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ABSTRACT: The HADDOCK score, a scoring function for both
protein−protein and protein-nucleic acid modeling, has been successful
in selecting near-native docking poses in a variety of cases, including those
of the CAPRI blind prediction experiment. However, it has yet to be
optimized for small molecules, and in particular inhibitors of protein−
protein interactions, that constitute an “unmined gold reserve” for drug
design ventures. We describe here HADDOCK2P2I, a biophysical model
capable of predicting the binding affinity of protein−protein complex
inhibitors close to experimental error (∼2-fold larger). The algorithm was
trained and 4-fold cross-validated against experimental data for 27
inhibitors targeting 7 protein−protein complexes of various functions and tested on an independent set of 24 different inhibitors
for which Kd/IC50 data are available. In addition, two popular ligand topology generation and parametrization methods
(ACPYPE and PRODRG) were assessed. The resulting HADDOCK2P2I model, derived from the original HADDOCK score,
provides insights into inhibition determinants: while the role of electrostatics and desolvation energies is case-dependent, the
interface area plays a more critical role compared to protein−protein interactions.

■ INTRODUCTION

Protein−protein interactions (PPIs) define most of the cellular
processes in the cell,1 such as differentiation, proliferation,
signal transduction, and apoptosis. Being able to design PPI
inhibitors will drastically catalyze the development of novel
therapeutics for diseases, such as cancer.2 Such inhibitors are
currently considered “an unmined gold reserve”3 for drug
design in general. Consequently, novel software tools are being
developed and made publicly available that target the design of
inhibitor of PPIs, such as PocketQuery.4−6 The chemical space
of PPI inhibitors is, however, rather unique.7−9 Protein−protein
interfaces have been manually curated and collected in several
dedicated databases, such as iPPi-DB,10 a database that includes
associated pharmacological data, and the 2P2I database.11,12

Recent studies on a structure-based benchmark11 of PPI
inhibitors (collected from the 2P2I database12) showed that the
size of the ligands targeting the interface of protein−protein
complexes is substantially larger than that of normal inhibitors
that target the active site of single molecules like enzymes9 and
suggest that PPI inhibitors are mainly large, lipophilic, and
aromatic compounds. Because of the different nature of the
target interface and ligands, dedicated biophysical models are
needed to predict the binding affinity of PPI inhibitors.
Although current biophysical models have proven to reasonably
approximate the affinity of protein−ligand complexes,9,13 these
have yet to be optimized to predict the affinity of PPI
inhibitors. A drop by more than 10% in docking success rates is
reported when inhibitors of protein−protein interactions are
put to test in comparison to normal inhibitors.14 To stimulate
the development of new models, data sets of binding affinities

are required. Such a data set has recently been compiled for
protein−protein complexes,15,16 but no such data set is
available for PPI inhibitors. Although docking and binding
affinity prediction have been performed with success for specific
systems,17−19 a generic binding affinity prediction model for
PPIs would be a welcome addition.
In this work, we report the optimization and performance of

the HADDOCK score20,21 on the prediction of the binding
affinity of PPI inhibitors. This was performed on a binding
affinity benchmark consisting of Kd and Ki values for 27 complexes
from the 2P2I database.11,12 In addition, we also compiled an
independent set of PPI inhibitors for further validation, consisting
of 19 protein-inhibitor complexes with available IC50 data. Finally,
we predicted the affinity of five different inhibitors that target the
interaction between bromodomains and acetylated histones. We
additionally investigate experimental ambiguity in affinity measure-
ment and propose an acceptable prediction error on this basis. The
original HADDOCK score, which is a linear combination of van
der Waals and electrostatics energy terms calculated using the
OPLS force field,22 together with an additional empirical
desolvation term,23 was originally optimized for discriminating
near-native poses in protein−protein docking.21 We present here
the PPI-optimized score, HADDOCK2P2I, which is shown to
predict, close to experimental error (∼2-fold larger), the binding
affinities of PPI inhibitors. Its components provide valuable new
insights into the determinants of the inhibition of PPIs.
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■ MATERIALS AND METHODS

Benchmark Compilation. Information about available
structural data for protein−protein interaction inhibitors was
retrieved from the 2P2I database11 (see Table 1) and the
corresponding coordinates downloaded from the Protein Data
Bank (www.pdb.org).24 Binding affinity data (dissociation
constants, Kd values, and inhibition constants, Ki values) were
manually procured from literature (see Table 1 and associated
references in Supporting Information Table S1). In total, data
for 7 different protein−protein complexes were identified, for
which 27 structures and binding affinity data of complexes with
various PPI inhibitors were available.
Structure Refinement. The crystal structures of the

inhibitors of PPIs in complex with their respective proteins
were refined in HADDOCK20,21,25 and subsequently scored.
This ensured that all potentially missing side-chains were
properly built and the interface of the complex was optimized
using the OPLS force field.22 For this, the standard water
refinement setup in HADDOCK was used, which starts by
solvating the complexes in an 8 Å shell of water molecules
(TIP3P) and consists of the following steps:
(1) Energy minimization (EM) of the water, 40 steps with

the protein fixed (Powell minimizer), followed by 2 × 40 EM

steps with harmonic position restraints on the protein heavy
atoms (krest = 5 kcal mol−1 Å−2).
(2) Gentle simulated annealing protocol using molecular

dynamics in Cartesian space consisting of
(a) a heating period with 500 MD steps at 100, 200, and

