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Clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease9
(CRISPR/Cas9) gene editing technology implements precise programming of the human
genome through RNA guidance. At present, it has been widely used in the construction of
animal tumor models, the study of drug resistance regulation mechanisms, epigenetic
control and innovation in cancer treatment. Tumor immunotherapy restores the normal
antitumor immune response by restarting and maintaining the tumor-immune cycle.
CRISPR/Cas9 technology has occupied a central position in further optimizing anti-
programmed cell death 1(PD-1) tumor immunotherapy. In this review, we summarize the
recent progress in exploring the regulatory mechanism of tumor immune PD-1 and
programmed death ligand 1(PD-L1) based on CRISPR/Cas9 technology and its clinical
application in different cancer types. In addition, CRISPR genome-wide screening
identifies new drug targets and biomarkers to identify potentially sensitive populations
for anti-PD-1/PD-L1 therapy and maximize antitumor effects. Finally, the strong potential
and challenges of CRISPR/Cas9 for future clinical applications are discussed.
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INTRODUCTION

Cancer is a genetic disease accompanied by the accumulation of a variety of mutations (1). Tumor
immunotherapy has become one of the most promising therapeutic strategies in tumor treatment
compared with the high recurrence rate of metastasis, drug resistance and poor prognosis of
traditional therapies (2). Tumor cells actively evade immune detection by activating associated
negative regulatory pathways (also known as checkpoints), thus inhibiting the immune response of
Abbreviations: CRISPR/Cas9, Clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease9; PD-1,
Programmed cell death 1; PD-L1, Programmed death ligand 1; CTLA4, Cytotoxic T lymphocyte protein 4; sgRNA, Single-
stranded guide RNA; PAM, Protospacer adjacent motif; DSB, Double-strand break; NHEJ, Non-homologous end-joining;
HDR, Homology-directed repair; TALEN, Transcription activator-like effector nuclease; TIL, tumor-infiltrating lymphocytes;
NSCLC, non-small cell lung cancer; DC, dendritic cells; CTL, Cytotoxic T lymphocyte; ADCC, Antibody-dependent cell-
mediated cytotoxicity; ICI, Immune checkpoint inhibitor; LSCC, Laryngeal squamous cell carcinomas; HNSCC, Head and
neck squamous cell carcinoma; TAM, tumor-associated macrophages; NAMPT, nicotinamide phosphoribotransferase; ISR,
integrated stress response; CAR T cell, Chimeric antigen receptor T cell; BCMA, B cell maturation antigen; DNA-PKC, DNA-
dependent protein kinase; HPV, Human Papillomavirus; HCC, hepatocellular carcinoma; CIK, cytokine induced killer; CRC,
Colorectal cancer; MSI, microsatellite instability; MSS, microsatellite stabilized.
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the human body. Among the numerous checkpoints, cytotoxic T
lymphocyte protein 4 (CTLA4) and programmed cell death
protein 1 (PD-1) are by far received much attention. CTLA4
controls T cell activation by competing with the costimulatory
molecule CD28 to bind to the shared ligands CD80 and CD86
(3). The binding of PD-1 on the surface of T cells to Programmed
death ligand 1(PD-L1) on tumor cells is a major obstacle in the
cancer immune cycle, inducing T cell apoptosis and inhibiting
the activation and proliferation of T cells (4). Fortunately, genetic
modification of tumor immunity can be achieved through the
CRISPR/Cas9 system. The CRISPR/Cas9 system, derived from
the acquired immune defense mechanism of bacteria, enables
accurate editing of specific regions of the genome by simple and
rapid Watson Crick base pairing between sgRNA and target
genes (5, 6). Currently, the CRISPR/Cas9 system has derived
many variants such as nickase Cas9 (nCas9), nuclease-
deactivated Cas9 (dCas9) and so on, which have been widely
used in a variety of cell types and organisms to achieve diversity
and ease of use (7, 8). In this review, we summarize CRISPR/
Cas9 technology centering on gene editing, gene screening and
clinical application of tumor immunity PD-1/PD-L1, as well as
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its strong potential and existing problems in the field of future
tumor therapy.
CRISPR/CAS9 TECHNOLOGY

Tumors are characterized by highly heterogeneous molecular
characteristics and carry a wide range of gene mutations (9). This
may be the main cause of tumor drug resistance and recurrence
(10). Gene editing technology is in urgent need of decoding the
genetic code at a deeper level and implementing precision
medicine. Genome editing can modify the human genome and
change biogenesis, which has the potential of targeted therapy to
cure diseases (11). The CRISPR/Cas9 system is a gene editing
technology guided by the principle of RNA-DNA
complementary pairing (12). CRISPR/Cas9 technology is used
to repair mutations, knock in or knock out specific genes, and
modify genes to explore the mechanisms of tumorigenesis,
development, and metastasis for precision therapy. The
CRISPR sequence is responsible for the production of crRNA
and tracrRNA (Figure 1). The two can be synthesized into a
FIGURE 1 | CRISPR/Cas9 gene editing mechanism. CRISPR’s sequence consists of a leader, repeats, and spacers. SgRNA is formed by the combination of
specific crRNA and tracrRNA that functions as a scaffold. SgRNA can recruit the Cas9 to anchor to the target gene by using RNA-DNA base pairing at the 5'-
terminal specific binding sequence. After verifying the PAM motif, Cas9 plays a shearing role to generate DSBs. DSBs are activated by NHEJ or HDR mechanisms to
repair mutations, knock in or knock out specific genes, and modify genes.
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single-stranded guide RNA (sgRNA) (6, 13), which guides Cas9
nuclease to bind to the complementary target gene and cut near
the protospacer adjacent motif (PAM) region to introduce DNA
double strand breaks(DSBs) (5, 14). At DSBs, Non-homologous
end-joining (NHEJ) repair pathway is activated to randomly
insert or delete several bases, and efficiently produce INDEL
mutations (15). Alternatively, Homologous directed repair
(HDR) can occur under a DNA repair template with high
homology (16). Compared with Zinc finger endonuclease
(ZFN) (17) and Transcription activator-like effector nuclease
(TALEN) (18) technologies, the CRISPR/Cas9 system abandons
the traditional chimeric nuclease protein domain-DNA
recognition design concept and avoids the multiple fusion
process in multitarget gene editing (19–21). Therefore, it has
the advantages of high specificity, strong operability and
convenient systematic analysis, making it the preferred tool for
gene editing in eukaryotes. CRISPR/Cas9 gene editing
technology has been widely used in the construction of animal
tumor models, the study of drug resistance regulation
mechanisms, epigenetic control and tumor immunotherapy
(22–24). In particular, CRISPR/Cas9 also shows great potential
in exploring tumor immune mechanisms, biomarker screening,
and clinical trials and therapies.
TUMOR IMMUNITY

