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De Novo Glutamine Synthesis:
Importance for the Proliferation
of Glioma Cells and Potentials for
Its Detection With 13N-Ammonia

Qiao He, MD1, Xinchong Shi, MD1, Linqi Zhang, MD2, Chang Yi, MD1,
Xuezhen Zhang, MD1, and Xiangsong Zhang, MD, PhD1

Abstract

Purpose: The aim of this study was to investigate the role of de novo glutamine (Gln) synthesis in the proliferation of C6 glioma
cells and its detection with 13N-ammonia.

Methods: Chronic Gln-deprived C6 glioma (0.06C6) cells were established. The proliferation rates of C6 and 0.06C6 cells were
measured under the conditions of Gln deprivation along with or without the addition of ammonia or glutamine synthetase (GS)
inhibitor. 13N-ammonia uptake was assessed in C6 cells by gamma counting and in rats with C6 and 0.06C6 xenografts by micro–
positron emission tomography (PET) scanning. The expression of GS in C6 cells and xenografts was assessed by Western blotting
and immunohistochemistry, respectively.

Results: The Gln-deprived C6 cells showed decreased proliferation ability but had a significant increase in GS expression.
Furthermore, we found that low concentration of ammonia was sufficient to maintain the proliferation of Gln-deprived C6 cells,
and 13N-ammonia uptake in C6 cells showed Gln-dependent decrease, whereas inhibition of GS markedly reduced the pro-
liferation of C6 cells as well as the uptake of 13N-ammoina. Additionally, microPET/computed tomography exhibited that sub-
cutaneous 0.06C6 xenografts had higher 13N-ammonia uptake and GS expression in contrast to C6 xenografts.

Conclusion: De novo Gln synthesis through ammonia–glutamate reaction plays an important role in the proliferation of C6
cells. 13N-ammonia can be a potential metabolic PET tracer for Gln-dependent tumors.
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Introduction

Metabolic reprogramming has been recognized as a major hall-

mark of tumor, which is characterized by upregulated glyco-

lysis and glutaminolysis, among others.1 Glycolysis and

glutaminolysis are 2 striking changes of tumor cellular bioe-

nergetics.2-7 In comparison with normal cells, cancer cells

prefer using glycolysis even in normoxic conditions. This

metabolic alteration of cancer cells was called Warburg

effect that paved the way for the development of 18F-

fluorodeoxyglucose positron emission tomography (18F-FDG

PET).7,8 Although most malignant tumors typically exhibited

an increased uptake of 18F-FDG, however, still a significant

number of malignant tumors display hypometabolism on
18F-FDG PET imaging. Besides, the main drawback of

18F-FDG PET imaging is the lack of sufficient contrast due

to high utilization of normal glucose in the brain.
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In addition to glycolysis, many tumors also rely on glutami-

nolysis for survival.4-6,9 Glutaminolysis is a series of biochem-

ical reactions catabolizing glutamine (Gln) into downstream

metabolites such as glutamate (Glu) and a-ketoglutarate (a-

KG). And a-KG then anaplerotically feeds into the tricarboxylic

acid (TCA) cycle as a means of providing proliferating cells with

biosynthetic intermediates and adenosine triphosphate

(ATP).4,5 This upregulated tumor metabolism is useful for meta-

bolic molecular imaging modality in the detection of tumor

lesions. Novel metabolic PET tracers, such as L-[5-11C]-gluta-

mine and 18F-(2S, 4R) 4-fluoroglutamine, focused on glutamino-

lysis could provide valuable complement to 18F-FDG PET.10,11

Although Gln is the most abundant amino acid in plasma,12 the

concentrations found in human plasma (0.6-1 mmol/L) are much

lower than those commonly used in tissue culture media (2-4

mmol/L). Furthermore, the intratumor concentration of Gln could

be much lower than that in plasma because of vascular and diffu-

sional limitations. For these reasons, cells may be limited by the

amount of Gln they are able to extract from the tumor microen-

vironment, and as a result, growth without dependence on a large

Gln influx may give a selective advantage to tumor proliferation.