300 K with position restraints (krest = 5 kcal mol−1 Å−2) on the
protein heavy atoms except for the side-chains at the interface,
(b) a sampling stage with 1250 MD steps with weak (krest =

1 kcal mol−1 Å−2) position restraints on the protein heavy atoms
except for the backbone and side chains at the interface, and
(c) a cooling stage with 500 MD steps at 300, 200, and 100 K

with weak (krest = 1 kcal mol−1 Å−2) position restraints on the
protein backbone heavy atoms not at the interface. A time step
of 2 fs was used for the integration of the equation of motions
and the temperature was maintained constant by weak coupling to
a reference temperature bath using the Berendsen thermostat.26

(3) Final 200 EM steps without any position restraints.
Nonbonded interactions were calculated with the OPLS force

field22 using a cutoff of 8.5 Å. The electrostatic energy (Eelec) was
calculated using a shift function while a switching function (between
6.5 and 8.5 Å) was used for the van der Waals energy (Evdw). This
procedure generated 20 models for each complex, starting from
different random velocities. As is default in the HADDOCK
protocol, the average score of the top 4 models was considered.

Table 1. Ki and Kd Binding Affinity Data Set of Protein−Protein Interaction Inhibitorsa

interaction biological role
PDB

(complex)
Kd (complex)

(M)

Bcl-xL/Bak programmed cell
death

1bxl 3.4 × 10−7

modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

Ki∥Kd
(modulator)

(M)

1 N3B 4369509 Bcl-xL 1ysi 1.2 × 10−7

2 ABT-737 11228183 Bcl-xL 2yxj 5.0 × 10−10

3 4FC 2782689 Bcl-xL 1ysg 3.0 × 10−5

4 TN1 68258 Bcl-xL 1ysg 4.3 × 10−3

5 LIU 15991562 Bcl-2 2o22 6.7 × 10−8

6 W1191542 44182311 Bcl-xL 3inq 1.1 × 10−8

interaction biological role
PDB

(complex)
Kd (complex)

(M)

MDM2/p53 transcription
regulation

1ycr 6.0 × 10−7

modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

Ki∥Kd
(modulator)

(M)

7 HDM2 656933 MDM2 1t4e 8.0 × 10−8

8 WK23 44825260 MDM2 3lbk 9.2 × 10−7

9 MI-63 72200152 MDM2 3lbl 3.6 × 10−8

interaction biological role
PDB

(complex)
Kd (complex)

(M)

XIAP-BIR3/
CASPASE-9

programmed cell
death

1nw9 2.0 × 10−8

modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

Ki∥Kd
(modulator)

(M)

10 998 4369343 XIAP-BIR3 1tfq 1.2 × 10−8

11 997 5388929 XIAP-BIR3 1tft 5.0 × 10−9

12 9JZ 72199974 XIAP-BIR3 3hl5 3.4 × 10−5

interaction biological role
PDB

(complex)
Kd (complex)

(M)

XIAP-BIR3/
SMAC

programmed cell
death

1g73 4.2 × 10−7

modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

Ki∥Kd
(modulator)

(M)

13 BI6 72199334 XIAP-BIR3 2jk7 6.7 × 10−8

14 AoxSPW 24916924 XIAP-BIR3 2opy 3.0 × 10−5

15 Smac005 25011737 XIAP-BIR3 3clx 1.2 × 10−7

16 Smac005 25011737 XIAP-BIR3 3cm7 1.2 × 10−7

17 Smac010 25011738 XIAP-BIR3 3cm2 4.2 × 10−7

18 Smac037 25058143 XIAP-BIR3 3eyl 2.2 × 10−7

19 CZ3 72199333 XIAP-BIR3 3g76 2.3 × 10−7

interaction biological role
PDB

(complex)
Kd (complex)

(M)

ZipA/FtsZ cell cycle regulation/
cellular structure

1f47 2.0 × 10−5

modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

Ki∥Kd
(modulator)

(M)

20 WAI 656967 ZipA 1y2f 1.2 × 10−5

21 CL3 5287936 ZipA 1y2g 8.3 × 10−5

interaction biological role
PDB

(complex)
Kd (complex)

(M)

HPV-E2/E1 viral infection 1tue n/d
modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

Ki∥Kd
(modulator)

(M)

22 BILH 434 5287508 HPV-E2 1r6n 4.0 × 10−8

interaction biological role
PDB

(complex)
Kd (complex)

(M)

IL-2/IL-2R immune system
regulation

1z92 1.0 × 10−8

modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

Ki∥Kd
(modulator)

(M)

23 FRG 5288250 IL-2 1m48 2.2 × 10−5

24 FRB 23586028 IL-2 1pw6 7.0 × 10−6

25 SP-1985 5287951 IL-2 1m49 7.5 × 10−6

26 FRH 5288251 IL-2 1py2 1.0 × 10−7

27 SP-4160 656989 IL-2 1qvn 1.4 × 10−6

aOriginal references for the affinity data are provided in the Supporting Information (Table S1).
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All calculations were performed with HADDOCK, version
2.1/CNS,27 version 1.2, through the refinement interface of the
HADDOCK web server25 (http://haddock.science.uu.nl/
services/HADDOCK/haddockserver-refinement.html).
The same protocol can be run manually on a local installa-

tion of HADDOCK by turning off randomization of starting
orientations, rigid body minimization and random removal of
restraints and setting all steps for the semiflexible refinement
stage (it1) to 0. This was used for the refinement runs using the
ACPYPE parametrization of the ligands (see Results).
HADDOCK2P2I Model Development and Evaluation.

