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Abstract

Although research on the fertility response to childhood mortality is widespread in demo-

graphic literature, very few studies focused on the two-way causal relationships between

infant mortality and fertility. Understanding the nature of such relationships is important in

order to design effective policies to reduce child mortality and improve family planning. In

this study, we use dynamic panel data techniques to analyse the causal effects of infant

mortality on birth intervals and fertility, as well as the causal effects of birth intervals on mor-

tality in rural Bangladesh, accounting for unobserved heterogeneity and reverse causality.

Simulations based upon the estimated model show whether (and to what extent) mortality

and fertility can be reduced by breaking the causal links between short birth intervals and

infant mortality. We find a replacement effect of infant mortality on total fertility of about 0.54

children for each infant death in the comparison area with standard health services. Elimi-

nating the replacement effect would lengthen birth intervals and reduce the total number of

births, resulting in a fall in mortality by 2.45 children per 1000 live births. These effects are

much smaller in the treatment area with extensive health services and information on family

planning, where infant mortality is smaller, birth intervals are longer, and total fertility is

lower. In both areas, we find evidence of boy preference in family planning.

1. Introduction

According to the demographic transition theory, there is a strong correlation between child-

hood mortality and fertility, with an important role for birth spacing in shaping this relation-

ship. Understanding the empirical nature of such relationships is important to design effective

policies for reducing child mortality and fertility. The importance of this is illustrated by, for

example, United Nations Sustainable Development Goal 3.2: “By 2030, end preventable deaths

of newborns and children under 5 years of age, with all countries aiming to reduce neonatal

mortality to at least as low as 12 per 1,000 live births and under-5 mortality to at least as low as

25 per 1,000 live births” [1]. Empirical evidence has shown that a decline in childhood mortal-

ity is often a prerequisite for fertility decline [2–4], while other studies have emphasized causal

links in the reverse direction: high fertility and the close birth-spacing associated with it cause

an increase in child mortality [5–6]. Yet another set of studies emphasized that the analysis of
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the direction of causality is hampered by the existence of several interrelations between child

mortality, birth intervals, and fertility at the same time [7–8].

The observed associations between child mortality, birth spacing, and fertility may not only

be due to causal mechanisms but can also be explained by common unobserved factors (omit-

ted variables or confounding factors) that drive the various processes. To evaluate policies

aimed at optimal birth spacing, reducing mortality, and reducing fertility, identifying the

importance of the various causal mechanisms and alternative explanations is crucial. If associa-

tions reflect spurious correlation or reverse causation instead of the presumed causal effects,

then the policy implications can be dramatically altered [9–10].

One of the most important policy parameters in this context is the replacement effect: how

does mortality affect total fertility? In the seminal work of Olsen, the issue was raised that

straightforward estimates of this effect can be biased because mortality will also be driven by

fertility decisions, for example through birth intervals [11]. Olsen developed a new and simple

method to study replacement effects, also applied in [12], for example. It was also pointed out,

however, that substantial within-parity variation in mortality rates may hamper the application

of Olsen’s method [12–13].

An alternative to the Olsen approach is the multivariate panel data framework developed

by Bhalotra and van Soest that models all mortality-fertility causal relationships within each

family [14]. This type of model addresses the concerns raised in the recent study on demo-

graphic analysis conducted in Matlab, Bangladesh [15], who emphasize the importance of

jointly modelling child deaths, interval lengths and fertility behaviour, while allowing for cor-

related death risks among different births to the same mother.

In this study, we use a panel data model similar to the one introduced in [14] to analyse

infant mortality, birth intervals, and fertility in Matlab, Bangladesh. This model captures the

relevant causal mechanisms and accounts for confounding factors through potentially corre-

lated unobserved heterogeneity terms in the death risks and fertility and birth interval deci-

sions. It exploits the timing of the sequence of all births and deaths to a mother for

identification. It has equations for mortality (of each child born in a given family), for whether

there will be a next birth, and for the birth interval. Mortality depends on, among other things,

the length of the preceding birth interval (for birth orders higher than one), age of the mother

at childbirth, gender of the child, socio-economic status of the family, religion, and an unob-

served mother specific effect. Whether or not there will be a next birth and the interval after a

given birth until the next birth in turn depend on gender and survival status of previously

born children, age of the mother at childbirth, socio-economic status, religion, and unobserved

mother-specific effects. The three mother-specific unobserved effects are allowed to be corre-

lated to capture the possibility of common unobserved factors driving the various processes.

The model is estimated with maximum likelihood, accounting for all the correlations and for

censoring in the birth spacing equation (due to the limited observation window). The esti-

mates therefore remain consistent in spite of the endogeneity of some of the explanatory

variables.

The main novelty compared to [14] is that our application concerns infant mortality in

rural Bangladesh. While Bhalotra and van Soest used retrospective data to analyse neonatal

mortality in India, we use prospective data from the Demographic and Health Surveillance

System, Matlab, following mothers residing in the study area over time. This has the advantage

that several covariates, such as indicators of socio-economic status and environmental factors

such as availability of drinking water are observed at the relevant points in time when children

are born (rather than at survey time in retrospective data). Moreover, it avoids recall error in,

for example, the dates when children were born.

Mortality-fertility relationships
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Another specific feature of our data is that the study area is randomly split into villages with

standard government provided health services (the “comparison area”) and villages with addi-

tional extensive health and family planning programmes, such as more health clinics and regu-

lar visits of health officers (the “icddr,b area” or “treatment area”) [16–17]. Due to the many

differences between the areas, differences cannot be ascribed to specific interventions, but they

do provide insight in how the complete set of extensive health and family planning services

affects the replacement effects and the other links between mortality, birth spacing, and fertility.

Background and existing studies

There is an extensive literature of reduced form studies on the associations between mortality,

birth intervals, and fertility, and we do not have the ambition to review this literature. Studies

typically found a strong negative association between child mortality and subsequent birth

intervals and, accordingly, a positive relationship between child mortality and the number of

subsequent births, especially in developing countries. For Bangladesh, for example, it was

found that infant death is associated with a reduction of the median of the subsequent birth

interval from 37.2 to 24.1 months [2]. Following the approach of [11,12], concludes that in

China, for every infant death, 0.6 extra children were born- and this rate is three times higher

than the rates in Colombia and Malaysia [11, 18].

According to the classical demographic transition theory, child mortality affects fertility

mainly in two ways: physiological/biological changes and volitional /replacement effects. The

physiological effect can be explained by the fact that breastfeeding is interrupted with a child

death, shortening the postpartum infecundable period [19]. As a result, the mother is able to

conceive the next child sooner, possibly leading to a shorter birth interval and higher fertility.