The occurrence and development of tumours are closely related
to the infiltration of immune cells, immune modification and
immune escape in the tumour microenvironment (1, 25, 26).
Tumour immunity promotes tumour progression by changing
tumour biological characteristics (27), screening tumour cells
adapted to the microenvironment for survival (28) or
establishing a suitable tumour microenvironment (29), and so
on. Among them, immune checkpoints such as PD-1 and
CTLA4 play an important role. Under normal physiological
conditions, the binding of PD-1 and PD-L1 can down-regulate
the activity of T cells and prevent additional damage of cytotoxic
effector molecule and autoimmunity, so it is called immune
checkpoint (30) A Study confirmed that tumor cells often express
negative costimulatory signals such as PD-L1, leading to the
failure activation of T cell activation. At the same time, tumor-
infiltrating lymphocytes (TILs) usually express elevated levels of
PD-1 due to chronic stimulation of tumor antigens (31). PD-1/
PD-L1 blockade enhances T cell response through multiple
underlying mechanisms, altering the outlook for cancer
treatment. For example, PD-1/PD-L1 blockade may depend on
proliferation of "precursors of exhausted" T (TPEX) cells rather
than reversal of T cell depletion procedures (32). It has been
found that PD-L1 blockade in conjunction with Alarmin
HMGN1 peptide seems to activate anti-tumor TPEX cells and
promote their amplification, but does not deplete T cells (33). In
addition, PD-1 posttranslational modifications such as
glycosylation maintain its stability and membrane expression,
and mediate immunosuppressive function. Antibodies targeting
glycosylated PD-1 may recognize the heavy glycan moieties of
PD-1 and have a higher affinity (34).
Frontiers in Immunology | www.frontiersin.org 3
CRISPR/CAS9 IN TUMOR IMMUNITY

Tumor immunity is regulated by many factors and ways. For
example, iron poisoning can induce immunogenic apoptosis or
necroptosis in cancer cells, which activates antitumor immunity
(35). Autophagy regulation inhibits the response through
selective degradation of MHC class I molecules, reduces the
activity of the STING1 pathway, and promotes tumor immune
escape (36). In recent years, CRISPR/Cas9 technology has
received increasing attention in tumor immune regulation.
CRISPR/Cas9 plays a role in the IFN signaling pathway, ERK/
MAPK signaling pathway, Wnt/b-catenin signaling pathway,
PI3K/AKT signaling pathway and other mechanisms in
chronic inflammation and tumor immune resistance. For
example, Wang et al. found that knockout of SHP2 using
CRISPR/Cas9 gene editing inhibited SHP2 activity and
enhanced tumor-intrinsic IFNg signaling, resulting in increased
chemoattractive cytokine release and cytotoxic T cell
recruitment, as well as increased tumor cell surface Increased
expression of MHC class I and PD-L1. In addition, SHP2
inhibition reduced the differentiation and suppressive function
of immunosuppressive myeloid cel ls in the tumor
microenvironment (37). The study by Yang et al. found that
successful nuclear localization of CRISPR/Cas9 ensured efficient
destruction of PD-L1 and PTPN2. Inhibition of PTPN2 can
alleviate the inhibition of the JAK/STAT pathway and promote
tumor susceptibility to CD8+ T cells dependent on IFN-g,
thereby further amplifying the adaptive immune response (38).
Therefore, the combination of CRISPR/Cas9 technology with
tumor immunotherapy has great potential for development.
Immune checkpoint block is one of the most valuable
individualized tumor treatment options. For example, the anti-
PD-1/PD-L1 antibodies, nivolumab, pembrolizumab, and
atezolizumab have shown significant advantages in melanoma,
non-small-cell lung cancer (NSCLC), and urothelial carcinoma,
and have been approved by the Food and Drug Administration
(39–41). However, there remains inflammatory side effects (42,
43), and the overall survival rate is not significantly improved. In
addition, CPISPR/Cas9 technology provides a multifunctional
and convenient operation mode for the transformation of
engineered T cells (44, 45). Genetically engineered T cells have
the ability to kill tumor cells as well as significant therapeutic
effects. Gene editing technology enables precise genetic
modification of T cells, further improving chimeric antigen
receptor-engineered T cell immunotherapy. This solves the
problem of mass production of therapeutic immune cells and
enables the genetic engineering of multiple T cells to meet the
clinical needs for the treatment of complex types of cancer.
CRISPR/CAS9-EDITED PD-1/PD-L1 IN
THE TUMOR IMMUNE EVASION

