticos-
terone, while 3 days of REM-sleep deprivation led to the death
of some animals [94], further emphasizing the noxious aspects
of the method. A modified version of the classic ‘flowerpot’
method with multiple platforms in a larger tank, allowing
the sleep deprivation of several animals at the same time,
was later designed in order to remove stress-associated move-
ment restriction and isolation [136]. An early study assessing
adrenal hypertrophy, thymus atrophy, body weight loss and
stomach ulceration induced by 3 days of sleep deprivation
using the single and multiple platforms methods in male rats
showed that, if both paradigms only caused mild stress com-
pared with food deprivation, the multiple platforms protocol
was less stressful than the classical platform technique [137].
However, another study also comparing the effects of the
single and multiple platforms methods, applied during 4
days, on the HPA axis activity of male rats showed that both
protocols caused an increased secretion of corticosterone and
ACTH, and confirmed that this effect was stronger in the
single platform paradigm [138]. The stressful aspect of the
multiple platforms apparatus was further highlighted in sev-
eral other studies showing that 18 h to 21 days of REM-sleep
suppression induced an increase in corticosterone and/or
ACTH in male rats [139–148] andmice [149,150]. Other related
methods using two small platforms or a ‘grid over water’ have
been shown to also induce an increase in corticosterone inmale
mice after 2 and 3 days, respectively, [151,152]. In juvenile and
male rats subjected to REM-sleep restriction for 14 or 18 h daily
during a maximum of 21 consecutive days using the multiple
platforms technique, a higher level of corticosterone has been
observed than in non-sleep-restricted animals [153,154]. How-
ever, female rats that were REM sleep-restricted for 20 h daily
for 6 days during pregnancy did not exhibit any increase in
corticosterone release compared with control animals, while
having higher relative adrenal weight [155]. The absence of
any change in corticosterone release following REM-sleep
deprivation for 2–3 days in the multiple platforms apparatus
has also been observed in male and female rats [156,157].

One major limitation in most studies assessing the effect of
forced wakefulness on stress through the activity of the HPA
axis is that the level of stress-related hormones is usually
measured at the end of the sleep-deprivation procedure. As
several studies demonstrated that sleep deprivation using
different paradigms can induce an early and transient increase
in corticosterone before normalization [71,158–160], this is
likely to mask any early increase in corticosterone that could
potentially have an influence on later output measures.
5. What are the stress-associated consequences
of sleep deprivation in rodents?

The activation of the HPA axis during sleep deprivation
might have multiple physiological and behavioural effects.
Whether these effects are the consequence of the increase in
wakefulness or of the activity of the HPA axis is a question
for which there is no simple answer.

For instance, the regulation of adult hippocampal neuro-
genesis has been linked to both stress and sleep. Several
animal studies highlighted a negative effect of sleep loss on hip-
pocampal cell proliferation and neurogenesis [134,144,150,161],
while others reported a positive effect after short periods of
sleep deprivation [162,163]. The implication of the HPA axis
in the alteration of hippocampal neuronal plasticity following
sleep deprivation has also been debated. A study in male rats
subjected to REM-sleep deprivation reported that the reduction
in cell proliferation and neurogenesis in the hippocampus was
abolished by the suppression of the corticosterone surge [134].
However, other studies showed that the inhibitory effect of
sleep fragmentation and REM-sleep deprivation on hippocam-
pal cell proliferation and neurogenesis of male mice was not
dependent on the increased level of corticosterone induced by
sleep loss [144,150,161]. Nevertheless, if a sleep-associated rise
in corticosterone has negligible impacts on hippocampal neuro-
plasticity, an unwanted stress-associated corticosterone surge
accompanying sleep-deprivationprotocolsmight have a greater
effect.