Volitional or replacement effects occur when couples seeking a desired family size replace a

lost child. It is difficult to distinguish the physiological and volitional replacement effects

empirically [13]. The current study aims to estimate the total mortality effects (either physio-

logical or volitional) on fertility via reducing birth intervals, and vice-versa.

An alternative way in which mortality may affect fertility is hoarding [9, 20]. Hoarding

refers to the fertility response to expectedmortality of the offspring, while replacement is the

response to an actual child death. Hoarding is not expected to be very important in the current

setting, since women can usually respond to the realized infant death by having another birth.

Many studies also found an association between a short birth interval and infant death of

the next child, particularly when the preceding sibling survived [21–23]. An explanation for

this is that the mother has not recuperated physiologically from the previous birth [24–25].

Hence vulnerable families can be caught in a death trap that leads to clustering of child deaths

within families: the death of a child reduces the interval to the next birth and thus increases in

the risk of death of the subsequent sibling in the family [26]. An alternative explanation sug-

gested is that a child death leaves the mother depressed [27]. This may affect the mother’s

behaviour, compromising the health of her subsequent child in the womb and in early infancy.

Sibling competition may also explain why short birth intervals and high fertility increase death

risk: sources of food and care per head diminish as the number of dependent members of a

family increases [5]. This would induce a negative effect of child death on the mortality risk of

the next child, since the next child competes with fewer siblings [23]. A negative effect may

also be due to learning: If the older sibling died due to, for example, diarrhoea or acute respira-

tory infections (ARI)–two leading causes of child death explaining almost half of all deaths in

Bangladesh [28]—the mother may want to learn how to prevent such a death for future births.

Couples continue childbearing until they reach their desired family size and composition. It

was found that in Bangladesh, the median birth interval after the death of a child is shorter

Mortality-fertility relationships
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when the deceased child was a boy or when the family has at most one boy [29]. In Ghana, the

probability of having a next birth within a given time period is one third higher if a male child

died than if a female child died [30].

Observed clustering in infant or child mortality of successive children may also be due to

unobserved confounding factors instead of causal mechanisms. Older studies of birth spacing

and childhood mortality usually do not control for both. More recent studies for India and

Kenya reveal that the causal effect on child mortality of mortality of the previous sibling is

overestimated when unobserved heterogeneity is not accounted for [26, 31]. The model used

by Bhalotra and van Soest that is the starting point in this study extends their model by incor-

porating fertility and birth intervals, so that the mechanisms discussed above can all be ana-

lysed within one coherent modelling framework.

2. Data

Since 1966 icddr,b maintained a Health and Demographic Surveillance System (HDSS) in

Matlab, aiming to support the Bangladesh Health and Family Planning programme. In Matlab,

an area located about 60 km southeast of Dhaka, all births, deaths, causes of deaths, pregnancy

histories, migrations in and out of the area, marriages, divorces, and several indicators of socio-

economic status are recorded for the complete population of about 220,000 people. The HDSS

data on the timing of pregnancy outcomes and deaths are considered to be of very high quality

because they are collected during regular visits (every two weeks until the late 1990s and every

month since then) by well-trained female community health workers [32, 17]. Villages in the

Matlab area were split in two groups: a “comparison area” with standard government provided

health and family planning services, and a “treatment area”, usually referred to as “icddr,b area”

with many health and family planning interventions introduced over the study period [33–34].

We combined the health and demographic surveillance system data from 70 villages in the icddr,

b area and 79 villages in the comparison area obtained from 1 July, 1982 until 31 December,

2005 (the study period). Data from before 1 July 1982 have not been made available for research.

The complete data set has records on about 63,000 mothers, with more than 165,000 child-

births, including multiple births and stillbirths. We eliminated mothers with multiple births

(3401 births in both areas together) as children of a multiple birth face much higher odds of

dying and require a separate analysis (as documented in the demographic literature). We also

eliminate mothers with incomplete birth history information. For example, if a mother has

had four live births, she should appear four times, with four recorded birth dates. In all other

cases e.g., if a child was born outside Matlab or before the study period, we do not have the

required information on this child, and had to delete the mother from the sample. Similarly,

we deleted mothers who migrated out of Matlab during the period under study. The sample

therefore only contains mothers who continuously lived in the Matlab area since the birth of

their first child until the end of the study period.

Moreover, we have excluded the children born in three villages that shifted from the icddr,b

area to the comparison area in 2000. These sample selection steps lead to a sample in the com-

parison area of 32,366 children out of the original raw sample of 74,214 and 11,856 mothers

out of the original 30,264. In the icddr,b area the working sample has 31,968 children (out of

67,696) and 13,232 mothers (out of 32,391). We acknowledge that these sample selection crite-

ria imply that our results are not necessarily representative for the complete population of the

Matlab area. Studying the relation between child mortality and, for example, migration into or

out of Matlab, is a topic for future research.

Furthermore, we discarded stillbirths (11,990 stillbirths are recorded in the comparison

area and 8,646 in the icddr,b area). One reason for this is that gender, an important covariate

Mortality-fertility relationships
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in our analysis, is missing for stillbirths. Accordingly, we define birth intervals as intervals

between reported dates of live births, ignoring stillbirths in between live births. This may

imply that some long birth intervals are due to stillbirths. Distinguishing stillbirths from other

mechanisms leading to long birth intervals is another topic left for future research. Since still-

births then have to be modelled, it will be an additional layer of complexity in an already rather

complex model. This is also that our study fails to address local community (village) specific

effects. On the other hand, we do not have any reason to expect that by excluding stillbirths

this induces a systematic selection bias in a specific direction lengthen birth intervals. For

example, stillbirths are more common among mothers in the comparison area compared to

the icddr,b area; however, the length of birth intervals is longer in the icddr,b area. Future

study may address more rigorous analysis by handling the potential bias.

Table 1 presents sample means or percentages of outcome 1 (for dummy variables) by area.

In the comparison area, 6.82 percent of all children died during infancy -8.90 percent among

first born and 5.62 percent among higher order births. Of all families, 15.66 per cent experi-

enced at least one infant death and 1.08 per cent lost all their children. About 20.65% of all

birth intervals are shorter than or equal to 24 months. In the icddr,b area, birth intervals tend

to be longer and infant mortality is less common: 5.09 percent of all live births; 10.66 percent

of all families experienced at least one infant death. The average number of children born per

mother is 2.73 in the comparison area and 2.42 in the icddr,b area; 29 percent of families had

more than three children in the comparison area, compared to 19 percent in the icddr,b area

(not reported in the table). Due to the interventions in the icddr,b area, mothers in that area

more often have access to a more hygienic source of drinking water (with an underground

tube well or a filter) and live closer to a health facility.