Multiple linear regression analysis was used to create the optimized
HADDOCK2P2I score based on the following equation:

β β β β

=

= + + + +

K

E E E c

log HADDOCK

BSA

pred 2P2I

1 vdw 2 Elec 3 desolv 4 (1)

where Evdw and EElec denote the intermolecular van der Waals and
electrostatics energies, Edesolv an empirical desolvation energy,23 and
BSA the buried surface area. log Kpred denotes the logarithm of the
predicted binding affinity of the inhibitors.
The βi and c coefficients were optimized using 4-fold cross-

validation by minimizing the χ2 function (eq 2) for the 27
complexes shown in Table 1.

∑χ = −
=

K i K i[log ( ) log ( )]
i

N
2

1
pred exp

2
complex

(2)

where Kexp corresponds to the experimentally measured Kd and
Ki constants. During optimization, the various HADDOCK
score components were switched on and off to assess their
usefulness in the final development of the model. Similar
parametrization methods have already been employed success-
fully for various protein−ligand systems to date.28−30 The final
coefficients were taken as the average of the 4-fold cross-
validation optimization runs.

Independent Sets for Assessing the Prediction
Performance of the HADDOCK Score and HADDOCK2P2I.
For compiling the training set and performing the 4-fold cross-
validation, we carefully selected only competitive inhibitors,
avoiding any noncompetitive modulators of the interactions.
Data from interaction inhibition are often reported not as Ki
(or, equivalently, Kd), but instead as IC50, the latter denoting
the concentration of ligand that reduces interaction activity by
50%. IC50 measures inhibitor binding in competition with
another binding partner; consequently, it depends on the
concentration of the competitive molecule and its affinity for
the target protein. IC50s are usually larger than Ki values, but
when the concentration of the substrate is very low, they should
become essentially equal to Ki.

31 Since data about protein
concentration in the assays were rather scarce we chose to omit
complexes with only IC50 values from the training/cross-
validation set. These were, however, included as an
independent set for prediction, because of their different
physicochemical but related nature. A list of 19 inhibitors of
protein−protein interactions with known molecular structures

Table 2. IC50 Binding Affinity Data Set of Protein−Protein Interaction Inhibitorsa

interaction biological role
PDB

(complex)
Kd (complex)

(M)

Bcl-xL/Bak programmed cell death 1bxl 3.4 × 10−7

modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

IC50
(modulator)

(M)

28 HI0 24798804 Bcl-xL 3qkd 3.0 × 10−09

29 0Q5 56973540 Bcl-xL 4ehr 1.3 × 10−08

interaction biological role
PDB

(complex)
Kd (complex)

(M)

LEDGF/75-in-
tegrase

programmed cell death 2b4j 1.1 × 10−8

modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

IC50
(modulator)

(M)

30 723 921795 75-integrase 3lpt 1.2 × 10−5

31 976 45281242 75-integrase 3lpu 1.4 × 10−6

32 TQ2 44199170 75-integrase 4e1m 2.2 × 10−7

33 TQX 44198672 75-integrase 4e1n 1.9 × 10−8

interaction biological role
PDB

(complex)
Kd (complex)

(M)

MDM2/p53 transcription regulation 1ycr 6 × 10−7

modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

IC50
(modulator)

(M)

34 IMY 49867154 MDM2 1ttv 1.6 × 10−7

35 YIN 5594130 MDM2 3jzk 1.2 × 10−6

36 0R2 56591324 MDM2 4ere 4.2 × 10−9

37 0R3 56965957 MDM2 4erf 1.1 × 10−9

38 BLF 56951871 MDM2 4dij 3.0 × 10−8

interaction biological role
PDB

(complex)
Kd (complex)

(M)

TNF/TNF
receptor

inflammation n/d n/d

modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

IC50
(modulator)

(M)

39 703 4470566 TNF re-
ceptor

1ft4 2.7 × 10−7

interaction biological role
PDB

(complex)
Kd (complex)

(M)

bromodomain/
histone

inflammation n/d n/d

modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

IC50
(modulator)

(M)

40 P9M 53054259 BRD2 4a9m 5.0 × 10−7

41 A9N 72200779 BRD2 4a9n 1.5 × 10−6

42 JQ1 46907787 BRD2 3oni 1.3 × 10−7b

43 JQ1 46907787 BRDT 4flp 1.9 × 10−7b

44 JQ1 46907787 BRD4 3mxf 4.9 × 10−8b

45 EAM 46943432 BRD4 3p5o 5.1 × 10−8b

46 I-BET151 52912189 BRD4 3zyu 1.0 × 10−7b

interaction biological role
PDB

(complex)
Kd (complex)

