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Abstract

The Alzheimer0s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the

most comprehensive challenge to date with regard to the number of subjects, considered

features, and challenge participants. The initial objective of TADPOLE was the identification

of the most predictive data, features, and methods for the progression of subjects at risk of

developing Alzheimer0s. The challenge was successful in recognizing tree-based ensemble

methods such as gradient boosting and random forest as the best methods for the prognosis

of the clinical status in Alzheimer’s disease (AD). However, the challenge outcome was lim-

ited to which combination of data processing and methods exhibits the best accuracy;

hence, it is difficult to determine the contribution of the methods to the accuracy. The quanti-

fication of feature importance was globally approached by all the challenge participant meth-

ods. In addition, TADPOLE provided general answers that focused on improving

performance while ignoring important issues such as interpretability. The purpose of this

study is to intensively explore the models of the top three TADPOLE Challenge methods in

a common framework for fair comparison. In addition, for these models, the most meaningful

features for the prognosis of the clinical status of AD are studied and the contribution of

each feature to the accuracy of the methods is quantified. We provide plausible explanations

as to why the methods achieve such accuracy, and we investigate whether the methods use

information coherent with clinical knowledge. Finally, we approach these issues through the

analysis of SHapley Additive exPlanations (SHAP) values, a technique that has recently

attracted increasing attention in the field of explainable artificial intelligence (XAI).

1 Introduction

Alzheimer0s disease (AD) involves a progressive deterioration of neuronal structures and brain

function, leading to severe cognitive impairment, dementia, and, ultimately, death [1]. The

most consistent risk factor for developing AD is advancing age [2, 3]. Owing to the estimated
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growth rate of the global population aged 65 and above in future decades, a considerable

increase is expected in the proportion of people suffering from AD.

Clinical research on treatments against AD is approached in two different directions [4, 5].

Some researchers are working toward developing treatments that slow down or reverse the

loss of cognitive abilities. Other researchers are working toward developing ways to diagnose

the cause of dementia as early as possible in order to design preventive therapies. To date, the

development of effective protective or preventive therapies has been hindered by limited

knowledge on the causes and mechanisms of the neurodegenerative processes underlying AD.

The community agrees on the importance of early diagnosis and accurate prognosis in the suc-

cess of either the protective or the preventive approach to the treatment of AD [6].

To conduct diagnosis, clinical experts must interpret high-dimensional multi-modal data,

including the clinical history of the patients, the outcomes of different cognitive tests, brain

scans of different imaging modalities, and mutations of genetic information [7]. Diagnosis is

known to be highly subjective. Beach et al. reported a sensitivity range of 70.9 to 87.3 and a

specificity range of 44.3 to 70.8 in the identification of probable AD individuals [8]. Postmor-

tem analyses have reported errors in diagnosis of up to 20% of cases [9]. The prognosis of pro-

gression to a more severe condition is even a harder problem.

Computational systems for facilitating the diagnosis and prediction of patient condition

may enable clinicians to identify the best treatment options in a personalized manner and

assess the changes in disease indicators owing to the effect of treatments [10]. Artificial intelli-

gence (AI) is playing an increasingly relevant role with the emergence of computer-aided sys-

tems and compelling tools for performing diagnosis and predicting disease evolution [11, 12].

In recent decades, several initiatives have been conducted in the form of challenges to identify

the best-performing systems for the diagnosis or prognosis of AD from different types of bio-

markers [13–15].

Among them, The Alzheimer0s Disease Prediction Of Longitudinal Evolution (TADPOLE)

Challenge is probably the most comprehensive challenge to date with regard to the number of

subjects, considered features, and challenge participants [15, 16]. TADPOLE deals with the

problem of prognosis. The challenge focuses on forecasting the trajectories of three key fea-

tures, namely clinical status, cognitive decline, and ventricle atrophy, over a five-year period.

The initial objective of TADPOLE was the identification of the best-performing data process-

ing, features, and methods for the prediction of the progression of subjects at risk of develop-

ing AD. The challenge provided a dataset from the Alzheimer0s Disease Neuroimaging

Initiative (ADNI) with a complete history of measurements obtained from demographics, cog-

nitive tests, different imaging modalities, and genetics. In addition, it provided a dataset with

forecast measurements in real time, which constitutes an actual evaluation set for AD evolu-

tion. In the following, we focus on the problem of clinical status prediction.

The results of the TADPOLE Challenge were revealing and identified tree-based ensemble

methods such as gradient boosting and random forest in the first positions for the prognosis of

the clinical status [17]. Unexpectedly, the highest position for a neural network method was

achieved by a long-short term memory network (LSTM), i.e., the ninth position. Feature

importance was studied globally, using the outcomes of all the challenge methods. Amyloid

beta measured from the cerebrospinal fluid (CSF) puncture, image features from DTI, and

APOE status contributed toward the highest accuracy. Meanwhile, image features from tau,

amyloid PET, and FDG-PET contributed toward the worst accuracy. The data processing

showed considerable variability with differences in record selection, data encoding, augmenta-

tion, and imputation of missing values proposed by the challenge participants.

Owing to the challenge design, TADPOLE provided answers limited to identifying which

combination of data processing, feature selection, and methods exhibits the best accuracy
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metrics. The variability in data preprocessing and feature selection may contribute toward bet-

ter or worse accuracy of the methods; hence, it is difficult to determine the contribution of the

methods to the accuracy. The same problem arises in the assessment of the importance of a

given feature in disease diagnosis. In addition, the challenge focused mainly on improving per-

formance while ignoring interpretability issues one more time. It is well acknowledged that the

patterns learned using complex and accurate models may not be coherent with clinical knowl-

edge. Therefore, accurate methods should be provided with a set of easily understandable

explanations as to why or how the method reaches a specific decision and whether this reason-

ing is coherent with the knowledge applied in clinical practice.

To obtain deeper insights into the performance of the TADPOLE Challenge methods, it is

necessary to perform a comparative assessment of the different models generated by the meth-

ods under the same data preprocessing choices. In addition, it would be of interest to study the

importance given by each method to the features as well as to establish whether they are con-

sistent with clinical knowledge in order to gain a better understanding of the mechanisms

involved in the correct or incorrect diagnosis and predictions. Thus, the purpose of this study

is to delve into the following questions using explainable artificial intelligence (XAI) [18–20]:

• Why did the best methods achieve the best accuracy metrics?

• How can we quantify the contribution of each feature toward achieving the best accuracies?

• Which features were the most meaningful for the best methods?

• Do the best methods use information coherent with clinical knowledge?

The answers to these questions are relevant to increasing or decreasing trust in the best-per-

forming TADPOLE Challenge methods for the prognosis of AD toward realizing actionable

systems useful in clinical practice.

Our study focuses on the top three methods, namely gradient boosting (Frog), random

forest (ThreeDays), and support vector machine (EMC-EB). We built three models trained

with balanced versions of the original TADPOLE training set. We performed the same pre-

processing of the data for the three models for fair comparison of the methods. As a first

approach toward model interpretability in this problem, we studied the importance given

by the models to the features by analyzing the system built-in importance, when available,

and the SHapley Additive exPlanations (SHAP) values, a recent technique proposed for

XAI [20–22]. Both built-in importance and SHAP have been shown to be suitable for quan-

tifying the contribution of a given feature toward the obtained accuracy. In addition, the

various ways of representing the information provided by SHAP explainers enabled us to

establish whether the models can use feature values that are coherent with clinical

knowledge.

Explainable AI has recently started to provide interesting insights into machine learning

methods for the diagnosis of AD. Within the TADPOLE Challenge framework, Moore et al.

[17] used permutation-based importance in random forests. They found that the diagnosis,

participant identifier, and time delay were the most important features. On the basis of these

results, the authors argued that the method worked as expected, as the best predictor of future

diagnosis should be the last diagnosis, especially for short time horizons, and time should help

modulate the confidence in the prevalence of the last diagnosis label. Nguyen et al. [23] used

feature ablation to establish the impact of different features on the prediction performance.

The authors found that ablating diagnosis resulted in the most significant drop in the evalua-

tion metrics. The drop obtained by ablating the Clinical Dementia Rating-–Sum of Boxes mea-

surement (CDR-SB) was also significant.