PD-1/PD-L1 has been identified as a negative immunomodulatory
molecule that promotes immune evasion of tumor cells. Most
patients treated with commercially targeted PD-1/PD-L1
March 2022 | Volume 13 | Article 848327
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antibodies have achieved a higher cure rate, prolonged survival
and fewer recurrence and metastasis events (46–48). However,
there are still some patients who are insensitive to targeted PD-1/
PD-L1 antibodies or suffer side effects or drug-related
inflammatory adverse events (49). The CRISPR/Cas9 technique
maximizes PD-1/PD-L1 deletion at the genomic level, thereby
saving the function of lymphocytes in the tumour
microenvironment. However, whether it corrects the
inactivation of targeted antibodies remains unclear (Figure 2).

CRISPR/Cas9 Engineered Immune Cells
In primary T cells, researchers electroperforated plasmids
encoding sgRNA and Cas9 to knock out PD-1, which
upregulated IFN-g production and enhanced cytotoxicity
without affecting the viability of primary T cells (50). Similarly,
Lu specifically knocked out the PD-1 gene in primary T cells
using CRISPR/Cas9 genome editing tools coated with liposomes.
This greatly stimulated T cell activation by dendritic cells (DCs)
and demonstrated enhanced anticancer potential both in vivo
and in vitro (51). Some studies have confirmed that CRISPR/
Cas9 is an effective system to knock out PD-1 in cytotoxic T
lymphocytes (CTLs). On the one hand, PD-1 KO CTLs can
reduce the number of Tregs or inhibit Treg activity and recruit
more effector cells. On the other hand, it regulates the secretion
of cytokines and activates caspase, thereby inhibiting tumor
growth in vivo and in vitro and prolonging survival (52–54).
Cas9/sgRNA specifically integrates the a-PD-1 box into the
GAPDH site of B lymphocytes. Surprisingly, the edited B
lymphocytes differentiated into typical long-lived plasma cells
(LLPCs) both in vitro and in vivo. These cells continuously
Frontiers in Immunology | www.frontiersin.org 4
secrete new antibodies that inhibit human melanoma growth in
xenograft tumor mice by antibody-mediated checkpoint
blocking (55). Cas9 has also improved natural killer cell-based
cancer immunotherapy. PD-1-deficient NK cells increased
lethality through non-antibody-dependent cell-mediated
cytotoxicity (ADCC) pathways and enhanced degranulation
and cytokine production (56). In summary, CRISPR/Cas9
provides a powerful and effective protocol for editing PD-1
genes in a variety of immune cells to block immune checkpoints.

CRISPR/Cas9 Engineered Tumor Cells
PD-1/PD-L1 maintains high expression on the surface of various
malignant tumors, which is associated with poor prognosis of the
disease. PD-L1 leads to T cell dysfunction and tumor evasion
from immune surveillance by binding to T cell suppressor
receptors (57). After CRISPR/Cas9 reduced the expression level
of PD-L1 on tumor cells, CD4 T cells, CD8 T cells, NK cells and
CD11c M1 macrophages increased significantly in the tumor
microenvironment, while regulatory T cells decreased. The
mRNA levels of IFN-g, TNF-a, interleukin (IL) -2, IL-12A,
CXCL9 and CXCL10 were significantly increased, while the
mRNA levels of IL-10, vascular endothelial growth factor,
CXCL1 and CXCL2 were significantly decreased (58). Based on
CRISPR/Cas9, scientists developed a photoactivated
photoswitching system constructed from mg polyethylene
imine derivative and plasmid PX330/SGPD-L1. The system
effectively genetically destroys the PD-L1 gene in large cancer
cells and even cancer stem cell-like cells (59). A vectorless
multichannel gene editing system was designed in which
multiple Cas9 RNPs inhibit both PD-L1 and programmed
FIGURE 2 | CRISPR/Cas9 directly edits PD-1/PD-L1 to regulate tumor immunity. CRISPR/Cas9 technology can edit the PD-1 gene in primary T cells, CTLs, NK
cells and B cells through different delivery methods to enhance antitumor immunity through different mechanisms. CRISPR/Cas9 knockdown of PD-L1 in tumor cells
promotes tumor antigen presentation, immune cell proliferation and cytotoxicity in the tumor microenvironment, and improves tumor chemotherapy resistance.
March 2022 | Volume 13 | Article 848327
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death ligand 2(PD-L2) ligands. It can significantly increase Th1
cytokine production of cytotoxic CD8 T cells, resulting in a
synergistic cytotoxic effect (60). PD-L1 not only mediates tumor
immune escape but also makes cancer cells resistant to
chemotherapy. CRISPR/Cas9 modification of the tumor cell
surface antigen PD-L1 can reduce chemotherapy resistance or
produce syne rg i s t i c e ff e c t s in combina t ion wi th
chemoradiotherapy (61). For instance, the survival time of mice
with the ovarian cancer in the PD-L1-KO group was significantly
longer than that in the control group, and the therapeutic effect
was enhanced when combined with cisplatin (58). Wu et al.
found that CRISPR/cas9-mediated knockout of B7-H1 sensitized
cancer cells to chemotherapy and targeting B7-H1 with a
monoclonal antibody also sensitized cancer cells to
chemotherapy. Furthermore, B7-H1 increases ERK activation
in melanoma cells and maintains p38 MAPK activation in
triple-negative breast cancer cells, and ERK activation plays a
key role in cell survival and drug resistance (62). Targeting PD-L1
in osteosarcoma also increased drug sensitivity to adriamycin and
paclitaxel. Doxorubicin and paclitaxel are commonly used to
treat osteosarcoma. However, many patients with osteosarcoma
are resistant to doxorubicin and paclitaxel chemotherapy. Liao et
al. used the MTT assay to evaluate the role of PD-L1 in the
resistance of osteosarcoma cells to doxorubicin and paclitaxel.
They found that the results of the MTT assay indicated that PD-
L1 may be involved in the drug resistance of osteosarcoma and
may become a clinical potential target for therapy (63). In
general, CRISPR/Cas9 technology not only improves the tumor
immune microenvironment by knocking out PD-L1, but also
breaks through tumor chemotherapy resistance.
INDIRECT REGULATION OF PD-1/PD-L1
BY CRISPR/CAS9