(M)

integrin α-L/ICAM1
(CD-54)

host−virus interac-
tion

1nw9 2.0 × 10−8

modulator
(common
name)

PubChem
compound

identifier (CID)
binding
partner

PDB
(complex)

IC50
(modulator)

(M)

47 LA1 5326914 integrin α-L 1xuo 6.9 × 10−8

48 2O7 16040268 integrin α-L 2o7n 1.5 × 10−8

49 BQM 11712628 integrin α-L 3bqm 1.7 × 10−9

50 E2M 24875322 integrin α-L 3e2m 0.4 × 10−10

51 BJZ 11699447 integrin α-L 3m6f 2.5 × 10−9

aOriginal references for the IC50 data were retrieved from the relevant PDB entries in the Protein Data Bank (www.pdb.org). bKd data, retrieved
from the Protein Data Bank (www.pdb.org).
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and IC50 values was manually procured from the literature
using 2P2I database and iPPI-DB as starting points (Table 2).
Additionally, affinity predictions of inhibitors that target a

protein−protein complex, not included in the training/
cross-validation set were performed with HADDOCK2P2I.
These inhibitors were designed to disrupt the interaction
between bromodomains that specifically recognize ε-N-acetylation
of lysine residues, a post-translational modification common on
histone tails. All interactions include measured Kd data and
have available molecular structures in the Protein Data Bank
(www.pdb.org).
Estimation of Experimental Uncertainty and Qual-

itative Comparison to Prediction Error. To assess the
physicochemical relevance of the prediction error in the cross-
validated set and the test sets used, we collected from the iPPI-
DB10 all interactions that fulfill the following criteria:
(1) The same small molecule must inhibit the same interaction.
(2) Two or more binding affinity measurements using

different experimental methods should be available, but affinity
constants must be of the same nature (e.g., Kd, Ki, or IC50).
We, therefore, compiled a data set of 72 interactions that

match the above-mentioned criteria (Supporting Information
Table S3). Estimation of experimental ambiguity of the derived
data is performed using descriptive statistics and distribution
analysis, and is empirically compared to the prediction accuracy.
Assessment of the Structural Variability between

Ligands and Proteins in the Data Set. To verify that the
protein−inhibitor complexes selected for both training and
prediction were not structurally redundant, which meant the
predictive ability of our biophysical model would be limited to a
few classes of complexes, we carried out an analysis of the
similarity between the ligands and the protein binders of each
data sets. The protein similarity was assessed using sequence

similarity following a pairwise global alignment of the
sequences (as taken from the RCSB PDB Web site) calculated
with the Needleman−Wunsch algorithm available at the EBI
Web site (www.ebi.ac.uk/Tools/psa/emboss_needle/).32,33

Features such as histidine tags from the purification protocol
were not included in these calculations. Ligands were compared
using a substructure key-based 2D Tanimoto similarity,34 which
was calculated via the PubChem score matrix web service (http://
pubchem.ncbi.nlm.nih.gov//score_matrix/score_matrix.cgi).35

■ RESULTS

We investigated the protein−protein complexes from the 2P2I
database and collected from the literature affinity data for 27
inhibitors targeting 7 different protein−protein complexes. Ki
and Kd data were combined into a single data set, excluding any
IC50 measurements, which was manually curated and assembled
from two different databases. These IC50 values and their respective
complexes were used as a test set, to assess the performance of the
developed functions in unknown cases, with fuzzier data.

Compilation of a Structure-Based Data Set of PPI
Inhibitors with Known Ki and Kd Data. The resulting
binding constants include Kd and Ki values describing the
modulation/inhibition of the 7 protein−protein complexes (see
Table 1). They span the range from very low (mM) to very
high affinity (nM), covering thus a broad spectrum of
potencies. For two of the complexes (Bcl-xL/Bak and SMAC-
DIABLO/XIAP-BIR3), inhibitors with a large range of affinities
have been cocrystallized. For example, the survival protein
Bcl-xL in complex with the death-promoting region of the Bcl-
2-related protein Bak36 is a medium affinity complex (Kd =
340 nM), whereas designed PPI inhibitors against it exhibit
binding affinities from 4.3 mM to 0.5 nM. Another complex
reported in this study is Smac/DIABLO bound to the third BIR

Figure 1. Correlation plots between energetic components calculated using ACPYPE and PRODRG-derived parameters. (A) Original HADDOCK
score (Evdw + 0.2Eelec + Edesol), (B) van der Waals energy, (C) electrostatic energy, and (D) desolvation energy.
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domain (BIR3) of XIAP, a complex critical for cellular
apoptosis.37 Its reported affinity is 420 nM, whereas inhibitors
designed to disrupt this interaction cover a broad range of Ki,
from 300 mM to 67 nM. For the other complexes reported in
Table 1, fewer inhibitors with known Ki or Kd data have been
reported; they exhibit various binding potencies.
Evaluation of Force Field Topologies and Parameters

for PPI Inhibitors. The crystal structures of the PPI inhibitors
in complex with their respective proteins were subjected to short
refinement and scored using both the HADDOCK refinement
web interface25 and a local installation (see Methods). Force
field topologies and parameters of all PPI inhibitors were
generated using both PRODRG38 and ACPYPE.39 The main
difference between the two tools is that, while PRODRG is
based on a database search method to parametrize the molecules
using OPLS-like parameters,22 ACPYPE uses ANTECHAM-
BER40 with a semiempirical quantum calculation method for the
partial charges. A comparison of the original HADDOCK scores
(HSorig = Evdw + 0.2Eelec + Edesol) of the complexes using these two
parameter sets reveals differences (Figure 1A) (r2 = 0.73, N = 27,
p-value < 0.0001), showing that ligand parameters play a
substantial role in defining the interaction energy of each complex.
While the desolvation (Edesolv) and van der Waals energies (EvdW)
are essentially identical (r2 = 0.89, N = 27, p-value <0.0001 and r2