PLOS ONE XAI toward understanding TADPOLE challenge methods in AD diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0264695 May 6, 2022 3 / 32

https://doi.org/10.1371/journal.pone.0264695


Outside the TADPOLE Challenge framework, El–Sappagh et al. [24] recently proposed the

use of SHAP values in a random-forest-based multilayer multimodal detection and prediction

model. The detection layer performs classification into Alzheimer’s disease, mild cognitive

impairment, and cognitive normal subjects (AD/MCI/CN). The prediction layer establishes

the distinction between stable and progressive MCI subjects (sMCI/pMCI) in a three-year

window. Our study differs from El–Sappagh’s work in the following aspects. First, our study is

conducted within the TADPOLE Challenge framework; therefore, the data used for training,

testing, and evaluation are those established by the challenge organizers. El–Sappagh et al.

reduced the feature set to a total of 28 baseline features through automatic feature selection

and manual expert verification; features outside the TADPOLE Challenge were included

among the 28 features. The interpretability study was reduced to random forests. By contrast,

we consider a total of 1818 features from both baseline and follow-up visits. We focus on the

problem of prognosis, as it is the objective of the TADPOLE Challenge. We present an

interpretability study for three methods, including random forests. Both El–Sappagh’s study

and our study make valuable contributions toward providing a complete understanding of the

problem through interesting methods recently proposed in the emerging field of XAI. These

systems may be combined with more sophisticated methods for dealing with multi-modal

information toward realizing truly actionable explainable systems [25].

The remainder of this paper is organized as follows. Section 2 describes the datasets and

data processing methods used in our study. Sections 3 and 4 describe the methods and evalua-

tion metrics considered in our work. Section 5 presents the results of our study. Section 6 pro-

vides an analysis of our results in the context of the findings in the state of the art. Finally,

Section 7 discusses the most remarkable results of our work and draws some interesting

conclusions.

2 TADPOLE Challenge dataset: Description and processing

The training and test sets used in this study were built from the longitudinal dataset provided

by the TADPOLE Challenge organizers, namely D1 and D2 data (https://tadpole.grand-

challenge.org/Data). In addition, the future set D4 was used for evaluation. From D2, the last

record from each patient in D4 was reserved as the test data and all the records from the test

subjects were removed from the training set candidates to avoid data leakage.

The original sets include 12 734 samples for training, and 219 and 234 samples for testing

and evaluation, respectively. We removed from the training set any record from the subjects in

the test set. Further, we balanced the training set by a random under-sampling of the over-rep-

resented diagnosis groups. The resulting sets include 7 001 samples for training, and 219 and

210 samples for testing and evaluation, respectively. Table 1 lists the number of subjects for the

different diagnosis groups in the data-leakage-corrected and balanced training, test, and evalu-

ation datasets.

Table 1. Number of cognitive normal (CN), mild cognitive impairment (MCI), and Alzheimer0s disease (AD) individuals in the training, test, and evaluation sets

used in this work.

train (corrected, D1-D2) train (balanced, D1-D2) test (D2) eval (D4)

CN 2730 2337 106 86

MCI 4141 2337 98 92

AD 2337 2337 15 32

Total 9208 7001 219 210

https://doi.org/10.1371/journal.pone.0264695.t001
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The clinical criteria for diagnosis in ADNI can be found in [26]. First, memory complaints

were recorded on the basis of cognitive exams. The CN subjects had no complaints, whereas

the MCI and AD subjects had complaints. Then, the mini-mental state examination (MMSE)

results were observed. These results ranged from 24 to 30 for CN and MCI subjects and from

20 to 26 for AD subjects. The clinical dementia rating (CDR) score was 0 for CN subjects, 0.5

for MCI subjects, and 0.5 or 1 with a mandatory requirement of the memory box score for AD

subjects. Finally, the Wechsler Memory Scale-Revised (WMS-R) was used with cutoff scores

based on education. Subjects with scores coherent with a given group were selected to partici-

pate in the ADNI cohort. From these criteria, the TADPOLE Challenge includes CDRSB_bl,

CDRSB, MMSE_bl, and MMSE as features where bl denotes baseline measurements.

The training and test sets were processed using TADPOLE-SHARE code (https://tadpole-

share.github.io). The diagnosis column was created from the feature DXCHANGE according to

TADPOLE-SHARE convention. As a result, the records were categorized into CN, MCI, and

AD labels. After this labeling, a considerable number of records (hundreds) have an empty

diagnosis. We performed imputation of these labels using nearest-neighbor interpolation

based on the patient closest early time points. Seven records with a single visit and no clinical

diagnosis were excluded from the original training set, and 24 patients without clinical diagno-

sis were excluded from the original evaluation set. Our imputation of diagnosis differs from

that used in TADPOLE-SHARE, thus obtaining a larger amount of valuable training data.

Then, categorical information was replaced by numerical values, and a total of 89 features evi-

dently irrelevant to the diagnosis problem (e.g., update stamp dates) were manually selected

and removed, yielding training and test sets with 1818 features. Finally, empty values were

imputed using the values of the closest early time points or the mean of the training set data

when nearest-neighbor interpolation could not be applied. The same imputation method is

provided with TADPOLE-SHARE code.

A complete description of the TADPOLE features with the source table from ADNI is pro-

vided at https://github.com/swhustla/pycon2017-alzheimers-hack/blob/master/docs/data_

dictionary.md. The features can be divided into clinical history data, cognitive features, Apoli-

poprotein E4 gene (APOE4), summary anatomical (MRI, DTI) and metabolic features (PET)

computed from images, and cerebrospinal fluid (CSF) biomarkers. These features are typically

found in the ADNIMERGE table, which contains key ADNI features in a single table. Addi-

tional features from the UCSFFSL, UCSFFSX, BAIPETNMRC, UCBERKELEY, DTIROI, and

UPENNBIOMK9 tables are included in the list of TADPOLE features. UCSFFSL and

UCSFFSX features are obtained from FreeSurfer segmentations of magnetic resonance imag-

ing (MRI) (L denotes the longitudinal while X denotes the cross-sectional value). The BAI-

PETNMRC features are summaries from positron emission tomography (PET) images.

UCBERKELEY are features from UC Berkeley Florbetapir F18-AV-45 PET (AV45) and

F-AV1451 Brain Tau PET (AV1451) analysis. DTIROI are measures from diffusion tensor

imaging (DTI). Finally, UPENNBIOMK9 are features from CSF puncture results. These are

biomarkers of proteomic nature. For many TADPOLE participant methods, the clinical diag-

nosis is considered as a feature.

3 TADPOLE Challenge methods

The exact reproducibility of the best-performing TADPOLE Challenge methods is difficult

owing to the lack of both code availability and the scarce details of their implementation. As

one of the objectives of this study is to determine the contribution of pure machine learning

methods to the accuracy in diagnosis prediction and focus on interpretability, we implemented

plain versions of the different systems trained with the underlying machine learning method.
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In the following, we describe the methods used in our work as well as the factors that distin-

guish them from the TADPOLE Challenge participant methods.

3.1 Gradient Boosting (XGB)

The winner of the diagnosis forecast in the TADPOLE Challenge was Frog, a system built on a

gradient boosting machine with XGBoost [27]. Gradient boosting is a model ensemble of indi-

vidual decision trees that are trained sequentially such that a new tree improves the error of

the previous tree ensemble. XGBoost is an optimized distributed gradient boosting library. Its

high efficiency is achieved through a parallel tree boosting algorithm that is known to accu-

rately solve data science problems involving billions of examples.

The most relevant hyperparameters of gradient boosting are the learning rate (learnin-
g_rate), maximum tree depth (max_depth), number of trees to fit (n_estimators),

and L2 regularization weight (reg_lambda). We performed hyperparameter selection using

a randomized search with the RandomizedSearchCV class available in scikit-learn with

five-fold cross correlation. We found that the default hyperparameters provided a system

whose accuracy is close to that of the best-performing model. Therefore, XGBoost has been

executed in our study with the default hyperparameter values: learning_rate = 0.3,

max_depth = 6, n_estimators = 100, and reg_lambda = 1.

In the TADPOLE one-year follow-up paper [16], the XGBoost system of Frog used 70 fea-

tures from the original data. These features were augmented, yielding a total of 420 features.

The selected features included clinical diagnosis, cognitive tests (ADAS-Cog13, CDRSB,

MMSE, RAVLT), MRI, FDG-PET, CSF measurements, and APOE status. However, the exact

list of features is not available. Augmentation was performed on the basis of the most recent

measurement and time, historical highest and lowest measurements and time, and most recent

change in measurement. Missing data were filled automatically by XGBoost through inference

based on the reduction of the training loss. Prediction was performed using different forecast

windows.

We depart from Frog system implementation by using all the available features and the lon-

gest available forecast window. Augmentation was not considered in this work. Although

XGBoost can automatically fill in the missing data, we decided to conduct the same imputation

procedure for all the methods in our study.

3.2 Random Forests (RF)

The runner-up of the diagnosis forecast in the TADPOLE Challenge was ThreeDays, a random

forest (RF) machine. RF is a model ensemble that consists of a large number of decision trees.