The non-parametric regressions of infant mortality on the preceding birth interval in Fig 1

show a sharp decline in infant mortality rates when birth intervals increase in both areas. The

probability of infant death falls with birth interval length until an interval length about 4.5

years (exp(4) = 54 months). Particularly in the icddr,b area, the survival chances stabilize or

even increase somewhat when birth intervals increase beyond 4.5 years.

Figs 2 and 3 show the distributions of the log birth interval by survival status of the previous

child and by gender. In both areas, there is a large difference between the distributions after

infant death and infant survival. In the comparison area, the medians are 17 and 37 months

(and the averages are 22 and 42 months). Gender differences are insignificant: the p-values for

the mean and median gender differences are 0.370 and 0.706 for the comparison area and

0.328 and 1.000 for the icddr,b area (where the medians coincide).

3. Model specification

The model is similar to the one used in [14]. A difference is that we do not consider local com-

munity effects. The sensitivity analysis in [14] suggests that this has no effect on the point esti-

mates (though it may mean that our standard errors are somewhat underestimated).

Admittedly, the finding in [14] could be specific to their sample of Indian mothers, but given

the additional complexity that adding community effects would involve, we did not pursue

this extension here.

Conceptually, the model is based upon the notion that a family’s mortality outcomes, birth

intervals, and fertility are determined partly by decisions of the family and partly by external

factors that can vary over time (e.g., random health shocks) or are persistent over the complete

observation period (e.g., genetic factors). We do not explicitly distinguish between external

factors and factors controlled by the family and do not aim to work with a fully structural

model in which the family solves a dynamic optimization problem that determines its family

Mortality-fertility relationships
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planning and health behaviour. Instead, we formulate separate equations for the various out-

comes, accounting for observed and unobserved time persistent and time varying variables

that may affect each of the outcomes, and allowing each of the outcomes to depend upon pre-

vious outcomes in the same family. For example, the interval to the next birth may depend

upon gender and mortality outcomes of the previous births, the mortality outcome may

depend upon the preceding birth interval, etc. This exploits the timing of events (there is no

causal effect of future outcomes on current outcomes) to identify of the econometric model.

Confounding factors, such us unobserved family attitudes towards modern health behaviour

and family planning, are allowed for as long as they are persistent over the mother’s reproduc-

tive period, and are captured in unobserved heterogeneity terms that can be correlated across

equations.

Table 1. Descriptive statistics by area, Matlab, 1982–2005.

Variables icddr,b area Comparison area

Infant deaths (all live-births) (%) 5.09 6.82

Infant deaths excluding first-borns (%) 3.95 5.62

Infant deaths among first borns (%) 6.70 8.90

Families with no infant deaths (%) 89.34 84.34

Families in which all births die in infancy (%) 0.79 1.08

Preceding birth interval in months (%)

< = 24 months 12.93 20.65

25–36 months 19.92 32.73

> = 37 months 67.14 46.63

Age of mother at first birth� 21.16 (3.23) 21.08 (3.21)

Age of mother at birth� 24.70 (5.03) 24.58 (4.85)

Mother’s education level (%)

No education 48.48 50.50

Some primary education 24.86 25.51

At least some secondary education 26.66 23.99

Mother Muslim (%) 82.71 89.85

Child male (%) 50.97 51.12

Birth order (%)

1 41.39 36.63

2 28.93 26.74

3 17.62 18.26

4+ 12.06 18.36

Father’s education level (%)

No education 55.67 56.28

Some primary education 22.65 24.15

At least some secondary education 21.68 19.57

Father day labourer (%) 19.61 20.96

Hygienic drinking water (tube well/piped) water) (%) 87.76 76.91

Distance to health facility (km) � 1.87 (0.98) 7.07(4.04)

Number of mothers in sample 13,232 11,856

Number of children in sample 31,968 32,366

�: continuous variable; other variables are dummy variables. Means of continuous variables, with standard deviation

in parentheses; percentage with outcome 1 for dummy variables. No education = 0 years of schooling, some primary

education = 1–5 years of schooling, and at least some secondary education = 6 or more years schooling. Source:
Matlab DSS data.

https://doi.org/10.1371/journal.pone.0195940.t001
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The benchmark model taken from [14] has equations for the infant mortality outcome of

each birth, for the decision to have another child, and for the birth interval. In principle, an

equation for the decision to have another child is not necessary, since no next birth corre-

sponds to a birth interval that extends beyond the reproductive age limit. We therefore also

consider a version of the model without this equation. Since the complete (benchmark)

Fig 1. Infant mortality and preceding birth interval. Note: lowess uses the Stata command for local weighted

(nonparametric) regression, with default settings.

https://doi.org/10.1371/journal.pone.0195940.g001

Fig 2. Birth intervals by survival status and gender of previous child, icddr,b area.

https://doi.org/10.1371/journal.pone.0195940.g002
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specification outperforms this simpler specification, in line with the notion that families use

other ways of family planning than methods that increase birth intervals, we focus on the

results of the complete model.

To be more precise, the endogenous variables in the model are the following, with i denot-

ing a mother and t = 1,..,Ti denoting her consecutive live births:

Mit: Infant mortality dummy: 1 if child t dies; 0 if it survives the first twelve months after

birth.

Fit: Having a next birth (1) or not (0) after birth t.
Bit: Log birth interval preceding birth of child t (t>1 only)

The sequence of events is illustrated using the time line in Fig 4:

The timing of the first birth is taken as given. Our data do not provide date of marriage so

we do not observe the interval from marriage to first birth. The first event we explain is infant

survival of the first born child Mi1. The second is the event whether there will be a next birth

(Fit = 1) or not (Fit = 0). This is not always observed—if a second birth is observed in the data

we know that Fit = 1. If not, this can be because Fit = 0 or because the next birth interval is too

long in the sense that it exceeds the observation window or the woman’s reproductive span

(set to 45 years of age).

If Fit = 1 and the birth interval is short enough to have the next birth within the observation

window, we observe the second birth and the birth interval Bit. The second born child can die

Fig 3. Birth intervals by survival status and gender of previous child, comparison area.

https://doi.org/10.1371/journal.pone.0195940.g003

Fig 4. The sequence of events.

https://doi.org/10.1371/journal.pone.0195940.g004
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during infancy or survive; depending on this outcome, there will be a next birth or not (Fi3),
etc.—the sequence of events continues until the mother has no more children (FiT = 1), at the

end of her fertile period (age 45), or at the end of the observation window (December 2005).