= 0.88, N = 27, p-value <0.0001, respectively) (Figure 1B and D),
the electrostatic component (Eelec) changes dramatically (r

2 = 0.33,
N = 27, p-value = 0.0017) (Figure 1C) because of differences in
partial charges. The buried surface area (BSA), which depends on
the van der Waals radii, is however almost identical (r2 = 0.98, N =
27, p-value <0.0001, data not shown).
Performance of HADDOCK Score in PPI Inhibitor Binding

Affinity Prediction. Training and Cross-Validation of
HADDOCK2P2I. The individual components of HSorig show

different contributions to the binding affinity with the van der
Waals energy being the most significant contributor (r2 = 0.53, N =
27, p-value <0.0001 for EvdW

ACPYPE and r2 = 0.38, N = 27, p-value =
0.0006 for EvdW

PRODRG) (Figure 2 A and B). The BSA also shows a
strong positive correlation with binding affinity independently of
the parametrization tool used (r2 = 0.51, N = 27, p-value <0.0001)
(Figure 2C). The electrostatic energy, in contrast, does not correlate
to binding affinity (r2 = 0.07, N = 27, p-value = 0.1823 for Eelec

ACPYPE

and r2 = 0.04, N = 27, p-value =0 .3172 for Eelec
PRODRG) (Figure 2D).

In terms of binding affinity prediction using HSorig, both
parametrization schemes exhibit comparable results (r2 = 0.40,
N = 27, p-value = 0.0004) (Figure 3A and B).
The components of the original HADDOCK score, together

with the BSA, which is used in HADDOCK in the scoring of
the initial models at the rigid body stage, were optimized (see
Methods) leading to the optimized HADDOCK score, termed
HADDOCK2P2I. It is described by the following equation:

=

= − −
+ +

± ±

± ±

K

E E

HADDOCK log

0.006 0.018
0.005 BSA 2.0

2P2I pred

0.003 Elec 0.020 desolv

0.001 0.9

(3)

Note that the parameters are averages from the 4-fold cross-
validation. As can been seen from the standard deviations given
as subscripts, there can be quite some variation in some
parameters, in particular the weight of the desolvation term.
The values of these coefficients may very well vary depending
on the data set used for cross-validation; only a much larger
data set (unfortunately not available) would allow a better
convergence. Still, the model selected (eq 3) outperforms all
other models tested (see Supporting Information Table S2),
reaching an r2 = 0.57, N = 27, p-value < 0.0001 (r2 = 0.53,

Figure 2. Correlation plots of experimentally determined binding affinities of PPI modulators with (A, B) the van der Waals energy calculated with
the two ligand parametrization schemes, (C) the buried surface area (calculated using PRODRG parameters for the ligands), and (D) the
electrostatic energy.
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N = 27, p-value < 0.0001 after cross-validation) for complexes
parametrized with PRODRG (Figure 3C) with a mean absolute
error (MAE) of 0.8 ± 0.6 kcal mol−1. It includes two of the
original components of the HADDOCK score with an
additional BSA term which substitutes the original van der
Waals energy term. For complexes parametrized with ACPYPE,
the model still retains its predictive capacity (r2 = 0.45, N = 27,
p-value = 0.0001 after cross-validation), albeit to a lesser extent
(see Supporting Information Table S2). Note that the
HADDOCK2P2I scores from both parametrization schemes
are very similar (r2 = 0.88, N = 27, p-value < 0.0001). The most
notable difference compared to the original HADDOCK score,
next to the difference in coefficients, is that the van der Waals
energy term has been replaced by the Buried Surface Area term.
A protein−protein complex of central medical relevance is

the one formed between the survival protein Bcl-xL and the
death-promoting region of the Bcl-2-related protein Bak
(Figure 3D). Proteins in the Bcl family are critical regulators
of apoptosis and contain members that inhibit programmed cell
death, such as Bcl-xL and Bcl-2. These proteins are overex-
pressed in many cancers and contribute to tumor initiation,
progression, and resistance to therapeutics. Successful inhib-
ition of this protein−protein interaction will have major
consequences in cancer therapeutics.41 Both the original (r2 =
0.86, N = 6, p-value < 0.001) and optimized (r2 = 0.94, N = 6,
p-value < 0.001) HADDOCK scores are able to relate the
scores of all six designed inhibitors for this particular complex

to their potency, with the optimized HADDOCK2P2I perform-
ing slightly better (Figure 3 solid circles, compare A−C).
Although the model can, in general, efficiently predict affinity