As in humans, sleep deprivation or fragmentation in rats
alters stress reactivity [75,76,164], but also anxiety [74] and des-
pair behaviour [89]. Similarly, specific REM-sleep deprivation
facilitates a subsequent corticosterone response to a mild stres-
sor [138], while chronic stress during the REM-sleep
suppression procedure increases REM-sleep rebound [130].
Moreover, studies reported that pharmacological inhibition of
corticosterone synthesis during REM-sleep deprivation in
male rats resulted in impairment of sleep rebound [135],
suggesting that the activation of the HPA axis following
REM-sleep suppression is necessary for proper sleep recovery.
The link between REM sleep and stress-associated behaviour
has been further highlighted by studies reporting that, in
addition to the increased corticosterone level, specific REM-
sleep deprivation induces higher anxiety and depressive-like
behaviour in rats [145,146,153,154,165]. All these findings
underline the crucial effects of sleep loss, and in particular the
suppression of REM sleep, on physiological and behavioural
stress coping mechanisms.

6. Can we overcome undesired stress-related
consequences of sleep-deprivation procedures
in rodents?

Given the intricately linkedmechanisms between sleep loss and
stress, separating the consequences of the sleep-deprivation
procedure in animals from the stressful protocol-related exter-
nal stimulations is challenging. As pointed out by a myriad of
sleep-deprivation studies measuring the activity of the HPA
axis, extended wakefulness is often associated with a certain
degree of stress. Undoubtedly, this can confuse the conclusions
drawn from all research involving sleep-deprivation pro-
cedures. This could be prevented by minimizing or avoiding
human intervention and sensory–motor stimulation in order
to limit any stress-associated confounding factors. The techno-
logical progress seen in recent years might offer interesting
alternative solutions to the classical sleep-deprivation
paradigms and their stress-inducing components.

In particular, the novel developments of gene-engineering
techniques and biotechnological tools, such as chemogenetics
and optogenetics, provide the possibility to activate or inhibit
neurons in a time-, type- and region-specific manner [166].
After light-sensitive ion channels, or designer receptors exclu-
sively activated by designer drugs, are expressed in targeted
cells, optogenetics allows neuronal depolarization or hyperpol-
arizationwith pulses of light while chemogenetics provides the
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ability to modulate neuronal firing for several hours with
the single administration of a designer drug. With the
advancements in mapping brain sleep circuitry [1], ‘genetic
sleep deprivation’ can now be accomplished without
stress-associated sensory stimulation via the inhibition of
sleep-promoting neurons or the activation of wake-promoting
neurons [7]. This could be done by directly targeting sleep- or
wake-active neurons, or through the manipulation of neuronal
populations that stimulate wake-promoting, or inhibit sleep-
inducing, neurons. For instance, lesion of the ventrolateral
preoptic (VLPO) area of the hypothalamus, one of the first
sleep-controlling brain regions discovered [167,168], reduces
sleep by approximately 50% without inducing hyperarousal
or obvious signs of stress in male rats [169,170]. Recently, it
was found that sleep-active neurons in the preoptic area are
spatially intermingled with wake-active neurons [171].
In male mice, the optogenetic activation of neurons located
in the preoptic area and expressing γ-aminobutyric acid
(GABA), the main inhibitory neurotransmitter of the central
nervous system, induces a strong increase in wakefulness
[171]. A similar effect is achieved by silencing of theGABAergic
neurons of the preoptic area that specifically project into the
tuberomammillary nucleus [171]. Moreover, the photoinhibi-
tion of galanin-secreting neurons in the VLPO decreases
NREM sleep by 60% [172]. In male mice, sleep-promoting
neurons in the VLPO can also be inhibited indirectly via
the chemogenetic activation of VLPO-projecting GABAergic
neurons in the lateral hypothalamus [173]. Furthermore,
the activation of GABAergic neurons in other structures
in the basal forebrain also promotes wakefulness [174].

However, targeting a single sleep-active neuronal cluster
might not be the most efficient way to suppress sleep and
could be more adapted for sleep fragmentation protocols [7].
Thus, the direct or indirect activation of brain circuits that
promote arousal may seem a better strategy for total sleep
deprivation. Indeed, repeated chemogenetic activation of the
pontine parabrachial nucleus of male rats has been found to
potently increase wakefulness over 4 days [175], while acute
chemogenetic activation of glutamatergic neurons in the ven-
tral tegmental area completely suppresses sleep for 5 h in
male mice [176]. Furthermore, the chemogenetic activation of
glutamate-releasing neurons of the supramammillary region
in male mice strongly promotes wakefulness for up to 12 h
[177] and has successfully been used to carry out a 9 h
sleep-deprivation protocol [178].