We use probit equations for the binary outcomes (infant mortality of each child; fertility

decision after each birth) and a regression equation for the continuous outcomes (log birth

intervals). Below we discuss the equations for the various outcomes in more detail.

Infant mortality

For higher birth orders, a dynamic probit equation with (random) mother specific effects is

used. The explanatory variables include the preceding birth interval and variables related to

the mother’s age at birth, which is a function of previous birth intervals: For child t (t = 2,. . .,

Ti) of mother i, the equation is

M�

it ¼ Xitbm þ Zitgm þ ami þ umit ð1Þ

Mit ¼ 1 if M�

it > 0 and Mit ¼ 0 if M�

it � 0

Here Xit contains (functions of) the strictly exogenous variables, such as gender of the child,

socio-economic status indicators of the household (mother’s and father’s education, etc.) and

characteristics of the village where the household resides. Zit is the vector of explanatory vari-

ables that are functions of previous outcomes (and are therefore not strictly exogenous),

including the preceding log birth interval Bit, (functions of) age of the mother at birth t and,

following the literature on scarring and in particular important work by Arulampalam and

Bhalotra, survival status of the previous child Mit-1 [26]. The mother specific unobserved het-

erogeneity term αmt captures unobservable time invariant characteristics influencing the infant

mortality risk of all children in the family. The error term umit captures idiosyncratic health

shocks specific to child t. We assume that the umit follow a standard normal distribution, inde-

pendent of each other and of all covariates, and that αmt is normally distributed with mean 0

and variance σ2(αm) independent of all umit and Xit (but not of Zit). Note that Eq (1) does not

include the next birth interval. The reason is that we only consider infant mortality, and since

98% of all birth intervals are larger than one year, birth intervals typically extend beyond the

infancy period. If a birth is followed by a short birth interval, this may reduce the survival

chances of the child that is born later on due to sibling competition, but rarely already during

the period of infancy. For mortality of the first child, a separate equation is needed, since there

is no preceding birth interval or preceding mortality outcome. Age at first birth is assumed to

be exogenous and included in Xit. The equation for the first child’s infant mortality is then

given by:

M�

i1 ¼ Xi1b
1
þ yami þ umi1 ð2Þ

Mi1 ¼ 1 if M�

i1 > 0 and Mi1 ¼ 0 if M�

i1 � 0

Here β1 and θ are (auxiliary) parameters to be estimated and the error term umi1 is assumed

to satisfy the same assumptions as the other umit.

Birth-spacing

For a mother who has given births to T(i) children, we observe the exact log durations in

between two consecutive births bi2 ,. . .., biT(i), preceding births 2, . . ., T(i). We model these
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intervals using the following equation:

bit ¼ Xitbb þ ZðbÞitgb þ abi þ ubit ð3Þ

Here Xit denotes the vector of strictly explanatory variables, as before. Another determinant

of birth spacing would be the use of contraceptives. We do not include this since it is not

observed in the comparison area and may be correlated with unobservables in the model. Z
(b)it includes survival status of the preceding sibling and family composition variables (func-

tions of the numbers of surviving girls and boys). We assume gender of each birth is exogenous

and thus do not incorporate the possibility of selective abortion. Descriptive statistics confirm

that this is not an issue in these data, revealing no relation at all between gender of a newborn

child and gender composition of the older children in the family.

The unobserved heterogeneity term αbi captures unobserved time invariant characteristics

of the mother (or her household or village) influencing the birth interval. The error term ubit
captures idiosyncratic errors. We assume that the ubit follow a normal distribution, indepen-

dent of each other and of all covariates, and that αbi is normally distributed independent of all

ubit and Xit (but not of Z(b)it).

Having a next child or not and right censoring

There is right-censoring in the data since some mothers will not have completed their reproduc-

tive span at the time of the survey. After the end of the observation window (ultimo 2005), some

mothers will still have another birth, and others will not. In principle, this could be captured with

a birth interval after the last observed birth that lasts longer than until end 2005. Following [14],

however, we add a separate equation reflecting the possible decision to stop having children after

each birth. This improves the fit since it can explain why some mothers who are still of reproduc-

tive age (assumed to be 45 years of age—an age beyond which very few births are observed in our

data) have no more births long before the end of the observation window. Without the additional

equation, this would have to be explained by a very long birth interval; we will compare the fit of

the complete model with that of the simpler model without this equation in the next section.

The equation determining whether, after birth t, the woman gives at least one other birth

(Fit = 1) or not (Fit = 0) is specified as follows:

F�it ¼ Xitbf þ Zðf Þitgf þ afi þ ufit ð4Þ

Fit ¼ 1 if F�it > 0 and Fit ¼ 0 if F�it � 0

As before, Xit denotes the vector of strictly exogenous explanatory variables. The vector Z
(f)it includes survival status of the preceding sibling and family composition variables (based

upon the number of surviving girls and boys). The mother specific unobserved heterogeneity

term +αfi captures unobservable time invariant characteristics influencing the probability to

have a next birth and the term ufit captures idiosyncratic errors. We assume that the errors ufit
are standard normally distributed, independent of each other and the Xit. The mother specific

unobserved heterogeneity terms αfi are normally distributed with mean 0 and variance σ2(αf),
independent of all ufit and Xit.

The outcome Fit is observed only partially. If birth t is not the last birth (t<Ti) then we

know that the mother will have at least on more birth, so that Fit = 1. But if t = Ti, she may have

decided to stop having children (Fit = 0), but it may also be the case that the next birth interval

extends beyond reproductive age or the end of the observation window (Fit = 1 and right cen-

soring). The data on actual births and birth intervals are not informative about this distinction

so that Fit is observed only partially.
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Confounding unobserved factors are controlled for by allowing arbitrary correlations

amongst αfi, αmi, and αbi. We will assume they are drawn from a three-dimensional normal dis-

tribution with zero mean and an arbitrary covariance matrix, independent of the Xit and the

error terms ufit, umit, and ubit.

4. Model selection and estimation results

The equations of this model (Eqs 1–4) are estimated jointly using simulated maximum likeli-

hood, similarly as in [14]; see also their online appendix for details. Estimation is done using

Fortran. The code is a modified version of the code developed by Bhalotra and van Soest.

Table 2 presents goodness of fit measures of some alternative specifications of the model.