data for different inhibitors of protein−protein complexes, the
prediction performance is directly influenced by conformational
changes taking place upon binding: indeed, while for the rigid
interface of the BcL-XL/Bak complex discussed above (Figure 3D)
predicted affinities are lying close to the regression line (solid circles
in Figure 3C), in contrast, for the more flexible interface region of
the Xiap-BIR3, that is also flexible in the interaction with Caspase 9
(Figure 3E), predicted affinities show a poor, or even lack of,
correlation to experimental values (solid triangles in Figure 3C).
Last but not least, when we calculate the simple correlation

between molecular weight of the inhibitor and its correspond-
ing affinity, significant correlations emerge (r2 = 0.43, N = 27,
p-value = 0.0002), albeit weaker compared to the derived
HADDOCK2P2I score (r2 = 0.51, N = 27, p-value < 0.0001),
indicating that 3D information is needed to more efficiently
predict ligand affinities.

Compilation of a Structure-Based Data Set for PPI
Inhibitors with IC50 Values. Prediction of IC50 Data with
the HADDOCK Score and HADDOCK2P2I. To assess the
performance of both the original HADDOCK score and
HADDOCK2P2I, we compiled a data set of related affinity data
that include a total of 19 protein-inhibitor complexes for 6
different protein−protein interactions (Table 2). Four com-
plexes are new and have not been incorporated in the training/
cross-validation set, including inhibitors of the interaction

Figure 3. Correlation plots of experimentally determined binding affinities with the original HADDOCK score (Evdw + 0.2Eelec + Edesol) calculated
with (A and B) the two parametrization schemes and (C) the optimized HADDOCK2P2I score. (D and E) Cartoon representation of (D) the near-
rigid Bcl-xL/Bak and (E) the flexible Xiap-BIR3/caspase-9 protein−protein complex.
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between human transcriptional coactivator p75 (LEDGF) and
viral integrase. The derived inhibitors have corresponding
IC50s ranging from 12 μM to 19 nM. Tighter binding is
exhibited by inhibitors of another host−virus interaction, that
between a viral integrin and CD54, also known as Intercellular
Adhesion Molecule 1 (ICAM 1), where IC50s span from
69 nM to 400 pM. Overall, the derived test set comprises different
complexes with different binding constants, making this data set
significantly distinct compared to the test/cross-validation set.
The best performance in predicting IC50 data is obtained for

HADDOCK2P2I (r
2 = 0.61, N = 19, p-value < 0.0001) but

predictions with the original HADDOCK score are also reliable
(r2 = 0.52, N = 19, p-value = 0.0005) (Figure 4A and B). Note,
however, that these results should be treated with caution
because the method was developed to reproduce Kd measure-
ments in a quantitative manner and not IC50 values.
Unfortunately, we could not compile an independent test set
of Kd or Ki data due to the absence of combined structural and
affinity data for protein−protein interaction inhibitors. There is
however a clear trend for HADDOCK2P2I to relate to IC50
values for different complexes. The molecular weight of these
ligands also correlates with affinity (r2 = 0.37, N = 19, p-value =
0.006), but the correlations with HADDOCK2P2I are much
better (r2 = 0.61, N = 19, p-value < 0.0001), and those by the
original HADDOCK score are also higher (r2 = 0.52, N = 19,
p-value = 0.0005). This confirms the need of structural
information to gain additional insights into ligand affinity.
HADDOCK2P2I was also used to predict Kd values for 5

known complexes of the same family and initially found in iPPI-
DB. These data concern different bromodomains (BRD4,
BRD2, BRDT), for which small-molecule inhibitors have been
developed to disrupt their interaction with the ε-N-acetylated
histone tails. Overall, the prediction of Kd for this set is
reasonable, and the absolute mean error of the prediction is
∼1.6 kcal mol−1 (Figure 4C). Note that the highest prediction
error (∼1.9 kcal mol−1) corresponds to the complex between
BRD4 and I-BET151 (GSK1210151A) inhibitor. The complex
buries an unusually large surface area (1351 Å2) that directly
leads to higher predicted affinity. Note that large buried surface
area in macromolecular complexation could be the outcome of
extended conformational changes upon binding and, therefore,
hamper accurate affinity estimation.16

Data Obtained from Different Experimental Methods
Profoundly Limits the Prediction Accuracy. The iPPI-
DB10 has the largest collection of affinity data for modulators/
inhibitors of protein−protein interactions to date. It also
includes affinity data for compounds targeting the same
protein−protein interaction that were measured using different
experimental methods. Multiple Kd data are rather scarce.
Inhibition of the bromodomain 3 activity (BRD3) by
compound entry 1603 in iPPI-DB was measured both by
isothermal titration calorimetry (ITC) and surface plasmon
resonance (SPR). A 4-fold difference between affinities was
observed (Kd

ITC = 50 nM, Kd
SPR = 200 nM). For the same

compound targeting the bromodomain 4 (BRD4) activity, a
6-fold difference in affinities was observed (Kd

ITC = 55 nM,
Kd
SPR = 324 nM). Even measurements with the same biophysical

methods can vary − as an example, compound entry 713 in
iPPI-DB inhibits the XIAP-Smac interaction in the μM range,
but measured data with fluorescence polarization (FP) reach a
1.3-fold difference in Kd (Kd

FP1 = 0.275 μM, Kd
FP2 = 0.209 μM).