The occurrence and development of tumors is a complex
pathological process involving the interaction of multiple
regulatory molecules and their downstream signaling pathways.
CRISPR/Cas9 has enabled further understanding of the
regulatory mechanism of immune checkpoint inhibitors (ICIs)
and promising biomarkers to help patients stratify and
coordinate targeted anti-PD-1/PD-L1 therapy.

Regulation of Antigen Presentation
Upregulation of antigen presenting-related genes of mouse MHC
class I molecules, peptide transporters, peptide cleavages and
transporter-MHC interactions was observed in lung squamous
cell carcinoma lines with CRISPR deletion of WEE1 (64). This
suggests the possibility of combining ICI with DNA damage
induction therapy to treat laryngeal squamous cell carcinomas
(LSCC). In addition, CRISPR-targeted EZH2 knockout reduced
histone H3K27me3 modification on the B2 M promoter and
restored antigen presentation. Anti-PD-1 antibodies also bypass
the resistance of tumor cells to T cell-mediated killing (65).
Therefore, the combination of EZH2-targeting with anti-PD-1
therapy may increase treatment susceptibility in head and neck
Frontiers in Immunology | www.frontiersin.org 5
squamous cell carcinoma (HNSCC). CRISPR/Cas9 promoted T
cell infiltration in the tumor microenvironment by editing Atrx,
and increased tumor cell antigen presentation after IFN-g
stimulation, thus enhancing the ICI response in NSCLC (66).
Antigen presentation is a key step in initiating adaptive
immunity, and CRISPR/Cas9 enhances antigen presentation to
enhance antitumor immunity.

Regulation of Tumor-Associated
Macrophages (TAM)
A study found that CRISPR/Cas9 knockdown of Cxcr2 reduced
the level of PD-L1 by downregulating C-MYC, thereby
accelerating the change in the phenotype of M1 macrophages
and suppressing immune escape. Therefore, Cxcr2 knockout is a
potentially effective method to block PD-L1 (67). It has also been
found that immunocompetent mice with CRISPR/Cas9
knockdown of VEGFC are more likely to develop invasive
tumors than immunodeficient mice. These tumors showed
downregulation of activated lymphocytes and upregulation of
M2 macrophage markers and PD-L1 (68). Thus, targeted therapy
for VEGFC must be considered comprehensively. In addition, Li
used CRISPR/Cas9 to develop histone chaperone Asf1a
deficiency, which coordinated with anti-PD-1 immunotherapy
by promoting macrophage M1 polarization and T cell activation
(69). CRISPR/Cas9 downregulates the expression of PD-L1 and
reverses the tumor-promoting state of TAMs by regulating
upstream molecules, thus playing an antitumor role.

Regulating Signal Pathways
With the binding of PD-1 to PD-L1, tyrosine phosphatase is
recruited to the cytoplasmic inhibitory motifs of PD-1 and
dephosphorylates TCR, thereby inhibiting the downstream
IFN, PI3K-AKT and Wnt/b-catenin signaling pathways to
promote tumor progression (70, 71). CRISPR/Cas9
synergistically targets PD-1/PD-L1 therapy by regulating
downstream signaling pathways. THE interferon (IFN)
signaling pathway is a major component of natural immunity,
and tumor cells may play a direct defensive role against IFN-
mediated cytotoxicity by upregulating PD-L1. Knockout of SHP2
by CRISPR/Cas9 in cancer cells enhanced the expression of
MHC class I and PD-L1 proteins in cancer cells through IFN-g
signaling and enhanced the response against PD-1 blockade in
cogene mouse models (37). Programmable unlockable
nanoencapsulation CRISPR technology (PUN) has hierarchical
response characteristics. PUN mitigates inhibition of the JAK/
STAT pathway by knocking out the protein tyrosine phosphatase
PTPN2 in tumor cells, which relies on IFN-g to promote antigen
presentation and growth inhibition, further amplifying adaptive
immunity to PD-L1 blockade (38). The PI3K-AKT signaling
pathway is mainly involved in regulating the glycolysis process of
immune cells (72). Studies found that CRISPR/Cas9-based
GLO1 deletion changed glucose metabolism and redox
homeostasis by modulating TXNIP, and PD-L1 expression was
reduced at both the gene and protein levels (73). The Wnt//b-
catenin pathway, which is extremely active in a variety of cancers,
may also influence tumor immunity in addition to driving
March 2022 | Volume 13 | Article 848327
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tumorgenesis and metastasis (74, 75). Researchers constructed
an aptamer/peptide-functionalized genome-editing system,
which significantly knocked out b-catenin and downregulated
theWnt//b-catenin pathway (76). After knockout, the expression
of tumor immunosuppressor-related proteins (PD-L1 and
CD47) and proliferation-related proteins (C-MYC and Cyclin
D1) was significantly downregulated, which also reversed the
immunosuppression induced by PD-L1 in the presence of
IFN-g. These findings provide a strong incentive for CRISPR/
Cas9 to explore IFN, PI3K-Akt, and Wnt//b-catenin signaling
pathways and strategies to enhance tumor immune invasion, as
a means to increase tumor sensitivity to immune checkpoint
blockade therapy.
CRISPR/CAS9 SCREENING IN
PD-1/PD-L1 IMMUNOTHERAPY