As known, Gln could be synthesized from ammonia and Glu

catalyzed by glutamine synthetase (GS; enzyme commision

[EC] 6.3.1.2) that is the only known human enzyme catalyzing

this reaction, and an increased expression of GS in response to the

removal of Gln in culture medium has been shown in several

tumor cell lines.13-15 We speculated that de novo Gln synthesis,

in which ammonia is one of the major substrate, may provide Gln

for glutaminolysis and play an important role in tumor cell pro-

liferation. Hence, 13N-ammonia, a well-known PET tracer for

myocardial blood flow, may be used as a metabolic PET tracer

since it is a critical substrate for the synthesis of Gln. This study

was to investigate the role of de novo Gln synthesis in C6 glioma

cell proliferation and its potential detection with 13N-ammonia

that is trapped in cells mainly through Gln synthesis reaction.16

Materials and Methods

Cell Culture

C6 glioma cells were purchased from American Type Culture

Collection. Cells were cultured in Dulbecco Modified Eagle’s

Medium (Gibco, Grand Island, New York) supplemented with

10% fetal bovine serum (FBS; HyClone, Logan, Utah), 1%
penicillin/streptomycin (Life Technologies, Carlsbad, California)

at 37�C in a 5% CO2 atmosphere in a humidified incubator.

Chronic Gln-deprived C6 glioma (0.06C6) cells were estab-

lished from C6 cells subjected to a protocol of gradual Gln

deprivation as described. C6 cells were serially passed through

a medium containing 10% dialyzed FBS (dFBS; HyClone,

Logan, Utah) and progressively decreased the Gln concentra-

tions. At each passage, confluent dishes were harvested, and

half of the cells were seeded into a dish containing a medium

with a Gln concentration half of that in the preceding culture

until cells growing in a Gln concentration of 0.06 mmol/L were

obtained and deemed 0.06C6 cells.

Cell Proliferation Assay

C6 cells or 0.06C6 cells were plated in 96-well plates at

densities of 2 � 106 cells/mL (100 mL/well). Following 24

hours of attachment, the culture media were changed to Gln-

free media supplemented with 10% dFBS plus various con-

centration of Gln (200 mmol/L; Gibco; 0, 0.05, 0.5, 1, 2, or 4

mmol/L) or ammonia (7.5 M; Gibco; 0, 0.5, 1, 2, 5, 10, and

15 mmol/L). Afterward, the cells were cultured in a medium

containing 2 mmol/L L-methionine sulfoximine (L-MSO;

Aladdin Inc, China), with cells growing in media without

L-MSO serving as control groups. After the above treatment,

cell proliferation was assayed by Cell Counting kit-8

(Dojindo Co, Japan).

Western Blotting

The cytoplasmic cell lysates obtained by radioimmunoprecipi-

tation assay lysis buffer (Biocolor Co, China) were added in 2�
sample buffer and heated for 5 minutes at 95�C. Samples were

separated by 10% sodium dodecyl sulfate–polyacrylamide gel

electrophoresis and transferred onto a polyvinylidene difluor-

ide membrane. The membrane was blocked with 5% skim milk

in phosphate buffer saline (PBS) containing 0.1% Tween-20

probed with mouse antibodies against anti-GS (1:500; BD

Transduction Laboratories, South San Francisco, California)

and peroxidase-conjugated affinipure anti-mouse immunoglo-

bulin G secondary antibody (1:1000; Proteintech Group, Chi-

cago). The membranes were stripped and reprobed with an

anti-b-tubulin mouse monoclonal antibody (1:1000; Sigma,

Saint Louis, Missouri) as a loading control. Protein bands were

visualized with diaminobenzidine chromogenic substrate for

peroxidase (horseradish peroxidase) detections.

Cell Uptake Assay
13N-ammonia was produced at our center by applying standard

techniques and commercially available system for isotope gen-

eration (Ion Beam Applications; Cyclone-10, Belgium) as

described previously.17 The radiochemical purity of 13N-

ammonia was greater than 99%.