IC50 values obtained from various cellular assays are more
abundant in the database. We have compiled a list that contains
multiple IC50 measurements for 72 interactions (Supporting
Information Table S3). In particular, FP and fluorescence
resonance energy transfer (TR-FRET) were used to measure
inhibition of different bromodomains for a variety of ligands
(Figure 5A). Correlation between methods is strong for
individual bromodomains (BRD1 r2 = 0.76, N = 9, p-value =
0.002, BRD2 r2 = 0.80, N = 9, p-value = 0.001; BRD3 r2 = 0.88,
N = 8, p-value = 0.001), but when considered together, the
relation is less profound, explaining 72% of the data (r2 = 0.72,
N = 26, p-value < 0.0001). What is also clear is that IC50s
obtained with TR-FRET are always of better affinity, reaching a
5-fold decrease in IC50, corresponding to 0.7 in −log scale.
Therefore, a correction of the relationship with an additional β
parameter is needed (y = 0.7x + 1.9, β = 1.9) (Figure 5A);
When modeling affinity, however, the biophysical data are not
corrected by this additional parameter because we assume a 1:1
relation between affinities measured from different experimen-
tal methods. In that case, the derived relationships lead to much
lower correlations, albeit still significant (r2 = 0.54, N = 26,
p-value < 0.0001) (Figure 5A). Similar conclusions have been
made by experimentalists themselves, showing that 36
sulfonamides aiming to inhibit BRD4 activity exhibit similar

Figure 4. Correlation plots of experimentally determined binding affinities with (A) the original HADDOCK score (Evdw + 0.2Eelec + Edesol) and (B)
the optimized HADDOCK2P2I score. (C) Prediction of affinities for inhibitors of bromodomains that recognize acetylated histone tails for complexes
1−5 corresponding to PDB IDs 3ONI, 4FLP, 3MXF, 3P5O, and 3ZYU, respectively.
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IC50 values, but not identical between cell-based and
biochemical assays (r2 = 0.57, N = 36, p-value < 0.0001).42

Another example is the inhibition of the MDM2/p53
interaction using different ligands and measured by both
ELISA and cell proliferation assays (CPA) (Figure 5B); we
observe that IC50 values do indeed correlate without adding a
correction coefficient β to their linear relation (r2 = 0.68, N =
21, p-value < 0.0001), but measurements may differ by more
than 2 orders of magnitude (e.g., for entry 1143 of iPPI-DB,
IC50ELISA = 0.1 μM, and IC50CPA = 158 μM).
The distribution of the overall ambiguity in affinity

measurements is shown in Figure 5C for all 72 entries with
multiple experimental measurements collected from iPPI-DB
(Supporting Information Table S3). Nearly half of the
interactions measured have an ambiguity of <0.4 in −log
IC50 units, which corresponds to less than 2-fold changes in
IC50. The other half of the data exhibit deviations in IC50s by
more than 2-fold, reaching a maximum of 1650-fold change, the
latter representing changes in −log IC50 by 3.2 units. Overall,
the average experimental uncertainty for these data is rather
low, 0.7 ± 0.7 −log IC50 units, with a median of 0.5 −log IC50
units and a maximum of 3.2 −log IC50 units.
Considering such deviations in −log IC50 units for a single

system using two independent measurements, the prediction
error of HADDOCK2P2I on the validation set (0.8 ± 0.6 kcal mol−1),
on the “fuzzy” IC50 test set (1.6 ± 0.9 kcal mol−1) and
the Kd set concerning inhibition of different bromodomains
(1.3 ± 0.5 kcal mol−1), is in the same range of accuracy as
experimental uncertainty.

■ DISCUSSION

HADDOCK2P2I is a biophysical model optimized to predict the
binding affinities of inhibitors of PPIs. By optimizing the
weights of the original HADDOCK score and including a BSA
term, the resulting model is able to predict binding affinities of
PPI inhibitors close to experimental error (∼2-fold larger). To
test this, we have compiled from iPPI-DB and analyzed a set of
binding affinities obtained with various experiments for the
same system. We have estimated an experimental uncertainty
for IC50 values of 0.7 ± 0.7 in −log IC50 units (based on 72
data points), with a maximum of 3.2 −log IC50 units, the latter
seemingly rare. Experimental conditions can also influence
binding affinity determination, especially changes in pH.

However, modeling the effect of pH was outside the scope of
this study; this might well, if properly accounted for, lower the
prediction error. Although the effect of pH on the binding
affinity of PPI inhibitors is unclear at this time, it is known
that for protein−protein complexes, changing the pH by
three units, changes the Kd by a factor of 10−50, and ΔG by
1.4−2.3 kcal mol−1.16