The occurrence and progression of tumors are closely related to
gene mutations (1). Genome-wide screening can comprehensively
and fairly grasp the changes in genes in cells, reveal the genetic basis
behind specific phenotypes and assist in the development of new
therapies. Advances in whole-genome screening in mammalian
systems have been hampered by time, size constraints and
inefficient double-allelic mutations in mouse culture (77). In
recent years, CRISPR/Cas9 technology has provided genome-
scale gRNA libraries in the presence of gRNA-guided Cas9
endonucases to generate mutant cell libraries, which serve as a
perfect platform for phenotypic screening (78). At present, Cas9
technology has been used in the laboratory, and various sgRNA
libraries constructed have revealed the internal molecular
regulatory mechanisms of tumor proliferation and metastasis
(79), tumor drug resistance (80, 81), tumor immune escape (82)
and other malignant behaviors. Below, we summarize the recent
progress of CRISPR/Cas9 technology in screening PD-1/PD-L1
and potential regulatory molecules in immune-related cells and
tumor cells.

CRISPR technology was used to conduct genome-wide
screening of tumor-infiltrating CD8 T cells in vivo. They
reidentified typical immunotherapy targets such as PD-1 and
TIM-3, as well as other novel sites, and verified the region of
CRISPR in vivo screening of CD8 T cells for tumour infiltration
(83). Another study identified Fut8, a gene involved in the core
focusing pathway, as a positive regulator of PD-1 expression on the
cell surface through genome-wide functional loss screening of the
CRISPR-Cas9 system. Inhibition of Fut8 can reduce PD-1
expression on the cell surface, enhance T cell activation, and
eradicate tumors more effectively (84). Using genome-wide
CRISPR and metabolic inhibitor screening, Wang determined
that nicotinamide phosphoribotransferase (NAMPT) is required
forTcell activationanddemonstrated thatNAD+supplementation
significantly enhances anti-PD-1 immunotherapy in a mouse solid
tumor model (85). This demonstrates the feasibility of CRISPR/
Cas9 screening technology in discovering PD-1-related regulatory
factors and provides a more comprehensive strategy for in-depth
exploration of the PD-1 regulatory mechanism.
Frontiers in Immunology | www.frontiersin.org 6
In addition to screening in T cells, CRISPR/Cas9 also showed
great strength in the study of PD-L1 expressed in tumor cells. At
the transcriptional level, CRISPR/Cas9 screening confirmed that
ALK activated STAT3 and eventually induced PD-L1 expression
through the effects of the transcription factors IRF4 and BATF3
on PD-L1 gene enhancer regions (86). At the translation level,
the overexpression of translation initiation factor eIF5B in lung
adenocarcinoma allowed us to bypass the inhibitory upstream
open reading frame of PD-L1 mRNA in the integrated stress
response (ISR) activated by impaired haem production, leading
to enhanced PD-L1 translation (87). CMTM6 prevents PD-L1
from lysosomal-mediated degradation, which colocalizes with
PD-L1 in the plasma membrane and circulating endosomes (88).
In addition, Aleksandra developed a pro-code/CRISPR screen
that identified socs1 as a negative regulator of PD-L1 (89). In the
same way, a study identified IRF2 in a CRISPR-based forwards
genetic screen that controlled MHC-I Ag presentation and PD-
L1 expression in HeLa cells (90). CRISPR/Cas9 screening found
that the transcription regulator MLLT6 is required for effective
PD-L1 protein expression and cell surface presentation in cancer
cells. MLLT6 loss mitigates the inhibition of CD8 cytotoxic T
cell-mediated lysis (91). In addition, CRISPR/Cas9 screening also
found that editing Asf1a (69), PRMT1 and RIPK1 (92),
MAN2A1 (93), IFNGR2 and JAK1 (94) increased the
sensitivity of tumors to anti-PD-1 or PD-L1 treatment. Tumor
cells disrupt T-cell-mediated immune monitoring by
maintaining high levels of PD-L1, while CRISPR/Cas9
screening found that the PD-L1 transcription and level,
translation levels and maintenance of its stability and
expression of oncogenic factors, thus exploring the related
regulatory mechanisms of PD-L1 to provide a potential
biologic therapeutic target for disrupting PD-L1-mediated
tumor tolerance therapy.
CRISPR/CAS9-ASSOCIATED
PD-1/PD-L1 EDITING IN DIFFERENT
CANCER SPECIES

The dominant mechanism of tumor immunity is different in
different tumors, which affects the occurrence and progression of
tumors in various ways. In this review, we selected several
cancers and summarized the role of CRISPR/Cas9 technology-
associated PD-1/PD-L1 editing in tumor immunity (Figure 3).