Each individual tree in the forest performs one class prediction, and the class with the majority

of the votes becomes the model prediction. The trees in a forest are uncorrelated models that

together produce ensemble predictions that are more accurate than any of the individual pre-

dictions. Uncorrelation is the key to a successful ensemble. It is obtained from random selec-

tion of different sets of data and different features for each tree.

The most relevant hyperparameters of RF are the method for sampling data points (boot-
strap), maximum number of levels in the tree (max_depth), number of features to be con-

sidered at every split (max_features), minimum number of samples required at each leaf

(min_samples_leaf) and to split a node (min_samples_split), and number of trees

in the forest (n_estimators). As with XGB, we performed hyperparameter selection using

RandomizedSearchCV. We also found that the default hyperparameters provided the

same accuracy as those of the best-performing model. Therefore, RF has been executed in our

study with the default hyperparameter values: bootstrap = True,
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max_depth = None, max_features = auto, min_samples_leaf = 1, min_
samples_split = 2, n_estimators = 100.

In the TADPOLE one-year follow-up paper [16], the ThreeDays system was built with a

manual selection of 16 features, namely clinical diagnosis, age, months since baseline, gender,

race, marital status, cognitive tests (MMSE, CDRSB, ADAS11, ADAS-Cog13, RAVLT immedi-

ate, learning, forgetting, and percent forgetting, FAQ), and APOE status. No imputation was

performed in the data, as their RF implementation deals with missing data automatically, by

finding optimal splits based on existing data. Two RFs were trained, the first for transitions

from CN to AD and the second for transitions from MCI to AD. The authors made the follow-

ing assumptions in the model: CN individuals always evolve to MCI, MCI individuals evolve

to AD, and the diagnosis does not change for AD individuals. The model does not consider

valid backward situations in diagnosis. A similar method with a single random forest for all

the predictions has been described in [17].

Again, we depart from the ThreeDays system implementation using all the available features

and a single RF for the diagnosis prediction problem. Our RF implementation did not deal

with missing data automatically; hence, the missing data were imputed. We do not consider

the diagnosis assumptions, as we can find some counterexamples in the data owing to possible

corrections in diagnosis.

3.3 Support Vector Machines (SVM)

The top three diagnosis forecasts in the TADPOLE Challenge are completed with EMC-EB, a

support vector machine (SVM). Given the number of features, n, SVM aims to find a hyper-

plane in an n-dimensional space that best classifies the training data points. The hyperplane

maximizes the distance between the points of both classes (maximum margin). The selection

of the maximum margin hyperplane as the classification boundary increases the confidence in

the algorithm for obtaining correct classifications in unseen data.

The most relevant hyperparameters of SVM are the kernel, the C-parameter, which is a reg-

ularization parameter related to the margin size, and γ, which is used to set the size of the ker-

nel. In this work, we used a radial basis function kernel (RBF), C was set to 0.5, and γ was

automatically selected depending on the number of features. These hyperparameter values

were selected by the authors of EMC-EB.

In the TADPOLE one-year follow-up paper [16], the EMC-EB system used 200 features

from the original data. The features were selected from those showing the largest change over

time in subjects who progressed to AD. The file can be found with TADPOLE-SHARE source

code (http://tadpole-share.github.io). The selected features included clinical diagnosis, cogni-

tive tests, FreeSurfer cross-sectional MRI volumes, PET and DTI measures, and CSF features.

Missing data were imputed using nearest-neighbor interpolation from the subject’s earlier

timepoints. When this was not possible, the missing data were imputed from the mean values

in the training set.

In this work, we only depart from the EMC-EB system implementation by using all the

available features.

3.4 Benchmark methods

Benchmark methods were provided by the TADPOLE Challenge organizers. The source code

was offered to the participants before the deadline as a starting point for making predictions.

The evaluation scores obtained using these methods constitute the lower bound of the accu-

racy expected for the best-performing methods.
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3.4.1 Last visit. This method uses clinical diagnosis as the only available feature. The pre-

diction is obtained by assigning 100% probability to the last available diagnosis and 0% to the

other diagnoses.

3.4.2 Mixed effects APOE. This method uses the diagnosis, age, ADAS13, and APOE sta-

tus as features. A mixed-effects model is built using the APOE status as a covariate. The subject

age at each visit is selected as the predictor variable, and the predictions are derived from the

ADAS13 forecasts using three Gaussian likelihood models for the CN, MCI, and AD status.

Then, likelihoods are converted into probabilities by normalization and, the prediction is com-

puted from these probabilities.

3.4.3 SVM. This method uses the clinical diagnosis, age, ADAS13, ventricles, ICV, and

APOE status as features. The SVM is implemented with a linear kernel. Missing data are

imputed using the average value of the biomarker from past visits of the same subject or the

population average if past information is not available. In this work, we also consider an SVM

trained with the whole set of 1818 features.

3.5 TADPOLE Challenge metrics for evaluation

The metrics proposed in the TADPOLE Challenge for the evaluation of the systems in the

problem of clinical status prognosis were the multi-class area under the receiver operating

curve (mAUC) and the overall balanced classification accuracy (BCA). The detailed expres-

sions of these metrics can be found in https://tadpole.grand-challenge.org/Performance_

Metrics.

The mAUC is an extension of the classical ROC analysis from binary to multi-class prob-

lems. Given AUC(Ci|Cj), the AUC for the classification of a class Ci against Cj, the overall

mAUC is given by

mAUC ¼
2

CðC � 1Þ

XC

i¼2

Xi

j¼1

AUCðCijCjÞ þ AUCðCjjCiÞ

2
; ð1Þ

where C is the number of considered classes. Intuitively, the mAUC measures the degree to

which the model is capable of correctly distinguishing between classes; a higher degree is

desirable.

The overall BCA is given by the mean of the balanced accuracies for each class:

BCA ¼
1

C

XC

i¼1

BCAi; ð2Þ

where

BCAi ¼
1

2

TP
TP þ FN

þ
TN

TN þ FP

� �

; ð3Þ

and TP, FP, TN, and FN represent the number of true positives, false positives, true negatives,

and false negatives, respectively, for the class Ci. Intuitively, the BCA provides a balanced

assessment of true positives/negatives and false positives/negatives obtained by the model.

4 Explainable AI

Explainable AI (XAI) is a recent subfield of AI that aims to provide explanations of general

machine learning algorithms while focusing on the most complex families of methods that

have been traditionally considered as black boxes [18, 20]. The objective of XAI is to leave out

the trade-off existing between accuracy and explainability and provide both powerful and
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explainable systems with arguments for increasing the confidence in the output of the

algorithms.

Explainability technically highlights the relevant parts of a system that contribute toward

model accuracy during training or toward a specific correct or incorrect prediction for a par-

ticular observation during testing or evaluation [28]. The concept has been recently linked

with causability, which is defined as the extent to which an explanation to a user achieves a

specified level of effective, efficient, and satisfactory causal understanding in the context of use

[29, 30]. Causability provides criteria for measuring and ensuring the quality of explanations.

Explainability linked with causability improves causal understanding; thus, AI methods and

explanations become trustable and actionable, i.e., the actions that should be taken become

clear for decision makers [30]. Thus, explainability is important first step toward fully action-

able and interpretable AI systems.

The different techniques in XAI facilitate the establishment of the importance given to the

different features by the system, assessing how a particular feature affects model predictions,

or which feature values favor or hinder correct or incorrect predictions. All this information

can help ensure whether only significant features coherent with current knowledge are used to

infer the output for the application of interest. In this work, we focus on the built-in impor-

tance scores of interpretable machine learning methods and SHAP.

4.1 Built-in importance scores

XGB and RF are ensembles of decision trees; therefore, the models can provide estimates of

the importance given to different features. In XGB, the importance measures how valuable

each feature is in the construction of the boosted decision trees within the model. The more an

attribute is used to make key decisions within the trees, the higher is its relative importance.

The importance is measured from the amount by which each feature split point improves the

performance measure (gain). Another measure of importance is the cover, which summarizes

the second-order gradient (Hessian) of the loss function for all the predictions of a point in a

tree. Accordingly, XGB provides five ways for computing feature importance:

1. weight: directly measures the number of times a feature is used to split the data across all

trees

2. gain: average gain across all splits in which a feature is used

3. cover: average coverage across all splits in which a feature is used

4. tgain: total gain across all splits in which a feature is used

5. tcover: total coverage across all splits in which a feature is used

The gain and cover are computed from the quotients of the total gain and total cover with

the weight. These metrics are usually recommended for quantifying importance. However, it

should be noted that the weight value for a feature depends on the range of different values

taken by that feature. Therefore, there may be important variables for the model with a low

weight because the range of different values is low (e.g., gender). In this situation, the total gain

or the total cover value is preferred. This is the case for our study.