Panel 1 refers to the benchmark model discussed above (Eqs 1–4). Panel 2 is the same model

without any unobserved heterogeneity terms. Panel 3 replaces the birth interval and the fertil-

ity equation by one censored regression equation, so that not having another birth is modelled

as a birth interval extending beyond the reproductive age limit (or the observation window),

see Section 3. Panel 4 refers to the benchmark model with logistic errors instead of normally

distributed errors.

The Akaike Information Criterion (AIC; number of parameters − log likelihood) and the

Bayes Information Criterion (BIC; −2 log likelihood + (number of parameters) x log (number

of observations) both indicate that the benchmark model in panel 1 has the best fit (lowest

AIC and BIC value). This is the complete model of the previous section, which simultaneously

estimates equations for birth interval, the probability to have another child (fertility equation),

and for mortality of the first born and later born children, and includes unobserved heteroge-

neity terms in each of the equations.

Replacing normally distributed errors by logistic errors (panel 4) gives slightly higher AIC

and BIC, and very similar results in terms of parameter estimates and simulation outcomes

(which are available upon request). Panel 2 gives substantially larger (that is, inferior) AIC or

BIC values, emphasizing the importance of incorporating unobserved heterogeneity and

accounting for the simultaneous nature of the various mechanisms, rendering separate estima-

tion of each equation inconsistent due to endogeneity. Finally, the model in which fertility and

birth spacing are captured by only one equation (panel 3), seems intuitively more appealing

Table 2. Log likelihoods (LL), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) of alternative model specifications.

icddr,b area Comparison area

Benchmark model Section 3 (88 parameters) LL = -26011.47

AIC = 52198.94

BIC = 26407.88

LL = -29088.21

AIC = 58352.38

BIC = 29485.08

Model without unobserved heterogeneity

(81 parameters)

LL = -26149.81

AIC = 52461.62

BIC = 26514.69

LL = -29188.92

AIC = 58539.84

BIC = 29554.24

Model without fertility equation

(64 parameters)

LL = -28816.73

AIC = 57761.46

BIC = 29105.03

LL = -32875.038

AIC = 65878.08

BIC = 33163.69

Model with logistic errors in the mortality equations

(88 parameters)

LL = -26017.81

AIC = 52211.62

BIC = 26414.22

LL = -29090.59

AIC = 58357.18

BIC = 29487.48

The number of parameters is the total number of estimated parameters for each model. For the benchmark model, this is 88: 80 coefficients on the explanatory variables

(including the constant) in each equation (mortality equation for first born: 15; mortality equation for later borns: 21; birth interval equation: 22; fertility equation: 22), 6

parameters determining the joint distribution of the three unobserved heterogeneity terms in Eqs 1, 3 and 4, the parameter θ in Eq (2), and the standard deviation of the

error term in Eq (3). The other models are less rich and set some parameters to zero. Source: Matlab DSS data

https://doi.org/10.1371/journal.pone.0195940.t002
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(see section 3), but is clearly outperformed by the benchmark model in terms of goodness of

fit. Still, most estimates of the simpler models (see panel 2 and panel 3) are qualitatively similar

to those of the benchmark model.

Estimation results benchmark model

We focus on the results for the comparison area without health and family planning interven-

tions. Estimation results for the complete model (Eqs 1, 2, 3 and 4) in this area are presented in

Tables 3 and 4. Estimates for the icddr,b area are presented in the S1 and S2 Tables of support-

ive information section and we discuss the main differences with the comparison area at the

end of this section. Moreover, in the simulations in the next section we will also consider the

implications of the differences in the estimates.

Infant mortality equations

The parameter estimates of Eq (1) are presented in the left hand panel of Table 3. The esti-

mated quadratic pattern (the first two parameters) implies that, keeping other covariates and

unobserved mother specific factors constant, if the previous child survived its infancy, the

mortality probability falls with the length of the birth interval as long as the birth interval is

less than 63.3 months, i.e., for most of the birth interval range (cf. Fig 3). If the previous child

died, mortality falls with birth interval length for intervals up to 52.5 months, still much

beyond the median. The difference between the two patterns (the interaction term log birth
interval x previous sibling died) is not significant. Keeping the birth interval and other covari-

ates constant, the effects of mortality of the previous sibling are insignificant (both the main

effect of Previous sibling died and its interaction with the log birth interval).
The estimated coefficients on the covariates are in line with those in [35]. We focus on the

significant ones. Mortality risk is U-shaped in birth order, which is in line with the raw data.

We find strong cohort effects, with much lower mortality risk for the younger cohorts of moth-

ers (the reference group is mothers born before 1966). There is some evidence of mortality

reducing effects of socio-economic status: Secondary schooling of the father significantly

reduces infant mortality risk. Children of fathers of low occupational status (day labourers)

have a significantly larger probability of mortality than other children.

Parameter estimates for mortality of the first-born child (Eq (2)) are presented in the sec-

ond panel of Table 3. Again, infants of the youngest cohorts of mothers face substantially less

mortality risk than other children. In this case we find a significant and U-shaped pattern of

the mother’s age at birth, with a minimum mortality risk at age 27. As for later born children,

higher socio-economic status protects against infant mortality, but this time the mother’s edu-

cation level is the significant indicator of that. Finally, the mortality risk of the first child is sig-

nificantly higher for families living farther away from the nearest health clinic, something we

did not find for later born children.

Birth-spacing equation

The third panel of Table 3 reports the estimates of the birth spacing equation. Since the depen-

dent variable is the log of the birth interval, parameters must be interpreted in terms of per-

centage changes in the expected length of the birth interval. In the comparison area, death at

infancy of the previous child shortens the subsequent birth interval by about 46% (exp

(-0.6107)-1), consistent with the replacement hypothesis and existing findings [2]. Having at

least one boy has a stronger positive effect on the birth interval than having a girl. The same

applies to each additional boy. For example, the ceteris paribus difference between the next

birth interval of families with one (surviving) boy and families with one girl is 5.2% (exp
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(0.1226–0.0723)-1). If a family already has one boy and one girl and the third child is a boy

(and all children survive), the predicted length of the birth interval after this third birth is 5.8%

(exp(0.0764–0.0197)-1) longer than if the third child is a girl.

Birth intervals shorten with birth order as in, for example, [36]. They are longer for the

younger birth cohorts of mothers, which may explain part of the reduction in fertility over

time. In the comparison area, birth interval length increases with the mother’s age at the previ-

ous birth over the whole reproductive age range. This is in line with the negative effect of

maternal age on the hazard rate of a new conception found by ([37], Table 2). Birth intervals

increase with the mother’s education level, in line with the positive relation between birth

intervals and socioeconomic status. This is in line with the finding that the use of contracep-

tion is more common among higher socioeconomic status groups [38]. Mothers in villages

Table 3. Parameter estimates based on benchmark model in comparison area, n = 32,366.