Leukaemia
Leukaemia is a type of hematopoietic stem cell malignant clonal
disease with obvious heterogeneity (95, 96). Currently, T cells
modified with chimeric antigen receptors targeting CD19 have
been developed, which can overcome many limitations of
traditional therapies and achieve high remission rates in
patients (97, 98). CRISPR/Cas9 technology provides easy
access to further optimize the efficiency of CD19 Chimeric
antigen receptor T cells (CAR T cells) to meet the needs of
routine clinical use (99). The researchers constructed a
disposable CRISPR system that easily harvested CD19 CAR T
March 2022 | Volume 13 | Article 848327
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cells and interfered with PD-1 in CAR T cells. In a b-acute
lymphoblastic leukaemia xenograft mouse model, these cells
significantly increased their antileukaemia activity (100). This
suggests that the combination of immune checkpoint disruption
may improve the effectiveness of adoptive cell therapy
for leukaemia.

Multiple Myeloma (MM)
MM is a plasma cell malignant proliferative disease with
unknown etiology and no cure at present (101). Currently,
PD-1/PD-L1 immune checkpoint blockade has shown
remarkable efficacy in patients with intractable hematological
malignancies (102). Zhao achieved PD-1-deficient CTLs based
on CRISPR/Cas9 technology and found that the secretion of
TNF-a and IFN-g increased several times, promoted apoptosis of
cocultured MM cells, inhibited tumor growth and prolonged
survival within in vivo models of MM (54). CRISPR/Cas9
Frontiers in Immunology | www.frontiersin.org 7
effectively knocked out PD-1 of in CTLs and enhanced their
cytotoxicity. This laid the foundation for the potential use of
CRISPR in the production of immune checkpoints targeting
CAR T cells. However, CAR T cells targeting B cell maturation
antigen (BCMA) on the plasma cell surface remain the
mainstream treatment plan for MM (98, 103). The safety and
efficacy of using CRISPR/Cas9 to edit PD-1 CAR T cells with
MM remains to be investigated.

Breast Cancer
Triple-negative breast cancer is not sensitive to common
endocrine therapy and targeted therapy, and resistance to
radiotherapy and chemotherapy has become the main obstacle
to prolonging the survival of cancer patients, so it is urgent to
explore new effective therapeutic targets (104). By using CRISPR/
Cas9, Wu found that B7-H1 is related to the catalytic subunit of
DNA-dependent protein kinases (DNA-PKCs), which promotes
FIGURE 3 | Research progress of CRISPR/Cas9 in different cancer species. CRISPR/Cas9 has been tested at the cellular level, in animals, and even in humans in a
variety of cancers, including leukaemia, multiple myeloma, colorectal cancer, liver cancer, cervical cancer, ovarian cancer, breast cancer, lung cancer, and melanoma.
CRISPR/Cas9 enhances antitumor immunity by directly editing PD-1/PD-L1 or by knocking out other molecules in coordination with immune checkpoint blockade.
Some novel molecules have been proposed as biomarkers for screening people susceptible to anti-PD-1 therapy.
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or maintains the activation of ERK or P38 MAPK in cancer cells,
thus restoring the sensitivity of cancer cells to chemotherapy
(62). In addition, CRISPR/Cas9 knockdown of Cdk5 significantly
reduced the expression of PD-L1 on tumor cells, thus effectively
inhibiting lung metastasis of triple-negative breast cancer in mice
(105). Crk adaptor protein also inhibited EMT and PD-L1
expression on tumor cells through CRISPR/Cas9 gene ablation
and inhibited tumor growth and metastasis with anti-PD1
therapy (106). In conclusion, CRISPR/Cas9 compensates for
the deficiency that ICIs are basically ineffective in inducing
immunogenicity and treating breast cancer and effectively
identifies upstream therapeutic targets of immunotherapy,
which has considerable potential in exploring and verifying
mechanisms of breast cancer metastasis and drug resistance.

Cervical and Ovarian Cancer
Cervical cancer is the most common gynecological malignant
tumor and is highly correlated with Human Papillomavirus
(HPV) infection (107). GDNA combined with targeting of PD-
1 and HPV16 E6/E7 dramatically increased the number of
dendritic cells, CD8+ and CD4+ T lymphocytes and hampered
tumor growth (108). Therefore, a reasonable combination of
CRISPR/Cas9-mediated PD1 blockade and HPV knockout can
have a powerful synergistic effect by increasing the persistence of
ICIs on the basis of the high sensitivity of targeted therapy for
cervical cancer. In addition, cohort studies have been completed
to evaluate the safety and efficacy of CRISPR/Cas9-HPV E6/E7 in
the treatment of persistent HPV and HPV-associated cervical
intraepithelial neoplasia I (NCT03057912). Ovarian cancer is the
main cause of cancer death among gynecological malignant
tumors, usually with advanced peritoneal or distal metastasis
(109). CRISPR-mediated destruction of PD-L1 on the ovarian
cancer cell surface regulates the production of cytokines and
chemokines to inhibit the progression of ovarian cancer (58). On
the other hand, EP-100 was found to induce PD-L1 expression
and immune regulation in LHRH-R positive tumor cells.
CRISPR/Cas9 revealed the internal biological mechanism of
the synergistic action between anti-EP-100 and anti-PD-L1 by
silencing the IL33 gene (110). In summary, CRISPR provides a
basis for further clinical research on malignant diseases of the
female reproductive system.