In RF, feature importance is computed from the mean and standard deviation of the accu-

mulation of the impurity decrease within each tree (Gini importance). As with the XGB

importance metrics, the feature importance metrics here may be misleading for features with a

low number of different values. For kernel-based SVM, there is no built-in way of establishing

feature importance.
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4.2 SHapley Additive exPlanations

SHapley Additive exPlanations (SHAP) has attracted increasing attention in the field of XAI

(https://shap.readthedocs.io). The core idea of SHAP is to transfer ideas from cooperative

game theory to the attribute feature importance of a model output given an input [31]. SHAP

values represent the distribution of the contributions toward game success or failure amongst

all the players working in cooperation. In the context of explainability of machine learning

methods, SHAP values represent the change in each feature in the expected model prediction

under conditioning on that feature. The explainability from SHAP is achieved through differ-

ent representations derived from the SHAP values. In this work, we use the mean absolute val-

ues of the SHAP values obtained for each class and the violin plots of the SHAP value impact

on the estimation of the probabilities for each class.

S1 Fig in S1 File shows typical examples of the SHAP value representation for a given prob-

lem (survival classification in the Titanic dataset). The horizontal bar plot shows the mean

absolute SHAP values of the most relevant features for survival classification. The plot shows

that gender is the most relevant feature for the correct classification of survivals, followed by

the title code of the person and the class. These results are coherent with our knowledge of the

Titanic tragedy. Therefore, the underlying machine learning method can generate a model

that is aware of the outcome of survival owing to the human decisions made during the

disaster.

The violin plot in Fig 1 represents the impact of the feature values on the probability com-

puted for the survival class by the model. The color code indicates the feature values for differ-

ent test samples, and it is useful to relate whether the high or low probabilities computed by

the model are favored by given feature values. The color bar ranges from blue tones for low val-

ues to red tones for high values. Thus, the model favors high values of the probability of sur-

vival for high values of gender (i.e., female). From the class feature, we can see that the model

favors high values of the probability of survival for low values of class (i.e., first class). In our

study, we use similar reasoning to establish the relevance of the features in the identification of

different classes (AD, MCI, or CN).

For XGB and RF, the SHAP values are obtained from tree explainers, a fast implementation

of SHAP for tree-based methods [32]. For SVM, the SHAP values are obtained from kernel

explainers, an agnostic algorithm that consequently entails a higher computational cost.

5 Results

5.1 Performance study

5.1.1 Performance results. Table 2 (left) summarizes the performance of the TADPOLE

Challenge methods of interest in this work on the evaluation set (D4). Table 2 (right, top)

shows the performance of the baseline methods (last Visit, mixed effects, and linear SVM).

These results are the same as those reported at https://tadpole.grand-challenge.org/Results and

[16]. Table 2 (right, bottom) also summarizes the performance of the baseline methods trained

with our data on the test (D2) and evaluation (D4) sets. These results were obtained by inte-

grating the TADPOLE-SHARE code (https://tadpole-share.github.io) into our code. The

results obtained on D4 were close to the TADPOLE Challenge results. Therefore, our choice of

data preprocessing provides a similar performance on the benchmark methods.

Table 3 summarizes the performance of the methods considered in this work on the test

(D2) and evaluation (D4) sets. We performed an ablation study on feature set selection. There-

fore, the experiments were conducted by removing different sets of features, namely, the diag-

nosis (-D), diagnosis and cognitive features of TADPOLE used in ADNI to establish diagnosis
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(-D-DADNI), diagnosis and cognitive features (-D-C), and diagnosis and image-based features

(-D-I). The models were built with balanced training sets by selecting the 100% of the under-

represented class (AD). In addition, S1-S3 Tables in S1 File compare the performance of the

models built with different sample sizes of the under-represented class (100, 50, and 25%,

respectively).

5.1.2 TADPOLE rank preservation. Comparing the performance metrics obtained with

the TADPOLE results in Table 2 with those of our models in Table 3, we find that Frog,

Fig 1. XGB built-in importance. Total gain scores obtained by different XGB models. Scores averaged over 10

random experiments for the 100% training set. Long feature names have been trimmed for better legibility. The bars

are colored by feature type (diagnosis, clinical, cognitive, MRI, PET, DTI, APOE4, and proteomic biomarkers).

https://doi.org/10.1371/journal.pone.0264695.g001
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Table 2. Performance reported in the TADPOLE Challenge on D4. Performance obtained with the benchmark methods in D2 and D4.

Evaluation set (D4)

rank mAUC BCA

Frog 1 0.931 0.849

ThreeDays 2 0.921 0.823

EMC-EB 3 0.907 0.805

Evaluation set (D4)

rank mAUC BCA

SVM 30 0.836 0.764

Mixed Effects APOE 35 0.822 0.749

Last visit 44–45 0.774 0.792

Test set (D2) Evaluation set (D4)

mAUC BCA mAUC BCA

SVM, 1818 feat. 0.877 0.765 0.828 0.744

SVM, 6 feat. 1.000 1.000 0.855 0.792

Last visit 1.000 1.000 0.774 0.792

Left: performance reported in the TADPOLE Challenge on the evaluation set (D4) for the methods considered in this work (results shown in [16], Table 2). Right, top:

performance of the benchmark methods on the evaluation set (D4) reported in the TADPOLE Challenge (results shown in [16], Table 2). Right, bottom: performance of

the benchmark methods on the test (D2) and evaluation (D4) sets obtained with our data.

https://doi.org/10.1371/journal.pone.0264695.t002

Table 3. Performance obtained with the methods considered in this work on the test (D2) and evaluation (D4) sets.

Test set (D2) Evaluation set (D4)

mAUC BCA mAUC BCA

XGB, 100% 0.998 (± 0.000) 0.982 (± 0.006) 0.909 (± 0.004) 0.804 (± 0.003)

XGB-D, 100% 0.945 (± 0.001) 0.863 (± 0.009) 0.897 (± 0.004) 0.788 (± 0.010)

XGB-DADNI, 100% 0.920 (± 0.005) 0.833 (± 0.005) 0.881 (± 0.005) 0.795 (± 0.008)

XGB-D-C, 100% 0.791 (± 0.008) 0.680 (± 0.013) 0.732 (± 0.011) 0.646 (± 0.016)

XGB-D-I, 100% 0.942 (± 0.004) 0.873 (± 0.003) 0.909 (± 0.006) 0.820 (± 0.009)

RF, 100% 0.976 (± 0.003) 0.908 (± 0.008) 0.894 (± 0.004) 0.804 (± 0.008)

RF-D, 100% 0.933 (± 0.003) 0.832 (± 0.008) 0.880 (± 0.005) 0.776 (± 0.012)

RF-DADNI, 100% 0.904 (± 0.005) 0.795 (± 0.010) 0.864 (± 0.006) 0.759 (± 0.008)

RF-D-C, 100% 0.774 (± 0.006) 0.671 (± 0.013) 0.721 (± 0.010) 0.625 (± 0.016)

RF-D-I, 100% 0.945 (± 0.003) 0.878 (± 0.011) 0.900 (± 0.004) 0.803 (± 0.008)

SVM, 100% 0.925 (± 0.002) 0.815 (± 0.006) 0.845 (± 0.003) 0.757 (± 0.003)

SVM-D, 100% 0.909 (± 0.002) 0.785 (± 0.007) 0.839 (± 0.003) 0.739 (± 0.005)

SVM-DADNI, 100% 0.893 (± 0.002) 0.784 (± 0.008) 0.830 (± 0.003) 0.732 (± 0.007)

SVM-D-C, 100% 0.773 (± 0.006) 0.656 (± 0.011) 0.721 (± 0.006) 0.619 (± 0.011)

SVM-D-I, 100% 0.917 (± 0.002) 0.816 (± 0.009) 0.877 (± 0.002) 0.777 (± 0.093)

Models built with different feature sets: whole, without clinical diagnosis (-D), without clinical diagnosis and ADNI features for diagnosis (-D-DADNI), without clinical

diagnosis and cognitive features (-D-C), and without clinical diagnosis and image features (-D-I). The training sets are balanced and use 100% of the under-represented

class (AD). For each method configuration, the mean and standard deviation of the mAUC and BCA obtained over 10 experiments are shown.

https://doi.org/10.1371/journal.pone.0264695.t003
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ThreeDays, and EMC-EB outperform our methods (on D4, mAUC of 0.931 vs. 0.909, 0.921 vs.