Cells were treated with medium containing serial concen-

trations of Gln with or without 2 mmol/L L-MSO. Two days

later, the culture medium was removed and the attached

cells were washed (�3) with ice-cold PBS. 13N-ammonia

diluted with PBS was added to each well (37 kBq/mL/well),

and the cells were incubated for 5 minutes at 37�C. Cellular

uptake was stopped by removing medium from the cells and

washing with ice-cold PBS. The cells were dissolved in 350

mL of 1 N sodium hydroxide, and the radioactivity in cell

lysate samples collected onto filter papers was measured

using a gamma counter. One hundred microliters of the cell

lysate were used for determination of the protein concentra-

tion by a modified Lowry protein assay. The data were

normalized as percentage uptake of initial dose relative to

100 mg of protein content.
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Animal Model and MicroPET/Computed Tomography

The animal experiments followed the guidelines of the Institu-

tional Animal Care and Use Committee of the First Affiliated

Hospital of Sun Yat-Sen University.

Two Sprague-Dawley male rats weighing between 200

and 250 g were obtained from the Sun Yat-Sen University

laboratory animal center, Guangzhou, China. C6 cells and

0.06C6 cells (5 � 106, in a volume of 0.5 mL) were sub-

cutaneously injected into the right foreleg and hind leg,

respectively. They were scanned when the volume of sub-

cutaneous xenografts had grown to above 250 mm3. With a

slide caliper, xenograft volumes were determined by mea-

surements of the larger tumor diameter (a) and the perpen-

dicular diameter (b). The volume (V) was calculated with

the following formula: V ¼ (a � b2)/2.

The rats were placed under abdominal anesthesia by 10%
chloral hydrate (4 mL/Kg) and injected intravenously (IV) with

1 mCi of 13N-ammonia. Computed tomography (CT) scanning

was started immediately after the injection, then PET imaging

was acquired after 10 minutes using a Siemens Inveon micro-

PET camera (Siemens Medical Solutions, Knoxville, Tennes-

see). The emission protocol involved a 15-minute static scan.

Body temperature of anesthetized animals in the scanner was

kept at 33�C to 40�C, using heating plate. Radioactivity in

tissues was measured and presented as the percentage injected

dose per gram (%ID/g). Regions of interest were drawn around

tumors (Ts) and the contralateral normal tissues (NTs), and the

tumor-to-background ratios (T/NT) were calculated.

Immunohistochemistry

C6 glioma specimens were obtained after microPET/CT imaging.

The tumor tissues were fixed in 4% paraformaldehyde and

embedded in paraffin. Sections were cut at 4 mm thickness and

incubated in 3% hydrogen peroxide for 10 minutes to block endo-

genous peroxidase. Subsequently, sections were incubated in

10% goat serum for 30 minutes at room temperature in order to

block nonspecific binding. Afterward, sections were incubated

overnight at 4�C with primary antibody (purified mouse anti-

GS, 1:1000), then incubated with biotinylated secondary antibody

(anti-mouse IgG, 1:500) followed by streptavidin biotin peroxi-

dase complex (streptavidin biotin peroxidase complex immuno-

histochemical kit) for 30 minutes at room temperature. The

immunoreaction was visualized using dolichos bifows agglutinin

(DBA) chromogenic reagent kit for 10 minutes at room tempera-

ture. Finally, the sections were stained with hematoxylin.

Statistical Analysis

Each experiment was repeated at least in triplicate, and mean

+ standard deviation was calculated for each value. Statistical

analysis of the results was performed using the Student t test

and 1-way analysis of variance by SPSS13.0, followed by Dun-

nett multiple comparison test. A P value <.05 was considered

significantly different.

Results

Proliferation of C6 Cells Is Gln Dependent

Gln dependency of C6 cells was demonstrated in Figure 1A and

B, which shows bar charts and growth curves obtained for cells

growing in the media containing various initial concentrations

of Gln. Medium containing an initial concentration of 4 mmol/

L supported rapid growth with a maximum cell proliferation. In

contrast, little cell growth was supported by an initial Gln

concentration of less than 0.25 mmol/L. To study the effect

of Gln on C6 cells subjected to gradual Gln deprivation, which

tumor in vivo would experience, controlled chronic Gln-

deprived C6 glioma (0.06C6) cells were established, and the

Gln dependency of 0.06C6 cells was examined by obtaining

bar charts and growth curves for these cells grown in media

containing various initial concentrations of Gln (Figure 1C and

D). Compared to C6 cells, 0.06C6 cells exhibited a relatively

Gln-independent growth.