Variable Infant mortality later

borns (Eq (1))

Infant mortality first

borns (Eq (2))

Log birth interval

(Eq (3))

Fertility equation (Eq (4))

estimate s.e estimate s.e estimate s.e estimate s.e

Preceding birth interval (log) -1.7239�� 0.4191 - - - - - -

Preceding birth interval square (log) 0.2094�� 0.0571 - - - - - -

Log birth interval x Previous sibling died 0.0648 0.1157 - - - - - -

Previous sibling died -0.2703 0.3712 - - -0.6107�� 0.0147 -0.2092� 0.0991

Male child 0.0111 0.0309 0.0648 0.0352 -0.0306�� 0.0092 -0.0197 0.0485

Muslim -0.0503 0.0516 0.0082 0.0597 0.0090 0.0111 0.3869�� 0.1001

Birth order of the child -0.1512� 0.0583 - - 0.0746�� 0.0160 0.3148�� 0.1015

Birth order square 0.0199� 0.0069 - - -0.0136�� 0.0018 -0.0173� 0.0069

Mother’s birth cohort: 1966–1970 -0.1516�� 0.0400 0.0030 0.0585 0.0461�� 0.0090 -0.1730� 0.0672

1971–1975 -0.3055�� 0.0486 -0.0085 0.0625 0.1072�� 0.0109 -0.5095�� 0.0991

After 1975 -0.5461�� 0.0619 -0.1789�� 0.0647 0.1554�� 0.0131 -0.9052�� 0.1573

Mother’s age at birth -0.0321 0.0333 -0.1507�� 0.0386 0.0207� 0.0082 -0.0613 0.0468

Mother’s age at birth square 0.0004 0.0006 0.0028�� 0.0008 -0.0002 0.0002 -0.0028�� 0.0009

Mother’s education some primary 0.0096 0.0400 -0.1373� 0.0466 0.0565�� 0.0083 -0.1940� 0.0711

Mother’s education at least some secondary -0.0896 0.0543 -0.2984�� 0.0536 0.1247�� 0.0101 -0.5045�� 0.1017

Father’s education some primary -0.0286 0.0393 -0.0569 0.0432 -0.0171� 0.0081 0.1156 0.0664

Father’s education at least some secondary -0.1312� 0.0500 -0.0529 0.0495 0.0066 0.0089 -0.0957 0.0770

Father’s occupation is day labourer 0.1239� 0.0452 0.0659 0.0529 -0.0440�� 0.0104 -0.4155�� 0.0862

Source of drinking water: tubewell /piped -0.0194 0.0395 -0.0731 0.0431 0.0243�� 0.0080 -0.1453� 0.0606

Distance to health facility (km) 0.0064 0.0039 0.0158�� 0.0043 -0.0009 0.0008 0.0245�� 0.0068

At least one boy surviving - - - - 0.1226�� 0.0160 -1.2778�� 0.1699

At least one girl surviving - - - - 0.0723�� 0.0161 -1.2930�� 0.1641

Number of boys surviving in excess of 1 - - - - 0.0764�� 0.0143 -1.1801�� 0.1503

Number of girls surviving in excess of 1 - - - - 0.0197 0.0136 -0.6347�� 0.1104

Constant 2.8594�� 0.8554 -0.6178 0.4549 3.0370�� 0.0982 6.9565�� 0.9225

Std. deviation error term - - - - 0.4356�� 0.0027 - -

Notes

� 2 < t-value < 3

�� t-value� 3

Reference category: gender is female, religion is Muslim, mother and father have no education, father is not day-labourer, source of drinking water is tube-well/

pipewater, and mother’s birth cohort before 1966. No education = 0 years of schooling, some primary education = 1–5 years of schooling, and at least some secondary

education = 6 or more years of schooling

https://doi.org/10.1371/journal.pone.0195940.t003
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with more hygienic sources of drinking water tend to have longer birth intervals, probably

since the source of drinking water is an index of the level of development in the village, and

more developed villages make more use of family planning.

Equation for a next birth

The right hand panel of Table 3 presents the estimates of Eq (4) determining the probability of

having another child after each birth. The most important variables in this equation concern

family composition and these effects are qualitatively in line with those of the birth interval

equation, as expected. Having at least one son or at least one daughter substantially and signifi-

cantly reduces the probability to have further children. Additional sons substantially reduce

the tendency to have more children, but additional girls have a much smaller effect. The likeli-

hood to have another birth falls with the level of education of both parents, with a larger effect

of mother’s education. Muslim families show a higher tendency to have more births than non-

Muslims. Keeping other variables (including the number and gender composition of surviving

children, the mother’s age, and survival of the previous child), the desire for continued births

rises with birth order, implying that earlier infant deaths increase desired fertility. Younger

mothers are less likely to have more births than older mothers (keeping family composition

and other variables constant). There are strong cohort differences, implying that the younger

cohorts less often want more children. Families in villages without hygienic source of drinking

water or living far away from a health centre have a larger probability to have another child. A

potential explanation is that mothers in villages with fewer facilities anticipate higher chances

that some of their children will die (after infancy) and want to guarantee a large enough num-

ber of surviving children [20]. In both areas day labourers have smaller chances to have more

children, perhaps because their unstable labour market position makes it difficult for them to

support a larger family. On the other hand, one might expect them to plan to have more chil-

dren, accounting for the larger probability that one of them may die (“hoarding”), Apparently,

the latter effect (if it exists) is dominated by the first.

Unobserved heterogeneity

The estimates of the covariance matrix of the three unobserved heterogeneity terms are given

in Table 4. The heterogeneity terms in all three equations are statistically significant. In the

comparison area, mother specific effects in the mortality equation explain 5.88% of the total

Table 4. Benchmark model, comparison area: Estimated covariance structure of mother specific unobserved het-

erogeneity terms.