0.894, and 0.907 vs. 0.845, respectively). Frog differs from our XGB system in terms of the train-

ing set, set of features, imputation, use of augmentation, and use of different temporal windows.

ThreeDays differs from our RF system in terms of the training set, set of features, imputation,

and use of forest ensembles in solving pairwise problems. EMC-EB differs from our SVM sys-

tem in terms of the training set and set of features. Thus, the performance improvement

achieved by the winners depends more on the data used, feature selection, and mentioned ad
hoc methodological modifications than on the underlying machine learning method.

Nevertheless, the results in Table 3 for the models trained with all the features show that the

ranks obtained in D2 and D4 by our systems are consistent with the TADPOLE Challenge

podium. XGB obtains the best mAUC and BCA metric values, closely followed by RF, while

the metrics obtained by SVM are considerably lower. Therefore, either XGB or RF seems to be

the most competitive method for the problem of AD/MCI/CN identification. RF was also the

best-performing method in the exhaustive study presented for a different application in [33].

5.1.3 Feature set selection and performance. In D2, the influence of feature set selection

on the performance metrics is considerable. The best results are obtained for the feature set

including the clinical diagnosis. The feature sets excluding the diagnosis (-D) degrade the per-

formance of the methods considerably even though the clinical diagnosis is partially obtained

from the DADNI features. For example, the mAUC for XGB decreases from 0.998 to 0.945. For

RF, the mAUC decreases from 0.976 to 0.933. For SVM, the mAUC decreases from 0.925 to

0.909. A further decrease in the feature set with the diagnosis and DADNI features further

degrades the performance.

The methods with feature sets excluding diagnosis and image features (-D-I, i.e., including

cognitive features) perform consistently better than those with feature sets excluding diagnosis

and cognitive features (-D-C, i.e., including image features). For RF and SVM, excluding diag-

nosis and image features leads to slight improvement in performance compared to excluding

diagnosis. For XGB, both performances are nearly identical.

In D4, the overall best results are obtained for the feature set excluding clinical diagnosis

and image features (-D-I). The feature set including all the features achieves the second posi-

tion, and removing the diagnosis and subsequent DADNI features has the effect of slightly

degrading the performance. In this case, the loss in performance with the -D-C feature set is

considerable, i.e., it is lower than the last visit benchmark performance.

5.1.4 Robustness to sample size selection. The robustness of the results with respect to

the selection of the training set size was assessed through 10 different experiments for each

method and feature set. For each experiment, the data were selected randomly, except for the

under-represented class in the 100% experiment. Recall that S1-S3 Tables in S1 File list the

mean and standard deviation of the mAUC and BCA obtained by the methods in D2 and D4.

In general, the metrics show a small standard deviation in both D2 and D4 with variations

in the third decimal position in the majority of the cases. Therefore, all the models obtain con-

sistent results for the same configuration of sample and feature selection. The models trained

with 25% of the samples of the under-represented class obtain metrics slightly smaller but

close to those of the models trained with the whole under-represented class. Therefore, the

performance achieved by the methods can be considered robust to these changes in data sam-

pling. Now, we proceed with the interpretability study for the 100% sample sets.

5.2 Interpretability study

5.2.1 XGB built-in importance scores. Fig 1 shows the 25 most important features

according to the total gain importance of XGB averaged over 10 random experiments for the
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100% training sets. Recall that the legend of the feature names can be found at https://github.

com/swhustla/pycon2017-alzheimers-hack/blob/master/docs/data_dictionary.md. The diag-

nosis is scored as the most important feature. The following features show a considerable total

gain reduction.

The most relevant features include the diagnosis, age of each patient at baseline

(Years_bl), and several measurements from cognitive tests (CDRSB, FAQ, ADAS13,

RAVLT, CDRSB_bl, DX_bl, ADAS11, and ECog). Then, a number of measurements from

anatomical structures obtained from the FreeSurfer cross-sectional pipeline (UCSFFSX) arise,

interleaved with the ADNIMERGE image and other cognitive measurements. The anatomical

structures include the amygdala (ST17SV), hippocampus (ST29SV), inferior and middle tem-

poral regions (ST32TA, ST40TA), entorhinal region (ST83CV), and cuneus (ST23SA).

When the diagnosis is removed from the XGB models, CDRSB, the diagnosis at baseline

DX_bl, and CDRSB_bl occupy the first, second, and third positions, respectively. The previ-

ously mentioned cognitive features increase their relative importance. CDRSB and MMSE, used

in ADNI for establishing diagnosis, occupy the top positions. Different UCSFFSX, UCSFFSL,

UCBERKELEY, and DTI features can be now found in the last top 25 positions.

When removing the features used in ADNI for establishing diagnosis, FAQ and ADAS13
occupy the top positions. In this case, the UCSFFSX features are mostly replaced by the BAI-
PET features. These features are now highly interleaved with cognitive data. The BAIPET fea-

tures include FDG measurements from the posterior cingulate (FEMPC), different AV45

measurements from the temporal region (AVEMTEMP, AVNATEMP, TMPINFL), and the

hypometabolic index (HCI). We can easily find studies in the literature on the role of PET

imaging of these regions in the characterization of AD [34, 35]. The hypometabolic index has

been also identified as a biomarker useful for the characterization of the disease [36].

When removing all cognitive data, the UCSFFSX and BAIPET features mostly occupy the

top 25 positions. Some features of relevance for the disease, such as FDG-PET, the hippocam-

pus volume, or APOE4, can be seen in the top 25 set. The features from the posterior cingulate,

precuneus, temporal region, and hypometabolic index still appear in similar positions. The

importance is distributed over a wide number of features. From the UPENNBIOMK9 biomark-

ers, ABETA and PTAU are in the top 25 set.

Removing image data makes cognitive features prevail in importance, and they occupy the

top 25 positions. The most important features are the features used for diagnosis in ADNI.

Then, the ADAS and RAVLT features follow in importance. Finally, the ECog features occupy

the last of the top 25 positions. In addition, the three UPENNBIOMK9 features (ABETA, TAU,

PTAU) are now in the top 25 positions.

Fig 2 shows the 25 most important features according to the total cover importance of XGB

averaged over 10 random experiments for the 100% training sets. In general, we can see dis-

crepancies among the features selected according to the total gain and total cover although

there is agreement in the features selected in the first positions.

5.2.2 RF built-in importance scores. Fig 3 shows the 25 most important features accord-

ing to the built-in importance of RF averaged over 10 random experiments for the 100% train-

ing sets. The most striking difference from the XGB results is that the importance of RF is

distributed over a greater number of features. The diagnosis is again the most important fea-

ture, mostly followed by cognitive features (CDRSB, CDRSB_bl, FAQ, MMSE, ADASs, etc.)

Only one FreeSurfer UCSFFSX feature from the entorhinal region (ST24TA) occupies one of

the last top 25 positions.

Removing the diagnosis and the features used in ADNI for diagnosis results in cognitive

features similar to XGB occupying the top positions. However, RF seems to be more depen-

dent on the information given by cognitive data compared to XGB.

PLOS ONE XAI toward understanding TADPOLE challenge methods in AD diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0264695 May 6, 2022 14 / 32

https://github.com/swhustla/pycon2017-alzheimers-hack/blob/master/docs/data_dictionary.md
https://github.com/swhustla/pycon2017-alzheimers-hack/blob/master/docs/data_dictionary.md
https://doi.org/10.1371/journal.pone.0264695


Upon removing all the cognitive data, the UCSFFSX features mostly occupy the top 25

positions. Some features of relevance for the disease, such as the hippocampus (ST29SV, Hip-

pocampus, ST88SV), FDG-PET (FDG), entorhinal volume (ST24TA, ST83TA, Entorhinal),

and middle and inferior temporal regions (ST40TA, ST32TA), can be seen among these fea-

tures. Removing image features results in a configuration of top cognitive features nearly iden-

tical to XGB. Here, the UPENNBIOMK9 features do not appear in the top 25 positions.

Fig 2. XGB built-in importance. Total cover scores obtained by different XGB models. Scores averaged over 10

random experiments for the 100% training set. Long feature names have been trimmed for better legibility. The bars

are colored by feature type (diagnosis, clinical, cognitive, MRI, PET, DTI, APOE4, and proteomic biomarkers).

https://doi.org/10.1371/journal.pone.0264695.g002

PLOS ONE XAI toward understanding TADPOLE challenge methods in AD diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0264695 May 6, 2022 15 / 32

https://doi.org/10.1371/journal.pone.0264695.g002
https://doi.org/10.1371/journal.pone.0264695


5.2.3 SHAP-based explainability using bar plots. Figs 4–6 show the 25 most important

features according to the mean absolute SHAP values in one of the experiments for the 100%

training sets and the models including the whole feature set. The diagnosis is recognized by

SHAP as the most important feature. The relative importance compared with subsequent fea-

tures is remarkably greater for XGB and SVM than for RF.