Hepatoma
Aflatoxin is a risk exposure factor for primary hepatocellular
carcinoma, and CRISPR/Cas9 genomic screening identified aryl
hydrocarbon receptor as essential for hepatocellular carcinoma
(HCC) associated Aflatoxin toxicity, suggesting that an anti-PD-
L1 immunosuppression regimen can be used as a treatment
regimen for Aflatoxin-associated HCC (111). The CRISPR/Cas9
gene editing system disrupted the PD-1 gene in gypican-3
targeted second-generation CAR T cells (112). The role of
CCRK and KDM1A in regulating PD-L1 levels on the surface
of HCC cells was also explored (113, 114). Moreover, Huang
found that Cas9 deletion of PD-1 combined with lentivirus
transduction of human telomerase reverse transcriptase can
prolong the lifespan of cytokine induced killer (CIK) cells and
Frontiers in Immunology | www.frontiersin.org 8
enhance their antitumor effects (115). In summary, as a more
efficient genome editing technology, CRISPR/Cas9 has been
widely used in the exploration of immunotherapy for
liver cancer.

Colorectal Cancer
Colorectal cancer (CRC) is a common malignant tumor in the
gastrointestinal tract. The occurrence and development of
colorectal cancer involves multiple steps, stages and genes
(116). Currently, ICIs have been used in the clinical treatment
of colorectal cancer, but they are only effective for microsatellite
instability MSI patients (117, 118). To explore the precise
treatment of ICIs in microsatellite stabilized (MSS) CRCs, Liao
discovered the atypical Notch pathway of PD-L1-driven
ARID3B, revealing the immune avoidance mechanism of the
CRC CMS4 subtype by CRISPR technology (119). These results
support the use of ICIs for custom targeting of the CMS4 subtype
to screen potential populations that may benefit from ICIs.

Lung Cancer
Anti-PD-1 immunotherapy has been approved as a first-line
treatment for lung cancer patients. However, the response rate
was poor in patients with lung squamous cell carcinoma and
NSCLC. CRISPR/Cas9 has been explored in many influencing
factors. Multiple gene editing of mouse pulmonary organs using
the CRISPR/Cas9 system can effectively and rapidly generate
LSCC to determine whether induced DNA damage can enhance
the immunological characteristics of ICI (64). In addition,
CRISPR also validated ATRX as a promising biomarker for
ICIs in NSCLC, contributing to patient stratification and
decision-making (66). In addition, the inability of antigen
processing and presentation caused by damage to the main
component of HLA class-I complex B2 M is also explained
from the perspective of acquired resistance to anti-PD-1 or PD-
L1 antibodies (120).

Melanoma
Melanoma is a highly malignant tumor derived from
melanocytes that is prone to distant metastasis (121). Although
ICIs are currently considered the mainstream immunotherapy
for melanoma, the response rate of patients to monoclonal
antibodies is still not optimistic (120). One study demonstrated
the feasibility of CRISPR-edited PDCD1 in effect-memory CTLs
with melanoma antigen specificity, and clearly demonstrated its
superiority in delaying the growth of PD-L1-positive melanoma
(122). Importantly, genes related to metabolism and cell
signaling were actively expressed, but genes related to
proliferation and DNA replication were downregulated in PD-
1-deficient T cell clones. These results suggest that regulation of
effector function is more critical than the ability of T cells to
proliferate. To further elucidate the effect of metabolic status on
the immune response, scientists performed proteomic analysis
and CRISPR validation in patients with advanced melanoma
who received anti-PD-1 therapy (123). It was finally proven that
lipid metabolism, as a regulatory mechanism, increases the
immunogenicity of melanoma by enhancing antigen
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presentation, thereby enhancing sensitivity to T cell-mediated
killing in vivo and in vitro. Therefore, CRISPR can provide
insights into the metabolic mechanisms of melanoma
immunosuppression to identify therapeutic targets that
improve the efficacy of anti-PD-1 immunotherapy.
CLINICAL APPLICATION OF CRISPR
CAS9-RELATED PD-1/PD-L1

Immunotherapy has become a powerful treatment for many
solid and hematological malignancies, including immune
checkpoint blocking therapy, immune cell therapy and tumor
vaccine therapy (124). Among them, CAR T cell therapy in
immune cell therapy has shown great potential in the field of
tumor therapy and made unprecedented breakthroughs in
clinical practice (98, 125). CAR T therapy is administered by
taking T cells from patients and genetically modifying them into
chimeric antibody T cells with single-stranded fragment variants
from the extracellular antigen recognition domain, the CD3z
transmembrane domain, and the intracellular T cell activation
domain (126). It can specifically recognize tumor cell surface-
Frontiers in Immunology | www.frontiersin.org 9
associated tumor-associated antigen, enhance its defense ability
against tumor cells, and stimulate T cell proliferation, cytokine
secretion, and lymphocyte recruitment, thereby playing an
antitumor role. Fortunately, four generations of evolution have
improved the time, difficulty and cost of obtaining CAR T cells,
as well as the limitations on the number of patients’ T cells
themselves (127). The use of CRISPR/Cas9 gene editing
technology opens a new world for the upgrading of fourth-
generation CAR T cells (Figure 4). Recently, several clinical trials
by Stadtmauer (128), Lu (129), Wang (130), and Simon (131)
confirmed the clinical feasibility and safety of CRISPR/Cas9-
modified T cells.