Mortality Birth interval Fertility

Covariance matrix
Mortality 0.0625��

Birth interval -0.0002 0.007��

Fertility -0.188�� -0.088�� 2.306��

Correlation matrix
Mortality 1

Birth interval -0.012 1

Fertility -0.495�� -0.698�� 1

�� t-value>3

https://doi.org/10.1371/journal.pone.0195940.t004
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unsystematic variation in infant mortality:

ðVar ðamiÞ=½Var ðamiÞ þ Var ðumitÞ�Þ ¼ 0:0625=ð0:0625þ 1Þ ¼ 0:0588

For the birth spacing equation the idiosyncratic noise terms have an estimated standard

deviation 0.4356 (see bottom of Table 3). The unobserved heterogeneity term has estimated

variance 0.007 (Table 4), so that unobserved heterogeneity explains only 3.60% of the total

unsystematic variance in this equation:

ðVar ðabiÞ=½Var ðabiÞ þ Var ðubitÞ�Þ ¼ 0:007=ð0:007þ 0:43562Þ ¼ 0:036

The small correlations between unobserved heterogeneity in the mortality and birth inter-

val equations (see correlation matrix in bottom part of Table 4) confirm that hoarding does

not play an important role (see Section 1). The heterogeneity terms in the equation for having

another child explain almost 70% of the total unsystematic variation (see Table 4) in that equa-

tion:

ðVar ðafiÞ=½Var ðafiÞ þ Var ðufitÞ�Þ ¼ 2:306=ð2:306þ 1Þ ¼ 0:6975

A large negative correlation is observed between unobserved heterogeneity in birth interval

and fertility equations, confirming that both equations are strongly related: mothers who

desire many children also tend to use shorter birth intervals. This is consistent with the target

fertility model of Wolpin [4] and in line with the findings in [14]. The correlation between the

individual effects in the mortality equation and the fertility equation is significantly negative in

the comparison area. It suggests there is some unobserved factor that increases mortality and

at the same time reduces fertility. Although we include several indicators of socio-economic

status in the regressions, this could be an unobserved component like income or wealth. Low

income may reduce the quality of nutrition or hygienic circumstances and thus increase mor-

tality. At the same time, a lack of resources to support many children may reduce fertility.

Results for the icddr,b area

The results for the icddr,b area, where access to information and medical treatment is easier

than in the comparison area, are presented in the S1–S2 Tables of supportive information. In

many respects these results are qualitatively similar to those in the comparison area. The main

difference is in the role of the birth interval and lagged mortality on mortality (Eq (2)). Both

lagged mortality and the interaction of lagged mortality with the preceding birth interval are

significant (with coefficients -1.9904 and 0.5471, respectively). The results imply that for short

birth intervals, previous infant mortality has a negative effect on mortality on the next child,

possibly due to learning. This effect, however, fades out for longer birth intervals. Moreover,

the magnitude of the negative birth interval effect on mortality is larger in the comparison area

(where the effect is always substantial and negative, except at extremely large birth intervals)

than in the icddr,b area (where the effect turns zero or even positive for large birth intervals).

5. Simulations

To demonstrate the importance of the causal mechanisms between birth spacing, having a

next birth, and infant mortality, we performed some simulations, in a similar way as ([14],

Table 3). The simulations exploit the main feature of our joint model: the fact that it incorpo-

rates various mechanisms that lead to associations between birth spacing, the number of

births, and mortality outcomes, accounting for the effects of endogeneity in the timing of

births (and therefore also age at birth etc.), birth intervals, and mortality risks.
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The simulations start from the observed covariates (including, for example, date of first

birth) for the actual sample of mothers. For each mother, we generated unobserved heteroge-

neity terms, error terms, and new outcomes (the dependent variables in our model) using the

estimated parameters of each equation. The outcomes were generated recursively, using the

timing of the events as sketched in Section 4. For example, for a given mother, we take the date

of first birth as given and first generate the mortality outcome of the first child (using Eq (2)).

Given simulated mortality, we then generated the outcome whether or not a second birth takes

place (Eq (4)). If it does, we then generate a birth interval, and update calendar time and age of

the mother at her second birth. Given these variables, other covariates, and the previous mor-

tality outcome, we then generate the mortality outcome of the second born child, etc. In this

way we generate complete birth, birth spacing, and mortality patterns for all mothers in the

sample. To reduce simulation variance, this is repeated 25 times for each mother.

Table 5 shows the results of several simulations. Column 1 summarizes the outcomes

according to the benchmark simulation where all mechanisms incorporated in the model are

active. As expected, this column reproduces several features of the raw data, such as the differ-

entials in infant mortality rates and median birth intervals between the two areas.

The other columns present percent deviations from the benchmark for scenarios in which

some behavioural or non-behavioural mechanisms are “switched off.” Column 2 switches off

the replacement effects of infant mortality on both birth intervals and the probability of having

another child. The estimates imply that families respond to infant mortality by shortening the

next birth interval and increasing the number of births, and this is incorporated in the bench-

mark simulation in column 1. The simulation in column 2 produces the counterfactual out-

comes that would arise if families would space their births and plan the number of births as if

every child survived its infancy. The results show that this increases median birth interval

length by 5.89% and 6.35% in the two areas, in line with the replacement effects on birth inter-

vals found in other studies.

In the comparison area, the total replacement effect resulting from the infant mortality rate

of 68.5 per 1000 live births is an increase in the number of births by 3.72%, that is, 0.54 births

for every infant that died (37.2/68.5). In the icddr,b area, the replacement effect is an increase

of the total number of births by 2.20%, or 0.42 births for every infant that died. The larger

Table 5. Simulations.

Icddr,b area 1 2 3 4

Infant mortality/1000 livebirths 51.8 -0.27 4.85 1.63

Median birth interval (months) 43.12 5.89 -0.20 3.86

Mean number of births (fertility) 2.43 -2.20 0.01 -3.32

Mean number of survivors children 2.31 -2.18 -0.26 -3.40

Comparison area

Infant mortality/1000 livebirths 68.500 -3.57 1.56 0.43

Median birth interval (months) 35.95 6.35 -0.11 3.18

Mean number of births (fertility) 2.75 -3.72 -0.35 -5.68

Mean number of survivors susurvivorssurvchildrenvor children 2.56 -3.47 -0.46 -5.71

Notes: Column 1 presents simulated outcomes for the benchmark model. Columns 2–4 show percentage deviations from the benchmark outcomes that arise when

selected mechanisms are “switched off” as follows

Column 2: no effect of infant mortality on birth interval or probability of having another child

Column 3: no direct effect of lagged mortality on mortality

Column 4: birth spacing and family planning as if all children are boys (no gender preference in birth intervals or probability of having another child)

https://doi.org/10.1371/journal.pone.0195940.t005
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effect in the comparison area is mainly due to the larger response of the number of births to

the family composition variables in that area. Because of the longer birth intervals and the

reduction in births, eliminating the replacement effects also has an indirect effect on infant

mortality in the comparison area: it falls by 3.57% (2.45 per 1000 live births). In the icddr,b

area, this indirect effect is much smaller (-0.27%).