Proliferation of C6 and 0.06C6 Cells Growing in Gln-Free
Media Supported by Low Concentration of Ammonia and
Reduced by GS Inhibitor L-MSO

To explore the role of de novo Gln synthesis from ammonia and

Glu in C6 cell proliferation, we first examined the effect of

ammonia on the viability and proliferation of cultured C6 and

0.06C6 cells plated in Gln-free media. The results showed that

low concentration of ammonia is sufficient to maintain the

survival and proliferation of C6 and 0.0cC6 cells, and the opti-

mal concentrations to their proliferation were 1 mmol/L and 2

mmol/L, respectively (Figure 2). A large amount of cells died

in the media containing high concentrations of ammonia (Fig-

ure 2A). We next tested the effect of GS inhibition on the

proliferation of C6 and 0.06C6 cells. Figure 3 shows that the

cells grown in media with L-MSO had a significant lower pro-

liferation, compared to that without L-MSO, and it was more

obvious in 0.06C6 cells.

GS Expression Increases in C6 Cells in Response to Gln
Deprivation

Western blotting analysis revealed that GS expression in C6

cells obviously increased in response to Gln deprivation, and it

was negatively related to the Gln concentration in culture

medium (Figure 4). Collectively, the results suggested that

GS was upregulated in Gln-deprived C6 cells.

13N-Ammonia Uptake in C6 Cells Correlates With Gln
Concentration and Is Inhibited by L-MSO

Then we explored the mechanism of 13N-ammonia trapping in

tumor cells. 13N-ammonia uptake in C6 cells showed Gln-

dependent decrease and almost completely inhibited by L-MSO

(Table 1).
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0.06C6 Xenografts Have Higher Uptake of 13N-
Ammonia and More Expression of GS Than C6
Xenografts

To further evaluate the uptake of 13N-ammonia in tumors in

vivo, animal models with subcutaneous C6 and 0.06C6 xeno-

grafts were established. All the 4 xenografts showed a signif-

icant uptake of 13N-ammonia (Figure 5A). 13N-ammonia

uptake in 0.06C6 xenografts was much higher than C6 xeno-

grafts, which resulted in very high tumor to background ratios

(T/NT) (2.55 vs 2.84; 2.50 vs 3.88; Figure 5B). We examined

GS expression in C6 and 0.06C6 xenografts using immuno-

histochemistry. The immunohistochemistry staining for GS

showed that much more abundant GS-positive staining was

observed in 0.06C6 sections compared to C6 sections, which

demonstrated relatively higher expression of GS in C6 xeno-

grafts (Figure 5C).

