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Pancreatic cancer is one of the most fatal cancers and is 
associated with limited diagnostic and therapeutic modali-
ties. Currently, gemcitabine is the only effective drug and 
represents the preferred first-line treatment for chemothera-
py. However, a high level of intrinsic or acquired resistance 
of pancreatic cancer to gemcitabine can contribute to the 
failure of gemcitabine treatment. To investigate the underly-
ing molecular mechanisms for gemcitabine resistance in 
pancreatic cancer, we performed label-free quantification of 
protein expression in intrinsic gemcitabine-resistant and -
sensitive human pancreatic adenocarcinoma cell lines us-
ing our improved proteomic strategy, combined with filter-
aided sample preparation, single-shot liquid chromatog-
raphy-mass spectrometry, enhanced spectral counting, and 
a statistical method based on a power law global error mod-
el. We identified 1931 proteins and quantified 787 differen-
tially expressed proteins in the BxPC3, PANC-1, and HPDE 
cell lines. Bioinformatics analysis identified 15 epithelial to 
mesenchymal transition (EMT) markers and 13 EMT-related 
proteins that were closely associated with drug resistance 
were differentially expressed. Interestingly, 8 of these pro-
teins were involved in glutathione and cysteine/methionine 
metabolism. These results suggest that proteins related to 
the EMT and glutathione metabolism play important roles in 
the development of intrinsic gemcitabine resistance by pan-
creatic cancer cell lines. 
 
 
INTRODUCTION
1 
Pancreatic cancer (PC) has a very poor prognosis, making it 
one of the five most common causes of cancer mortality world-
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wide (Li et al., 2004; Tuveson and Neoptolemos, 2012). Be-
cause the diagnosis of this disease often occurs at a late stage 
and shows poor responsiveness to chemotherapy and radiation 
therapy, it is associated with a dismal 5-year survival rate of 
less than 3% (Li et al., 2004). Pancreatic ductal adenocarcino-
ma (PDAC) is the most common type of pancreatic cancer, ac-
counting for up to 90% of cases, and is thought to develop by a 
multistep process that involves intermediate precursor lesions 
known as pancreatic intraepithelial neoplasias (PanINs) (Hruban 
et al., 2000). PDAC arises as a consequence of mutations and/or 
the silencing of several oncogenes and tumor suppressor genes, 
including KRAS, TP53, CDKN2A, EGFR, and SMAD4, which 
lead to pancreatic tumor development and resistance to chemo-
therapeutic agents (Jones et al., 2008). 

Gemcitabine (2�-deoxy-2�-difluorodeoxycytidine), the nucle-
oside analog, is the leading therapeutic for pancreatic cancer 
that is used to improve quality of life and overall survival 
(Burris et al., 1997). However, the median survival time of pa-
tients treated with gemcitabine is only 6.3 months (Carmichael 
et al., 1996). Intrinsic or acquired resistance to this drug is a 
major factor in the failure of this agent to control pancreatic 
cancer, and this has renewed the interest in developing novel 
therapeutic agents and combinations (Cao et al., 2013). Alt-
hough several combination remedies with gemcitabine, as 
well as novel agents, have prolonged survival rates compared 
with gemcitabine alone (Cao et al., 2013), drug resistance 
and toxicity still decrease the overall clinical usefulness of 
these therapeutic agents. Therefore, a better understanding 
of the cellular and molecular mechanisms involved in gem-
citabine resistance is imperative for improving drug efficiency 
and patient outcomes. 

Tumor heterogeneity is a prominent feature of pancreatic 
malignancies, which represents a major challenge to studying 
PDAC (Kalluri and Weinberg, 2009; Li et al., 2004; Samuel and 
Hudson, 2012). Therefore, cell line models have become inval-
uable tools for PDAC research (Samuel and Hudson, 2012; 
Thu et al., 2014). Large-scale proteomic analyses using in vitro 
cell line models are needed to understand the molecular mech-
anisms underlying drug resistance and PDAC biology. Howev-
er, few comparative analyses of pancreatic cell proteomes that 
underlie drug resistance and PDAC biology have been reported 
(Chen et al., 2011; Kuramitsu et al., 2010; Mori-Iwamoto et al., 
2007; 2008; Poland et al., 2004; Zhou and Du, 2012). 