Column 3 shows what happens if the direct effect of mortality of the previous child on sur-

vival chances is eliminated. (It does not eliminate replacement effects.) Since this direct effect

was negative in both areas, eliminating it increases infant mortality: by 4.85% (2.51 infant

deaths per 1000 live births) in the icddr,b area and by 1.56% (1.07 per 1000 live births) in the

comparison area. The difference between the two areas is due to the larger negative state

dependence effect in the icddr,b area for short birth intervals, which can be explained by learn-

ing. Eliminating such a learning effect would increase infant mortality among children whose

previous sibling died. Because of replacement behaviour, the larger infant mortality rates indi-

rectly also shorten birth intervals and increase the probability to have a next birth, leading to

higher fertility, but Table 5 shows that the effects on the numbers of children (both children

born and children surviving infancy) are small, particularly in the icddr,b area with the smaller

replacement effects.

The final simulation (column 4) illustrates the importance of gender composition in the

number of births and birth spacing. We suppress gender preference by simulating counterfac-

tual birth and birth spacing processes, assuming that families behave as if all their children

were boys. This would lengthen the median birth interval by 3.86% in the icddr,b area and by

3.18% in the comparison area, and it would reduce total fertility by 3.32% in the icddr,b area

and by 5.68% in the comparison area. The interpretation is that for many families, not only the

target family size matters for family planning, but also the target number of sons (“son prefer-

ence”). Although these behavioural changes would reduce the infant mortality rates for higher

order births, the ultimate effect on the infant mortality rate is positive. This is due to a compo-

sition effect: since the number of higher order births is reduced, the weight of relatively risky

first births in the total infant mortality rate has increased.

6. Discussion

We analysed infant mortality and fertility behaviour with an important role of short birth

intervals, distinguishing causal mechanisms from unobserved heterogeneity and reverse cau-

sality by using dynamic panel data techniques, building on the model of Bhalotra and van

Soest. We used prospective data covering two rural areas in Matlab, Bangladesh: a treatment

area with extensive health and family planning services and a comparison area with the stan-

dard health services provided by the government.

The main goal was to explore the causal mechanisms between infant deaths and total fertil-

ity, and how birth spacing shapes this relationship. Comparing the findings in the two areas

reveals several significant differences resulting from the interventions [39]. We also tried using

dummies for whether specific interventions were introduced at the time of birth, but these

were not significant so that we are not able to analyse the efficiency of specific health or family

planning interventions.

Controlling for birth spacing, unobserved heterogeneity, and a large set of socio-demo-

graphic covariates, we found insignificant negative state dependence in the comparison area

but significant negative state dependence in the treatment area in case of short birth intervals.

In other words, a child born after a short birth interval has higher chances to survive its infancy

if the previous sibling died than if it survived. This can be due to learning, stimulated by the

extensive family health services in the treatment area. This finding is unique among studies of
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infant mortality. For example, [23] found higher risks of death during infancy in Matlab if the

previous sibling also died during infancy. [15] found positive state dependence in the neonatal

as well as the post-neonatal period. For India, [26] found that infant death of the previous sib-

ling increases the likelihood of infant death by between 2.2 and 9.2 percent points. Similarly,

[31] found a positive scarring effect of 4.8 percent points for Kenya. These studies do not con-

trol for birth intervals. In an earlier study ([35], Table 5), we also found negative state depen-

dence when keeping preceding birth intervals constant, but the negative effect is about two to

three times larger in the current study, which emphasizes the importance of allowing for the

endogeneity of birth-spacing in the model (namely correlation between the unobservables

driving mortality and fertility). This is in line with [40] where it was already discussed how

strong positive correlation between mortality and fertility biases the regression estimates and

possible corrections.

We find evidence of causal effects in two directions: a short preceding birth interval reduces

survival chances of infants, and an infant death increases the probability of a next birth and

shortens the time until the next birth (replacement behaviour). For the comparison area we

estimate that, as a result of replacement, 0.54 children are born for each infant death, com-

pared to 0.42 children in the icddr,b area with additional health and family planning services.

This finding is in line with [13], where a replacement effect of 0.55 births for each infant death

was found.

The negative effect of infant mortality on the birth interval is large in comparison area. The

literature provides evidence of biological effects through truncating the lactation period pro-

viding protection against fertility after a child death [41]. It is worth to note here that our

replacement measure includes both volitional and biological replacement effects [13] and we

cannot disentangle different replacement strategies discussed several replacement strategies.

We find that in the comparison area, mortality risk falls with birth interval length over

almost the complete range. In the icddr,b area, however, higher mortality risk is found after a

long birth interval, particularly after an infant death, suggesting that after an infant death and

a long interval the mother may behave as a mother who gives birth to her first child [42].

Estimates of reproductive behaviour are consistent with gender preference: having more

surviving boys significantly reduces the probability of having a next child and this effect is

strongest in the comparison area, in line with, e.g., [43]. In both areas, day labourers have

smaller chances to have more children, which is not in line of replacement hypothesis. This is

perhaps because their unstable labour market position makes it difficult for them to support a

larger family.

Concerning policies targeted at achieving the sustainable development goals to improve

reproductive health and reduce child mortality, the difference between the findings for the two

areas highlight the important role of extensive maternal and child health interventions. Com-

prehensive health infrastructure, providing extensive health services and health and family

planning information in the treatment area, strengthens learning effects that can reduce mor-

tality risk. Moreover, it changes family planning and reduces the size of replacement effects

after an infant death as well as the additional number of children due to boy preference.

Our study has several limitations that were already briefly discussed in the modelling and

data sections. We have used a selected sample, excluding families who migrated into or out of

the area during the relevant time period. Lack of available data prevented us from performing

a sensitivity analysis to investigate the effect of the selection procedure. On the other hand,

results in ([13], p. 395) suggest that the replacement effects do not vary substantially with the

sample selection. Stillbirths are discarded, and disentangling stillbirths from other mechanisms

that may cause a large birth interval seems a worthwhile extension of the model. Moreover, it

would be interesting to incorporate the use of contraception as an explicit tool for family
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planning ([44], for a possible way of modelling this), but the current data do not allow for this.

Local community effects were not considered either, due to the additional complexity this

would involve. Finally, we only consider infant mortality, which is hardly affected by the next

birth interval (which is typically longer than a year). An extension considering child mortality

(during the first five years of life) in which not only the preceding but also the subsequent

birth interval would play a role, seems another challenging extension of the current modelling

framework.
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