For XGB, the most relevant features include the diagnosis, age of each patient at baseline

(Years_bl), some features characterizing the cognitive condition (CDRSB, ADAS, FAQ,

Fig 3. RF built-in importance. Importance scores obtained by different RF models. Scores averaged over 10 random

experiments for the 100% training set. Long feature names have been trimmed for better legibility. The bars are

colored by feature type (diagnosis, clinical, cognitive, MRI, PET, DTI, APOE4, and proteomic biomarkers).

https://doi.org/10.1371/journal.pone.0264695.g003
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Fig 4. Mean absolute SHAP values computed from the XGB systems. Models trained with all features. Note that the

label coloring for the CN, MCI, and AD classes is not consistent among experiments owing to rigid SHAP

implementation. Long feature names have been trimmed for better legibility.

https://doi.org/10.1371/journal.pone.0264695.g004

Fig 5. Mean absolute SHAP values computed from the RF system. Same legend than Fig 4.

https://doi.org/10.1371/journal.pone.0264695.g005
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RAVLT, CDRSB_bl, and ECog), and measurements from FreeSurfer cross-sectional segmen-

tations (UCSFFSX). These measurements refer to the volume, surface area, or cortical thick-

ness of regions related to AD, such as the hippocampus (ST29SV), entorhinal region

(ST24CV, ST83CV), inferior temporal region (ST32S, ST32T), and temporal pole (ST60).

SHAP feature ranking in the first positions is more coherent with the XGB total gain com-

pared to the total cover built-in importance results. In addition, SHAP provides information

regarding the importance of each feature to the different classes. For the identification of CN

individuals, the diagnosis is mainly the most relevant feature. For the diagnosis of AD individ-

uals, the diagnosis, CDRSB, Years_bl, ADAS13, and FAQ are the most relevant features.

Thus, the relevance of CDRSB_bl and DX_bl in the diagnosis of AD is quite low. As these

features are not useful for the correct classification of converters, it seems that the system can

identify the diagnosis and CDRSB as preferable features for AD diagnosis. For the identifica-

tion of MCI individuals, the importance of diagnosis is much greater than the importance of

other features.

For RF, the most relevant features are all cognitive, including CDRSB_bl, CDRSB, DX_bl,

FAQ, ECog, ADASs, MMSE, and RAVLT. The only image-based feature is the cortical thickness

average of the left entorhinal region (ST24T). As with XGB, the diagnosis is more relevant for

the identification of CN and MCI individuals. In contrast to the XGB results, the importance

of the features is much more distributed among the top 25 features for the CN and AD classes.

The built-in importance results showed a similar set of features in similar positions.

For SVM, the diagnosis and DX_bl are the most relevant features, followed by FAQ,

CDRSB, and CDRSB_bl. Subsequently, a number of image-based features are found, includ-

ing the BAIPET, FFSL, AV45, FFSX, and DTI features. These features refer to regions such

as the posterior cingulate gyrus (FEMPC2), temporal area (AVETEMP2), parahippocampal

Fig 6. Mean absolute SHAP values computed from the SVM systems. Same legend than Fig 4.

https://doi.org/10.1371/journal.pone.0264695.g006
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region (ST44SA), pallidum (ST24SV), parietal and precentral areas (ST90TS, ST110TA), fornix

(FAFXSTR), superior frontal area (ST56CV), isthmus (ST34SA), and superior temporal area

(ST58CV). Some more cognitive features such as MMSE and RAVLT_immediate can be

found in baseline-current visit pairs. APOE4 is the last feature in the top 25 positions. Thus,

the AD class is mostly explained by the diagnosis, FAQ, and CDRSB, and, to a lesser extent, by

MMSE.

5.2.4 SHAP-based explainability using violin plots. Fig 7 shows the impact of each fea-

ture on the different model outputs for each class. The impact is represented by violin plots, as

is customary in SHAP analysis. Comparing the distribution of the violin plots of RF and XGB,

we can see that the contribution of the first features to the probabilities is polarized in two

modes for a greater number of features. Thus, for RF, the values of all these features are more

strongly considered in the classification. For SVM, the distribution of the violin plots shows a

single mode for all features.

The impact representation of the diagnosis feature suggests that low diagnosis values favor

high probabilities for the CN class (p(CN)), and low probabilities for the MCI and AD class (p
(MCI) and p(AD)). High diagnosis values favor low p(CN) and high p(AD). Mean diagnosis

Fig 7. XGB, RF, and SVM explainability. The violin plots show the SHAP value impact on the estimation of the

probabilities for each class of the XGB, RF, and SVM models. Models trained with all the features. Long feature names

have been trimmed for better legibility.

https://doi.org/10.1371/journal.pone.0264695.g007
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values favor high p(MCI). As the labels assigned to each class are 0 for CN, 1 for MCI, and 2

for AD, all the models can capture the relationship between labels and future status.

The violin plots of Years_bl for XGB indicate that the system considers the information

of the age when the patient is included in the study. The greater the age, the greater is the p
(AD). This is consistent with the knowledge that AD is linked with age. The model also consid-

ers the months from baseline (M) as important.

Regarding the CDRSB_bl and CDRSB features, the lower the values, the greater is p(CN)

and viceversa for p(AD). High values of p(MCI) are favored by mean values of CDRSB. The

scores reflect the Hughes Clinical Dementia Rating (CDR), where a CDR of zero indicates that

the subject is healthy and gradually increases until values of 3, indicating that the subject suf-

fers from a serious cognitive decline.

Regarding cognitive scores, a low value in FAQ, ADAS13, and ADAS11 and a high value in

RAVLTs favor high p(CN), and viceversa for AD. It has been reported that higher Adas-Cog

and lower RAVLT scores suggest greater impairment [37]. Regarding MRI features, medium

to high volume values favor high values of p(CN). This indicates that the systems can associate

atrophy with high values of p(AD) and vice versa for p(CN).

In summary, the violin representation of the SHAP values shows that the three models can

establish a relationship between feature values and diagnosis probability consistent with clini-

cal knowledge for the top 25 features. The distribution of the SHAP value impact tends to be

bi-modal for the most important features of the best-performing methods.

5.2.5 Removing diagnosis, cognitive, and image features. Fig 8 shows the reassignment

of importance to the remaining features of the XGB, RF, and SVM models after progressively

removing the diagnosis (-D), the features used by ADNI in diagnosis (-D-DADNI), cognitive

(-D-C), and image (-D-I), features. The different systems rebalance the importance given to

the features, and the contribution becomes less biased to a single prevalent feature.

After removing diagnosis, the features used in ADNI for the diagnosis occupy top positions,

as with the built-in importance study. CDRSBs features are found to be much more relevant

than MMSE. For XGB, image-based features from the hippocampus and entorhinal region pre-

vail. For SVM, most image-based features prevail.

After removing the diagnosis and DADNI features for XGB and RF, FAQs the features

become the most important, followed by cognitive features such as ADAS, RAVLT, and ECog.

For XGB, Years_bl still occupies the top positions. For SVM, the behavior is slightly differ-

ent from XGB and RF. FAQ still tends to occupy top positions. However, image-based features

such as BAIPET, FFSL, and FFSX increase their relevance to the model. These features relate

to regions such as the posterior cingulate gyrus for FDG-PET and the temporal region for

AV45-PET. The unknown region (ST123TA) also appears as relevant for SVM.

After removing all the cognitive features, the system again rebalances the importance given

to the features, and image-based features occupy higher positions. Some MRI and PET mea-

surements such as FDG, the hippocampus volume, FDG_bl, and the entorhinal volume now

increases their importance. Both XGB and RF agreed on the importance of the anatomical fea-

tures related to the entorhinal region, hippocampus, middle temporal region, and amygdala.

In addition, both methods agreed on the importance of the hypometabolic index, FDG mea-

surements of the posterior cingulate gyrus, and AV45 measurements of the temporal region.

For SVM, the FDG-PET measurements of the posterior cingulate gyrus and the AV45-PET

measurements of the temporal region were the most important features. APOE4 reaches the

top 5 positions in importance. After removing image-based features, cognitive features mostly

occupy the top 25 features. For XGB, the TAU and ABETA biomarkers are in the top 25 posi-

tions. For SVM, the ABETA biomarker is also shown in the last top 25 positions.
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The supplementary material shows the violin plots of the impact of the features on the

model outputs for the different feature sets (S2-S4 Figs in S1 File).