The BxPC3 and PANC-1 cell lines are well established and 
widely used in research on the development of PDAC and drug 
resistance (Fryer et al., 2011; Huanwen et al., 2009; Rathos et 
al., 2012; Thu et al., 2014). Although there are many apparent  
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contradictory reports regarding both the phenotype and geno-
type of these two cell lines, they have been designated KRAS-
independent cell lines (Zimmermann et al., 2013). Interestingly, 
recent studies showed that BxPC3 cells with wild-type KRAS 
are the most sensitive to gemcitabine (Huanwen et al., 2009; 
Rathos et al., 2012). By contrast, PANC-1 cells, which express 
mutant KRAS, are the most resistant to gemcitabine. Further-
more, these two pancreatic cancer cell lines have different 
genotypes and phenotypes associated with the stage of tumor 
development (Table 1) (Deer et al., 2010; Thu et al., 2014). 
Hence, a comprehensive proteomics analysis of these cell lines 
would provide a valuable resource for studying the possible 
mechanisms associated with intrinsic gemcitabine resistance 
and PDAC development. 

In this study, we performed a comparative proteomic analysis 
between the PDAC cell lines (BxPC3 and PANC-1) and a nor-
mal cell line (HPDE) using an improved proteomic strategy. The 
approach included filter-aided sample preparation (FASP), 
single-shot LC-MS/MS, spectral counting using the distributed 
normalized spectral abundance factors (dNSAF), and a statisti-
cal approach using a power law global error model (PLGEM). 
We identified a total of 1931 proteins (FDR < 1%), of which 837 
were differentially expressed in the PDAC cell lines. Finally, we 
validated the reliability of our proteomic data using western 
blotting for seven differentially expressed proteins (VIM, CDH1, 
CTNNB1, FGFBP1, IQGAP1, FLNB, and STAT3). 

MATERIALS AND METHODS 

Materials 
Dulbecco’s Modified Eagle Medium (DMEM) and Roswell Park 
Memorial Institute (RPMI-1640) media were acquired from 
Welgene (Korea). Keratinocyte-SFM medium, fetal bovine se-
rum (FBS), and a BCA Protein Assay Kit (reducing reagent 
compatible) were purchased from Pierce (USA). Amicon Ultra 
0.5 ml-30 K was purchased from Millipore (UK). We acquired 
the tC18 Sep-Pak cartridge from Waters (USA). Sequence-
grade modified trypsin and MTS assay kits were purchased 
from Promega (USA). Anti-vimentin (sc-7557), anti-STAT3 (sc-
482), anti-cadherin 1 (sc-7870), anti-beta catenin (sc-7963), 
anti-IQGAP1 (sc-10792), and anti-filamin beta (sc-376241) 
were purchased from Santa Cruz Biotechnology (USA). Anti-
FGFBP1 (ab67931) was purchased from Abcam (UK).

Cell culture 
Human pancreatic cancer cell lines (BxPC3; CRL-1687, PANC-
1; CRL-1469) were purchased from the American Tissue Cul-
ture Collection (ATCC, USA). The immortalized epithelial cell 
line (HPDE) that derived from normal human pancreatic duct 
was provided by Dr. Ming-Sound Tsao (Ontario Cancer Insti-
tute, Canada) (Furukawa et al., 1996; Makawita et al., 2011; 
Pramanik et al., 2011; Radulovich et al., 2008). PANC-1 cells 
were maintained in DMEM with 10% FBS, 100 U/ml penicillin, 
and 100 mg/mL streptomycin. BxPC3 cells were maintained in 
RPMI-1640 with 10% FBS, 100 U/ml penicillin, and 100 mg/mL 
streptomycin. HPDE cells were maintained in Keratinocyte-
SFM media with bovine pituitary extract (BPE) and human 
recombinant EGF. All cells were cultured in a 37�C incubator 
with 5% CO2 and a humidified atmosphere. 
 
IC50 assay 
Each cell line was seeded in a 96-well cell culture plate at 2,500 
cells per well. After 24 h, cells were treated with gemcitabine (0-
20 nM and 0-1 �M for BxPC3 and PANC-1 cells, respectively). 

After treatment with gemcitabine, cells were incubated for 72 or 
96 h, and then cell viability was analyzed using an MTS assay 
kit to assess the gemcitabine resistance of each cell line. All 
samples were analyzed in duplicate. 
 
Sample preparation 
Peptide samples were prepared using FASP. To digest pro-
teins, the FASP procedure was performed for 200 �g proteins 
using a 30K Amicon filter (Millipore, UK) as described previous-
ly (Han et al., 2012; Min et al., 2014; Wisniewski et al., 2009). 
Trypsin, a universal digestion enzyme for shotgun proteomics 
(Choudhary and Mann, 2010; Fonslow et al., 2013; Gstaiger 
and Aebersold, 2009; Stergachis et al., 2011; Swaney et al., 
2010), was used to digest proteins in the FASP. Digested sam-
ples were desalted using a tC18 Sep-Pak cartridge (Waters, 
USA). The desalted peptide samples were dried by Speed Vac 
and stored at -80�C until use in LC-MS/MS analysis. 
 