First, CRISPR/Cas9 can be simultaneously transferred into
multiple gDNAs to edit multiple genes at once, providing new
ideas for general-purpose allogeneic CAR T cells. For example,
Ren by combining CAR lentivirus delivery and electrical transfer
of Cas9 mRNA and gRNA, simultaneously targeted endogenous
TCR, B2 M and PD-1 and produced allogeneic CAR T cells
lacking TCR, HLA class I molecules and PD1 gene destruction. It
shows strong antitumor activity in vitro and in animal models,
with reduced allograft T cell rejection, and does not cause graft-
versus-host disease (45). At the same time, they developed a
FIGURE 4 | Clinical application of CRISPR Cas9 in CAR T cells. T cells are isolated and purified from healthy persons or patients. CRISPR/Cas9 technology enables
precise integration of CAR genes at specific T cell loci. CRISPR/Cas9 also knocked out TCR and MHC-I molecular genes to reduce allogenic reactions and avert
GVHD to produce universal CAR T cells. In addition, CRISPR/Cas9 can edit PDCD1 to improve T cell proliferation activity and promote cytokine secretion. The
modified T cells are massively amplified in vitro and then transfected back into the patient to reverse tumor immunosuppression.
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universal system for the generation of CAR T cells by rapid
multigene editing, adding multiple gRNAs into CAR lentivirus
vectors and redirecting T cells with antigen-specific CAR
through a single CRISPR protocol (100). Second, CRISPR/
Cas9-mediated disruption of immune checkpoint signaling,
such as PD-1, enhances the therapeutic efficacy of CAR T cells
in the immunosuppressive tumor microenvironment. Initially,
three studies were completed in vitro in a preclinical model of
human glioblastoma to demonstrate that engineered PD-1-
deficient EGFRvIII CAR T cells (132, 133), or CD133-specific
CAR T cells (134) showed similar levels of cytokine secretion and
improved proliferation and cytotoxicity in vitro and enhanced
tumor growth inhibition in a mouse model of glioma in situ.
Similarly, the combination of positive stimulation from CAR and
negative regulation of PD-1 by Cas9 blocking can induce T cells
to be more persistent and invasive in vivo in triple-negative
breast cancer TNBC (135). In addition, PD-1-deficient GPC3-
CAR T cells significantly increased the phosphorylation of Akt
and expression of the antiapoptotic protein Bcl-XL, thus
preventing the depletion of PD-1-deficient GPC3-CAR T cells
from confronting hepatocellular carcinoma cells expressing
natural PD-L1 (112). Nevertheless, altering the proportion of
PDCD1-deficient CARS affects T cell metastasis, meaning that a
strong loss of PDCD1may enhance CAR T cells in the short term
but ultimately make the edited cells more likely to fail or function
impaired. Therefore, further studies on the interaction of tumor
load, T cell number and editing frequency in different tumors are
needed to ensure that CRISPR/Cas9 plays a positive role (136).
Subsequently, the application of Cas9-edited PD-1 in CAR T
cells has been progressively implemented in clinical trials such as
phase I clinical trials of multiple myeloma with mesothin-
positive solid tumors (NCT03545815), multiple myeloma
(NCT03399448), esophageal cancer (NCT03081715),
metastatic NSCLC (NCT02793856), EBV (Epstein-Barr virus)-
positive advanced stage malignancies (NCT03044743), advanced
hepatocellular carcinoma (NCT04417764) and engineered TILs/
CAR-TILs to treat advanced solid tumors (NCT04842812).
Overall, CRISPR technology has brought new vitality to CAR
T cells in the field of tumor immunotherapy and has gradually
entered the stage of clinical trials.
CONCLUSION

In summary, CRISPR/Cas9 gene editing technology has great
potential in the field of tumor PD-1-related immunotherapy.
CRISPR/Cas9 gene editing technology can directly edit PD-1/
PD-L1 or indirectly regulate antigen presentation and upstream
and downstream signaling pathways to improve a variety of
immune cells and the tumor microenvironment, and combat
tumor immunosuppression. CRISPR genome-wide screening
technology also provides new ideas for studying upstream and
downstream regulatory mechanisms of PD-1/PD-L1, screening
synergistic targeting molecules and identifying potentially
sensitive patients. CRISPR/Cas9 has clinical value in the
diagnosis and treatment of leukaemia, multiple myeloma,
Frontiers in Immunology | www.frontiersin.org 10
breast cancer, cervical cancer, ovarian cancer, liver cancer,
colorectal cancer, lung cancer and melanoma. CRISPR/Cas9
produces allogeneic general-purpose CAR T cells combined
with immune checkpoint knockout, expanding the clinical
application of engineered cells.

However, the following problems need to be overcome when
transforming from laboratory to clinical application: First, off-
target effects: gene mutations caused by off-target cutting are
prone to cellular malignancy but lead to cancer. Therefore, it is
necessary to design sgRNA sequences to increase the specificity
of target site cleavage (13) and develop Cas9 variants with PAM
preference changes (137). Alternatively, the function of the P53
gene should be monitored to prevent toxicity caused by P53
mutations (138). Second, the activity and proliferation of edited
cells should ideally be unaffected. Currently, gene editing and cell
amplification can be performed in vitro and transfused back into
patients for treatment combined with adoptive cell therapy.
Third, safe and effective in vivo delivery methods were selected.
At present, the most conventional delivery system is viruses, but
they have the disadvantages of limited delivery scale and long-
term accumulation easily leading to untargeted cutting. In
addition, electroporation and nucleotide transfection
techniques have been further explored in animal models. At
present, lipid nanoparticle-mediated nonviral delivery without
limitation of immunogenicity is more promising (139). Last,
Cas9 is an inherent immunogenicity of foreign proteins. Current
studies have shown that Cas9 can eliminate immune dominant
epitopes through targeted mutations while retaining its function
and specificity (140). In brief, although CRISPR/Cas9 gene
editing technology shows great promise for PD-1/PD-L1-
related therapies in tumor immunity, it is still in its infancy
and requires a more comprehensive and in-depth investigation
of its safety and reliability.
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