5.3 Robustness to sample selection

Figs 9–11 show the frequency of the top 25 features over 10 experiments for the 100% training

set and the different feature sets. The results can be found in the csv files of the supplementary

material: S1–S3 Data, respectively. For XGB and the whole feature set, around 50% of the top

Fig 8. Mean absolute SHAP values computed from the XGB, RF, and SVM systems with feature ablation. First and

second rows: models trained after removing diagnosis (-D) and features used in ADNI for diagnosis (-D-DADNI). Third

and fourth rows: models trained after removing cognitive (-D-C) and image-based (-D-I) features. Note that the label

coloring is not consistent among experiments owing to rigid SHAP implementation. Long feature names have been

trimmed for better legibility.

https://doi.org/10.1371/journal.pone.0264695.g008
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25 features are consistently shown in the top 25 positions. These features include the diagnosis,

Years_bl, and cognitive features. The most frequent UCSFFSX features are volume and

area measurements from the hippocampus, entorhinal region, superior temporal sulcus, and

inferior temporal region. Upon subsequently removing the diagnosis, ADNI, cognitive, and

image-based features, the number of features consistently increases. For the -D and -D-DADNI

sets, the most consistent features are mostly cognitive. For the -D-C feature set, apart from

Fig 9. Robustness of SHAP importance for XGB. Frequency of the top 25 features over 10 random experiments for

the 100% training set. The bars are colored by feature type (diagnosis, clinical, cognitive, MRI, PET, DTI, APOE4, and

proteomic biomarkers).

https://doi.org/10.1371/journal.pone.0264695.g009
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measurements related to the entorhinal region, hippocampus, and middle temporal region,

the most frequent features in the top 25 positions are FDG, PET AV45 measurements in the

temporal region, the hypometabolic convergence index, and APOE4, ABETA, and PTAU val-

ues. For the -D-I feature set, the top 25 most selected features are CDRSB, FAQ, RAVLT, ADAS
scorings, etc., and not cognitive features such as TAU, ABETA, and Years_bl.

Fig 10. Robustness of SHAP importance for RF. Frequency of the top 25 features over 10 random experiments for

the 100% training set. The bars are colored by feature type (diagnosis, clinical, cognitive, MRI, PET, DTI, APOE4, and

proteomic biomarkers).

https://doi.org/10.1371/journal.pone.0264695.g010
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Fig 11. Robustness of SHAP importance for SVM. Frequency of the top 25 features over 10 random experiments for

the 100% training set. The bars are colored by feature type (diagnosis, clinical, cognitive, MRI, PET, DTI, APOE4, and

proteomic biomarkers).

https://doi.org/10.1371/journal.pone.0264695.g011
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For RF, the number of features selected in the top 25 positions is more robust and focused

on cognitive features. For the -D-C feature set, the measurements from the entorhinal region,

hippocampus, inferior lateral ventricle, and middle temporal region can be consistently seen

in the top 25 positions. For the -D-I feature set, the consistency reaches nearly 100% of the fea-

tures in the top 25 positions with mostly cognitive features.

For SVM, only 25% of the top 25 features are consistently shown in the top 25 positions.

These features include the diagnosis, diagnosis at baseline, BAIPET, and cognitive features.

For the whole, -D, and -DADNI feature sets, feature importance is quite inconsistent. For the

-D-C and -D-I feature sets, feature importance is much more robust. For the -D-C feature set,

the BAIPET features are mostly selected together with APOE4 and ABETA UPENNBIOMK9.

For the -D-I feature set, the most relevant cognitive features throughout our interpretability

study are mostly selected in the top 25 feature set.

6 Discussion of our interpretability study in the context of the state

of the art

6.1 TADPOLE Challenge feature importance

According to the global study of feature importance performed in TADPOLE, ABETA from

the UPENNBIOMK9 features, image features for DTI, and APOE status contributed toward the

best accuracy. The results obtained in our interpretability study did not corroborate these find-

ings for the top three methods. ABETA biomarker only appeared among the best important

features in the XGB-D-C, XGB-D-I, RF-C, and SVM-D-I models. We observed that the

UPENNBIOMK9 features are considered as relevant for the models obtained with the -D-C or

the -D-I sets. Therefore, the UPENNBIOMK9 features may be of importance because many of

the TADPOLE Challenge methods used partial sets of features. In addition, DTI features

hardly appeared in the built-in feature importance plots. APOE4 was only relevant when XGB

was deprived of from cognitive information or SVM was deprived of from ADNI diagnosis,

cognitive, or image-based features. The authors of Frog reported that the XGB built-in impor-

tance scores suggested that the MRI features play a greater role in models trained with long

forecast windows. This finding was also obtained from our XGB model, where 10 out of 25 fea-

tures belonged to the UCSFFSX family.

Meanwhile, the TADPOLE Challenge results indicated that image features from tau PET

(AV1451), amyloid PET (AV45), and FDG-PET (FDG) contributed toward the worst accu-

racy. However, our results showed that the FDG feature was the most important feature in the

RF-D-C model and among the most important features in XGB-D-C and SVM-D-C. In addi-

tion, FDG_bl was also present in the top 25 feature set. AV45 appeared frequently in the top

25 set of the RF-C model. Some FDG and AV45 PET features were relevant in models with the

-D-C feature set.

The feature selection study performed in [17], the closest journal version of ThreeDays,
identified the diagnosis, RID (patient identifier), AGE, MIDTEM (middle temporal gyrus),

CDRSB, GENDER, FAQ, APOE, and MMSE as the most relevant features for accurate identifica-

tion of the AD/MCI/CN subjects with RF. Accordingly, our study has corroborated the impor-

tance of the diagnosis, CDRSB, FAQ, and MMSE.

The ablation study in [23], the journal version of CBIL, highlighted the importance of the

diagnosis and CDRSB features in high-performance systems. The authors observed significant

drops in the evaluation metrics upon removing these features from their recurrent neural net-

work (RNN) model. Our study also involved this loss in accuracy for the models with the -D

and -D-� feature sets.
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6.2 Feature importance outside the TADPOLE Challenge

6.2.1 SHAP in RF-based multilayer multimodal detection and prediction model. Out-

side the TADPOLE Challenge framework, El–Sappagh et al. [24] recently proposed the use of

SHAP values in a RF-based multilayer multimodal detection and prediction model. The detec-

tion layer performs the classical classification into CN, MCI, and AD. The authors reduced the

feature set to a total of 28 baseline features and the results were obtained with a single model

optimized with classical cross-validation. Their feature set did not include the diagnosis, as it is

undesirable to include the label as a feature for the classification problem. In addition, some

features not present in the TADPOLE Challenge were used in the generation of the model.

The study identified CDRSB as the most influential feature for CN and MCI, followed by

MMSE for AD. From the TADPOLE Challenge features used in that study, the model recog-

nized cognitive and UPENNBIOMK9 features as the most relevant features. SHAP violin plots

for AD showed MOCA, FAQ, ADAS13, and ADAS11 in the top relevant positions. Subse-

quently, ABETA, PTAU, and TAU were also shown as influential. RAVLT_immediate was

also present in the relevance plot. Reasoning regarding feature values and clinical knowledge

showed that the model correctly favored the probability of the different classes. For example,

high values of CDRSB favored p(AD) whereas low values of CDRSB and high values of MOCA
favored p(CN).

In our RF models, cognitive features prevailed in the top positions. In the -D-I model,

whose feature configuration is probably the closest to that of El-Sappagh’s model, CDRSB was

also the most influential feature and FAQ, ADAS13, MMSE, and ADAS11 were shown in the

top positions. The violin plots showed similar behavior in favoring the probabilities of the dif-

ferent classes. However, MOCA was found at the 25th position and UPENNBIOMK9s were

found beyond the top 25 set. As seen in our ablation study, the importance given by the models

to the different features strongly depends on the feature set used to generate the model. It may

be possible that the features not present in the TADPOLE Challenge combined with feature

selection are responsible for the rise of MOCA and UPENNBIOMK9 as relevant features for El–

Sappagh’s model.

6.2.2 Systematic, quantitative, and critical review of machine learning in predicting the

progression of MCI. The exhaustive review in [38] showed that including cognitive and FDG
features significantly improved the predictive performance of the methods compared to not

including them. Other modalities, especially MRI-based features, did not show a significant

effect. The authors argued that the good performance of cognitive assessments cast doubts on

the wide use of imaging for predicting the progression of AD and suggested exploring further

fine domain-specific cognitive evaluations.