Discussion

It has been demonstrated during the 1950s that Gln plays an

essential role in cellular proliferation.18 Subsequent studies

demonstrated that Gln not only is a major biosynthetic precur-

sor serving as a carbon and nitrogen source, and an electron

donor, but also has an energetic function equally important to

that of glucose during cellular proliferation.19,20 Furthermore,

it has been shown that Gln, not glucose, is the major energy

source for cultured hela cells, and series of cell lines have been

proved to be Gln dependent.21 In this study, we demonstrated

that C6 glioma cells are highly dependent on Gln in culture

media. Low concentrations of ammonia could maintain the

survival and proliferation of C6 cells in Gln-free medium, and

the addition of L-MSO could inhibit the proliferation effec-

tively. This indicates that de novo Gln is synthesized from

ammonia and Glu for cell proliferation, in which GS is the key

catalytic enzyme. So we suggest that coupling glutaminolysis

and de novo Gln synthesis (ammonia–Glu–Gln axis) in C6 cells

is the key to its growth and proliferation. The catalytic enzymes

of ammonia–Glu–Gln axis are glutaminase (GLS) and GS. The

mitochondrial GLS catalyze hydrolysis of Gln to ammonia and

Glu (glutaminolysis). On the contrary, GS locates in cytoplasm

to catalyze Gln synthesis with ammonia and Glu (de novo Gln

synthesis). The regulation of GS has been well documented,

and Gln deprivation is one of the most commonly reported

factor for the regulation of GS expression as proved in this

study.14,15,22

The increasingly emerging evidence suggests that

ammonia-Glu-Gln axis may play an important role in cancer

Figure 1. Role of glutamine (Gln) on the proliferation of C6 cells. Cell proliferation assays were performed on C6 cells (A and B) and 0.06C6
cells (C and D) 48 hours and several consecutive days after exposure to various concentration of Gln, respectively. Data points are the mean for
more than triplicate determinations, with error bars representing standard deviations. Each bar represents the mean of 3 independent
experiments. *P < .05.
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biology. In addition to producing Gln for cancer metabolism,

the metabolism axis can mediate the levels of ammonia. It is

well known that hyperammonemia results in neurotoxicity

through oxidative stress, the mitochondrial permeability transi-

tion, mitogen activated protein kinase (MAPK) and nuclear

factor kB, and the GS reaction in astrocyte protect ammonia

neurotoxicity by converting excess ammonia and Glu into

Gln.23,24 The similar mechanism may take place in the tumors

with the increased glutaminolysis which generate ammonia. In

this study, we observed that the de novo Gln synthesis plays a

significant role in C6 cell proliferation through upregulation of

GS expression. The increased GS protein levels supported

these cells to survive and grow in a Gln-deficient medium, and

this compensated function was inhibited by specific GS

enzyme inhibitor L-MSO.

With the consideration that de novo Gln synthesis may be

a potential target for diagnosis and treatment of gliomas, it

would be ideal if there is a mean to detect it in vivo in

tumors noninvasively. 13N-ammonia has long been proved

to be a good circulatory PET tracer, since the small molecu-

lar weight makes it more sensitive for blood brain barrier

(BBB) destruction of brain tumors.25,26 The 13N-ammonia

Figure 2. Effect of ammonia on the growth and proliferation of C6 and 0.06C6 cells in glutamine (Gln)-free media. (A) Micrographs of C6 cells
were taken at 100�magnification 48 hours after growth in Gln-free media with various concentration of ammonia. (B and C) Cell proliferation
assays were performed on C6 cells and 0.06C6 cells 48 hours after growth in Gln-free media with various concentration of ammonia. Each bar
represents the mean + standard deviation of 3 independent experiments. *P < .05.
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extraction in brain tissues mainly depends on cerebral blood

perfusion, capillary permeability–surface product, and the

ammonia–Gln synthesis reaction.16 In the 1980s, Schelstraete

et al reported that there was a substantial accumulation of
13N-ammonia in a series of malignant tumors, including

breast cancer, soft tissue sarcomas, malignant lymphomas,

and metastasis prostatic carcinoma.27 Recently, Xiangsong

et al reported that a relatively high uptake of 13N-ammonia

was seen in cerebral astrocytomas and meningiomas, and that

it has a potential value in the evaluation of brain

tumors.17,28,29 Shi et al demonstrated that the uptake of
13N-ammonia in prostate cancers is related with GS expres-

sion.30 But the mechanism of 13N-NH3 used in tumor ima-

ging is still not very clear. In this study, we observed the high

uptake of 13N-ammonia in C6 cells and its xenografts in rats,

and the uptake of 13N-ammonia in C6 cells decreased in a

Gln-dependent manner. What is more, this uptake could

almost be completely inhibited by L-MSO. The xenografts

originated from chronic Gln-deprived C6 glioma (0.06C6)

cells that had the higher GS expression exhibited a higher

uptake of 13N-ammonia than C6 xenografts. Glutamine

synthetase is now the only known mammalian enzyme to

catalyze the ATP-dependent condensation of ammonia and

Glu to form Gln. These results suggest that 13N-ammonia

is retained in C6 cells by the mechanism of de novo Gln

synthesis, especially in the Gln-deficient tumors owing to

higher GS expression, which may catalyze the synthesis of

more Gln and make more 13N-NH3 retain in cells.