Despite those limitations, our algorithm reasonably repro-
duces a variety of experimental affinities of different nature
(IC50, Ki, Kd) for distinct protein−protein interaction
inhibitors. Since new PPI inhibitors are regularly published
and crystallized with associated biophysical measurements for
their interaction, this leaves room for further optimization of
our HADDOCK2P2I binding affinity predictor. One could
possibly argue that, because of the limited size of the data set,
the prediction capacity of HADDOCK2P2I is not generalizable.
Previous studies on scoring functions for “classical” protein−
ligand complexes have shown that such limited amount of
training data leads to a bias, which could only be surpassed
when more than 100 cases are available in a data set.43 The
diversity of the data as well as number of predictor variables
used may also influence the results. To exclude a potential lack
of diversity, we performed a similarity analysis of the proteins
and ligands included in both training/cross-validation and test
sets; this highlights the diversity of the studied systems and
reflects their nonredundancy (Figure 6). Even for systems that
have highly homologous protein structures, single mutations in
the sequence, being directly at the interface or not, are often
observed that could have implications in the binding energies of
the ligands.
In this work, two different ligand parametrization tools were

compared: a semiquantum mechanical approach (ACPYPE),
and the faster, database-driven PRODRG. Both parametrization
schemes yield similar performance in terms of binding affinity
prediction using the optimized HADDOCK score, with
PRODRG slightly outperforming ACPYPE. The main differ-
ence between the two sets of parameters resides in the
electrostatics partial charges. While this might not affect much
affinity prediction based on refined crystal structures, it might
well have a much more profound impact on docking results,
something that should be evaluated in the future.
The prediction performance for PPI inhibitors seems

somewhat better than that of the most recent protein−

Figure 5. Assessment of experimental uncertainty in the determination of IC50 for PPI inhibitors using different assays. (A) Inhibitors of various
bromodomains, measured by both fluorescence polarization and fluorescence resonance energy transfer (TR-FRET). Two regression lines are shown
(y = αx + β and y = αx), highlighting that absence of the β coefficient substantially lowers r2. (B) Inhibitors of the MDM2/p53 interaction, measured
by both ELISA and cell proliferation assays. (C) Distribution of fold differences in IC50 for 72 inhibitors targeting various protein−protein
interactions that have been measured by two (or more) different experimental methods.
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ligand/drug design program. The latter, when tested against
new blind data sets, showed a predictive capacity ranging from
r2 = 0.30 to 0.40.44,45 For a fair comparison, HADDOCK2P2I
and other small ligand binding affinity models should be tested
against similar data sets. One test set used in this study contains
IC50 data; these cannot be related to actual Kd or Ki
measurements from biophysical methods, since substrate
Michaelis constant (Km) and related concentration must be
reported (S), assuming the inhibitor is competitive. If S ≪ Km,
then Ki ≈ IC50, but again, verification from classical biophysical
methods is advisable.
PPI inhibitors differ in nature from small molecule inhibitors

that target enzymes and it remains to be seen how well the
optimized function presented here will predict small molecule
binding affinities (which was outside the scope of this work).
Next to yielding an optimized function for binding affinity

prediction, this study also provides new insights into the
determinants of the binding affinity of PPI inhibitors. In
particular, affinity prediction deteriorates as a function of
conformational freedom of the system under study, directly
pointing to missing entropic contributions (Figure 3C−E).
These results are similar in nature with the ones we derived for
protein−protein complexes and with the impact of conforma-
tional change on binding affinity prediction.15,16 Nevertheless,
the buried surface area (BSA) and van der Waals interactions
show moderate-to-high correlations with binding affinity data
for all complexes tested. The two are of course directly
correlated. The desolvation and electrostatic energies show
more complicated profiles than just plain correlation. This does
not mean that they do not contribute per se: both the original
and optimized models for the HADDOCK score clearly show a

direct contribution of these two components, albeit to a smaller
extent than the BSA: The BSA contributes on average, 3.6 ±
1.3 kcal mol−1 to the overall HADDOCK2P2I score, whereas the
contributions of electrostatics and desolvation only reach 0.5 ±
0.4 and 0.1 ± 0.2 kcal mol−1, respectively, when calculated over
the entire validation data set.
The BSA and van der Waals interactions are features that

were already known to be critical factors for the affinity of
protein−ligand46 and protein−protein complexes.47,48 The
correlations calculated in this study for the BSA of inhibitors
of protein−protein interactions are, however, substantially
higher than the ones calculated for protein−protein com-
plexes,16 but smaller than for standard protein−ligand
complexes.46 This indicates that, in designing highly affine
inhibitors of PPIs, one should aim at optimizing the
complementarity of the inhibitors with the protein interface
and always consider conformational changes as these are a
limiting factor for accurate prediction.49 In conclusion, the
newly designed score, HADDOCK2P2I, should facilitate and
guide the design of PPI inhibitors, especially for the less flexible
interfaces.

■ ASSOCIATED CONTENT

*S Supporting Information
Details of the data set of binding affinity data for protein−
protein interaction inhibitors (Table S1), details of the
optimization of the HADDOCK score (Table S2), and
associated affinities for systems that were measured by two of
more methods (Table S3). This material is available free of
charge via the Internet at http://pubs.acs.org.

Figure 6. All-versus-all similarity analysis for the proteins33 and their bound inhibitors34 of the used data set, highlighting the diversity in the systems
under study (shown at the left of the matrix). The upper-right and the lower-left halves of the matrix represent the all-versus-all similarity for the
proteins and their bound inhibitors, respectively. Rows and columns 1−27 and 28−51 correspond to the training/cross-validation set and the
independent test set, respectively (following numbering introduced in Tables 1 and 2).
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