Beyond the possibilities of suppressing sleep by activating
or inhibiting neuronal populations without sensory–motor
stimulations, sleep-deprivation procedures can also benefit
from sleepdetection algorithms. Traditionally, the classification
of the vigilance states is performed by trained human experts
via visual inspection of the EEG features. While visual EEG
classification is still considered the gold standard for sleep scor-
ing, the considerable progress in computational technologies
has made possible the improvement of automated real-time
sleep scoring algorithms. Recently, novel paradigms for REM-
sleep deprivation aiming at reducing human intervention and
locomotion-related fatigue were developed. Using real-time
automated sleep stage recognition by online analysis of EEG
spectral components [179] ormore efficiently by using anunsu-
pervised machine learning algorithm [180], REM-sleep
restriction was, respectively, achieved via gentle cage vibration
in male mice or sudden shake of the cage floor in male rats.
Although these studies did not assess the effect of REM sleep
loss on HPA axis activity, one report using total sleep depri-
vation through delivery of air puffs when the EEG and EMG
characteristics of sleep are automatically detected did not
induce an increase in corticosterone orACTH inmale rats [181].

Genetic sleep deprivation is likely to reduce sleep-
deprivation-related stress by suppressing the need for human
intervention and sensory–motor stimulation that are required
in conventional sleep-deprivation protocols. Moreover, this
approach allows the animal to behave naturally in its home
cage or anyother familiar environment. Activating or inactivat-
ing specific neuronal populations in order to prevent sleep is
not inconsequential though, because it could also trigger unde-
sirable neurophysiological epiphenomena in brain regions that
are not involved in sleep regulation and then potentially inter-
ferewith the primary outputs of the experiments. In addition to
unwanted physiological and behavioural responses, thismight
also influence the HPA axis considering its broad and complex
neuronal circuitry [18]. Careful consideration should therefore
be given to selecting the most appropriate neurons in the most
relevant location in order to minimize adverse effects.
In addition, the latter could be avoided by using more subtle
approaches, such as real-time analysis of EEGandEMGsignals
triggering the indirect optogenetic activation or inactivation of
sleep-suppressing or sleep-promoting brain nucleus in order to
avoid continuous stimulation.
7. Conclusion
Despite extensive research since the discovery of the funda-
mental importance of sleep, its functions and functioning
are still a matter of debate. However, a consensus exists
regarding the cardinal contributions of sleep to mental and
physical health with a multitude of studies pointing out the
adverse consequences of disturbed sleep [182–185]. The
high prevalence of insomnia and poor sleep quality in
modern societies highlights the need for further and better
research aiming at unveiling the mechanisms behind sleep
regulation and function [186]. To that end, the study of the
consequences of sleep loss are crucial, yet suffer from
inherent confounding factors that are difficult to bypass. As
argued in this review, the main bias that is likely to affect
the results of sleep-deprivation procedures is undoubtedly
stress. This can be particularly problematic for preclinical
studies investigating sleep mechanisms in stress-related dis-
eases such as mood and neurodegenerative disorders
[182,183]. The use of more sophisticated sleep-deprivation
methods involving the control of genetically defined neurons
through optogenetic or chemogenetic methods, associated or
not with online interpretation of brain electric signals, could
be a leap forward to address the aforementioned issues.
However, the technical challenges and financial consider-
ations of genetic sleep deprivation still prevent it from
taking precedence over more classical sleep-deprivation
procedures. Meanwhile, given the specificities of each sleep-
deprivation procedure in terms of confounding effects, the
selection of a sleep-deprivation protocol should be done in
order to minimize the influence of the procedure per se on
the primary output measures. More importantly, for the
sake of the experimental results as well as the animals them-
selves, no sleep-deprivation experiment should be carried out
without ascertaining that the experimental conditions are as
stress free as possible.
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