Blood Gln concentration is much lower than that in the cell

culture media, and vascular and diffusional limitations could

further decrease the local Gln concentrations. Thus, as tumors

grow and cause a chronic and progressive Gln deprivation, they

Figure 3. Effect of glutamine synthetase (GS) inhibition on the proliferation of C6 cells. Cell proliferation assays were performed on C6 cells (A)
and 0.06C6 cells (B and C) 48 hours after culture in glutamine (Gln)-free media supplemented with 2 mmol/L L-methionine sulfoximine (L-MSO)
and serials concentration of Gln or ammonia. The cells cultured in media without L-MSO served as control groups. Each bar represents the mean
+ standard deviation of 3 independent experiments. *P < .05.
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tend to adapt to a nutrient-poor intratumoral environment. Low

extracellular Gln concentrations may restrict Gln influx into

tumor cells, forcing cell metabolism to shift from glutamino-

lysis to Gln synthesis to replenish intracellular Gln pool.

Although L-[5-11C]-glutamine and 18F-(2S,4R)4-

fluoroglutamine were recently developed for PET imaging of

glutaminolysis in tumors,10,11,31 they cannot reflect the de novo

Gln synthesis in tumors. 13N-ammonia could provide a valu-

able complement to them.

Conclusion

The results of this study show that the de novo Gln synthesis

through ammonia–Gln reaction, which increases in response to

Gln deprivation in media by upregulating GS expression, plays

a significant role in C6 cell proliferation. 13N-ammonia can be

taken up by tumor cells through de novo Gln synthesis, and it

may be useful as a novel metabolic PET tracer for tumor ima-

ging for the study of a fundamental change in tumor metabo-

lism with high-rate glutaminolysis, more sensitively for the

Gln-deficient tumors.

Table 1. Uptake of 13NAammonia in C6 Cells: Gln-Dependent
Decrease and Inhibition by L-MSO.

Group
Concentration of

Gln (mmol/L)a

%ID/100mgProb

�MSO þMSOc

1.00 0 1.501 + 0.305 0.002 + 0.001
2.00 0.05 1.372 + 0.305 0.002 + 0.001
3.00 0.25 0.996 + 0.249 0.002 + 0.000
4.00 0.5 0.859 + 0.157 0.002 + 0.000
5.00 1 0.672 + 0.035 0.002 + 0.000
6.00 4 0.627 + 0.018 0.001 + 0.000

Abbreviations: Gln, glutamine; L-MSO, L-methionine sulfoximine.
a The media used were Gln-free medium supplemented with the known con-
centration of Gln.
b The values are means + standard deviation of 3 independent experiments
with triplicate assays for each.
c

L-MSO, 2 mmol/L, was added to the media.

Figure 4. Glutamine synthetase (GS) expression of C6 cells in
response to glutamine (Gln) deprivation. (A) GS protein synthesis in
C6 cells was detected by Western blotting 48 hours after different
levels of Gln deprivation. (B) Relative GS protein contents were cal-
culated by Image lab software and normalized to the expressions of
b-tubulin. Single samples were obtained and evaluated for each Gln
concentration. Each bar represents the mean + standard deviation of
3 independent experiments. *P < .05.

Figure 5. Micro–positron emission tomography/computed tomo-
graphy (PET/CT) images obtained with rats bearing subcutaneous
xenografts derived from C6 cells and 0.06C6 cells. (A) Representative
decay-corrected transverse section microPET/CT images 10 minutes
after intravenous injection of 13N-ammonia (1 mCi per mouse). The
subcutaneous xenografts are indicated by 2 crossed dotted red line. (B)
The radioactivity ratios of xenografts to the contralateral normal
tissue (T/NT) were based on the quantitative regions of interest
(ROIs) analysis from 13N-ammonia microPET/CT. (C) Hematoxylin
and eosin (H&E) stains, glutamine synthetase (GS) in immunohisto-
chemistry (IHC)
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