Our study corroborated the importance given by the different models to the cognitive fea-

tures. In fact, RF mostly relied on cognitive information. In addition, FDG was identified as a

relevant feature when cognitive information is substantially missing. Although the use of cog-

nitive features seems to be critical for an accurate and trustable decision support system in

clinical practice, it should be noted that cognitive features are useful only once the patients

have started to show some cognitive decline. According to the results of our study, we believe

that different sets of features can be used depending on the stage of the disease for accurate

computer-aided diagnosis systems. For early diagnosis, we believe that one should discard cog-

nitive information and further study MRI, PET, DTI, biomarkers, and genetic features. Our

study has shown that XGB and RF can identify the relevant information according to clinical

knowledge for different sets of features while SVM is less accurate and seems to be less reliable.

We believe that SHAP values may provide suitable criteria for feature selection.
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6.3 Diagnosis as a feature

The clinical diagnosis has been identified in our study as the most relevant feature for all the

models. The difference in importance with the following features is considerable for all the

methods. In [17] and [23], the relevance of the diagnosis to the accuracy of the prediction for

their random forests and RNN systems has been identified.

Table 4 lists the top 25 TADPOLE Challenge methods and indicates whether they used

diagnosis in the feature set. We can see that the best-performing methods consistently used the

diagnosis. The first two methods that did not use diagnosis were EMC1-Std (disease progres-

sion model combined with SVM, mAUC = 0.898) and CBIL (RNN, mAUC = 0.897). These

methods ranked eighth and ninth, respectively. Although the diagnosis was explicitly included

in the feature set of the majority of the best-performing TADPOLE methods, we believe that

the inclusion of such a feature in a prognostic model may be questionable; moreover, the diag-

nosis values from the previous visits provide the values of the predicted labels in the training

set. Methods not including the diagnosis in their feature set and achieving an accuracy close to

0.90 should be reconsidered as potential well-performing methods for the AD/MCI/CN identi-

fication problem.

7 Discussion and conclusions

We investigated the performance and interpretability of the three best-performing methods in

the TADPOLE Challenge for the prognosis of clinical AD status. We used the same data

Table 4. TADPOLE Challenge top 25 methods and use of diagnosis.

Method Rank Use diagnosis

Frog 1 Yes

ThreeDays 2 Yes

EMC-EB 3 Yes

Apocalypse 7 Yes

GlassFrog-Average 5 Yes

GlassFrog-SM 5 Yes

GlassFrog-LCMEM-HDR 5 Yes

EMC1-Std 8 No

CBIL 9 No

CN2L-RandomForest 10 Yes

EMC1-Custom 11 No

BGU-LSTM 12 No

DIKU-GeneralisedLog-Custom 13 No

DIKU-GeneralisedLog-Std 14 No

ARAMIS-Pascal 15 No

VikingAI-Sigmoid 16 Yes

Tohka-Ciszek-RandomForestLin 17 Yes

IBM-OZ-Res 18 Yes

BORREGOTECMTY 19 Yes

VikingAI-Logistic 20 Yes

lmaUCL-Std 21 Yes

lmaUCL-Covariates 22 Yes

Chen-MCW-Stratify 23 No

AlgosForGood 24 No

lmaUCL-halfD1 26 Yes

https://doi.org/10.1371/journal.pone.0264695.t004
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processing choices for fair comparison of the three methods. Interpretability was studied by

combining feature ablation with feature importance assessment. We investigated the built-in

feature importance metrics, when available, and we computed SHAP values from the models.

SHAP is a recent tool for XAI that allows robust study of per-class feature significance and

establishes the impact of each feature in the output probabilities. It has been shown to be a use-

ful tool for answering key questions in terms of increasing or decreasing our confidence in

conventional machine learning methods that occupy the top positions in the TADPOLE

Challenge.

Our models preserved the top three ranks achieved in the TADPOLE Challenge, i.e., gradi-

ent booster ranked in the first position, random forest in the second one, and support vector

machines closed the top three. However, the performance achieved on the evaluation set D4

was consistently lower than that reported by the TADPOLE Challenge results. We believe that

these differences are due to the data used, feature selection, and methodological modifications

to the standard machine learning method. For example, we believe that the accuracy of Frog is

due to the combination of gradient booster with feature selection and data augmentation.

ThreeDays is a model ensemble of two models specialized in binary classification problems

with aggressive selection of features that may be the key to improved accuracy.

The accuracy of the models was robust to the selection of the training data. The inclusion of

1818 features did not degrade the performance of the models. It seems that once the diagnosis

is removed, a number of cognitive features are required for acceptable performance. Other-

wise, the performance of the system is considerably degraded. This is consistent with results

shown by the state of the art. For example, the CadDementia Challenge winner [13] obtained a

limited AUC of 0.788 in the problem of AD/MCI/CN classification from MRI image-based

features. Spasov et al. [39] obtained an AUC of 0.925 by combining cognitive and structural

MRI images for the problem of sMCI/pMCI identification. The AUC decreased to 0.880 for

cognitive features and to 0.790 for MRI images.

From the study of feature importance, we found that the diagnosis is the most significant

feature for the three methods. In general, the three methods give importance to features that

have been shown to be related to the disease in the state of the art. Apart from the diagnosis,

cognitive features tend to occupy the top positions in different feature sets. From the features

used in ADNI for establishing the diagnosis, CDRSB is shown to be the most relevant cognitive

feature. Focusing on image-based features, the top positions are occupied by measurements

from the hippocampus, entorhinal region, and the middle temporal region. Therefore, the

methods can identify anatomical structures affected by the disease among more than 700

MRI-based features. Similarly, for PET-based features, FDG-PET measurements in the poste-

rior cingulate gyrus, AV45-PET measurements in the temporal region, or the hypometabolic

index are identified as relevant among more than 300 features. These image-based biomarkers

have been previously established as relevant in different studies [40–42].

In view of the variability of the XGB-selected features in the top 25 set, we recommend

using XGB with model ensembles. Thus, the resulting system would consider the information

of the most important features for each ensemble and make better-informed decisions. Mean-

while, our study reported that RF models mainly rely on cognitive information. As it is widely

recognized that AD is a multimodal disease, clinically reliable machine learning methods

should not be supported only by features from a single domain. The results in this study may

indicate that a trustable RF system from the clinical point of view may be modeled with a

reduced set of cognitive features to allow other features to increase their importance in the

decisions. For SVM, our study reported that the importance given to different features strongly

changes among different bootstraps. This result makes us question the suitability of SVM for

our computer-aided diagnosis problem.
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At this point, our study has provided sufficient insights to answer our initial questions:

• Why did the best methods achieve the best accuracy metrics? The best methods consistently

used the diagnosis in the feature set. Some of the preprocessing decisions and methodologi-

cal modifications boosted the mAUC beyond 0.90. Not including the diagnosis in the feature

set limits the value of mAUC to 0.89 for the best-performing method.

• How can we quantify the contribution of each feature toward achieving the best accuracies?

The built-in importance of tree-based methods and SHAP was shown to be useful for quan-

tifying the contribution of the features toward the accuracies. SHAP provides different ways

of representing information that further elucidate feature importance.

• Which features were the most meaningful for the best methods? The diagnosis was the most

meaningful feature, with differences among the three methods. Different subsequent features

arise depending on the method. For XGB, these features are cognitive features mixed with

MRI image-based features. For RF, these features are mostly cognitive. For SVM, cognitive

features are highly interleaved with a variety of image-based features.

• Do the best methods use information coherent with clinical knowledge? The violin plot

representation of SHAP provided a way to verify that the values of the features are used con-

sistently with clinical knowledge by different systems. Even if the model is built from a large

image-based feature set, the methods have been shown to be able to select the most relevant

features for making informed decisions.

One shortcoming of our study, inherited from the original TADPOLE Challenge setup, is

that the test and evaluation sets originate from the same data distribution used for training the

models. Thus, the evaluation and interpretability results of our models may not be preserved

with different test and evaluation datasets. Therefore, our findings should be corroborated

using different external clinical datasets.

In summary, our study showed the ability of the top two TADPOLE Challenge methods to

correctly identify the features most relevant to the prognosis of disease status, thereby boosting

our confidence in the potential of these systems for computer-aided prognosis. In the future,

we will further explore SHAP features for the improvement of the explanations toward

improved interpretability, causability, and actionable explainability. Furthermore, we will

extend the study to other TADPOLE Challenge methods with the potential to better adapt to

the temporal nature of the prognosis problem that scored lower than the best-performing

methods (e.g., CBIL) with the aim of establishing a fair ranking within a consistent framework.

In addition, we will replace the image-based features with the original images to study the

interpretability of the resulting systems in order to build systems capable of extracting useful

high-level features invisible to the human eye.
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