LC-MS/MS analysis 
Peptide samples were analyzed using an LTQ-velos mass 
spectrometer (Thermo Scientific, Germany) coupled to an 
EASY nano-LC system (Proxeon Biosystems, Denmark) as 
described previously (Han et al., 2012). For each sample, 10 �l 
sample dissolved in 50 �l solution A (2% acetonitrile and 0.1% 
formic acid) was loaded onto a nano-LC trap column (Zorbax 
300SB-C18, 5 �m, 5 � 0.3 mm) and separated over a C18 
analytical column (75 �m i.d. � 15 cm, 5 �m particle size). Pep-
tides were separated using a 160 min gradient at 300 nl/min 
consisting of 5-30% solution B (100% acetonitrile and 0.1% 
formic acid) for 120 min, 30-40% solution B for 20 min, 40-90% 
solution B for 5 min, 90% solution B for 10 min, and 90-5% 
solution B for 5 min. The LTQ-velos mass spectrometer was 
set to scan masses ranging from 300 to 2000 m/z using a data-
dependent scan mode for the 10 most abundant ions over a 
minimum threshold of 1000. The dynamic exclusion was set to 
the following parameters: repeat count, 1; repeat duration, 30 s; 
and exclusion duration, 60 s. The normalized collision energy 
was adjusted to 35%. All samples were analyzed in technical 
triplicates. 
 
Database searches 
The raw mass spectrometry files were searched using the 
SEQUEST search algorithm (SORCERER-SEQUEST, v.27, rev. 
11) as previously described with some modifications (Han et al., 
2012). SEQUEST search parameters were set to the following: 
fully tryptic peptides; missed cleavages, 2; parent ion tolerance, 
1.5 Da; fragment ion mass tolerance, � 0.5 Da; fixed modifica-
tions, carbamidomethyl cysteine; and variable modifications, 
methionine oxidation. SEQUEST search results were processed 
by Scaffold 3 software (Proteome Software, USA) to obtain pep-
tide and protein identification information. A total of 27 LC-MS/MS 
runs were merged using Scaffold 3. Protein probability with at 
least two-peptides was set to 99%, and peptide probability was 
set to 95%. To adjust the false discovery rates (FDRs) to be 
<1.0% at peptide and protein level, XCorr scores were set at 1.8, 
2.0, and 3.0 for singly, doubly, and triply charged peptides, re-
spectively. The deltaCn scores were set to > 0.10. 
 
Label-free quantitation and statistical analysis  
For label-free quantitation, unweighted spectrum counts of all 
proteins identified were exported to an Excel file using Scaffold 
3. Representative protein abundances were calculated by the 
dNSAF method as described previously (Zhang et al., 2010). 
We calculated the dNSAF using the following equation. 
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I.
 
 

II.

* uSpCi, unique spectrum counts of i peptide 
* uSpCp, unique spectrum counts of proteins sharing i peptide 
* sSpC, sum of double and triple charged spectrum counts 
* L, number of amino acid for each protein 

 
After conversion, dNSAF datasets for the three dataset com-

parisons (HPDE vs. BxPC3, HPDE vs. PANC-1, and BxPC3 vs. 
PANC-1) were imported into R 3.0.1 software for statistical 
analysis and converted into “exprSet” objects to allow for 
recognition by PLGEM software package (Bioconductor, 
v2.15.1) (Pavelka et al., 2008). Missing values were dealt with 
using “TrimAllZeroRows” and “ZeroMeanorSD” scripts. Data 
fitting was performed to estimate the “goodness of fit” of our 
datasets. P-values were obtained using the “plgem.pvalue” 
script, and then adjusted p-values were calculated using the 
“BH (Benjamini and Hochberg)” method based on the p-values 
that were obtained. After adjusted p-values were calculated, 
differentially expressed proteins were selected based on an 
adjusted p-value < 0.05. 
 
Bioinformatics analysis  
Analyses of Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways were performed using 
DAVID (Database for Annotation, Visualization, and Integrated 
Discovery) bioinformatics tools (Huang da et al., 2009). IPI 
accessions of target proteins were imported to the list category, 
and then we selected IPI_ID identifiers and Gene list types. GO 
analysis was used to assign the biological process, molecular 
function, and cellular localization. Significant pathways were 
selected based on p-values < 0.05. K-means clustering was 
performed using the GENE-E program (Broad Institute, USA) 
for significantly differentially expressed proteins based on 
PLGEM to discover protein functions based on protein expres-
sion patterns (Cheung et al., 2011). Among all 787 differentially 
expressed proteins, only 711 proteins were differentially ex-
pressed in two dataset comparisons (HPDE vs. BxPC3 and 
HPDE vs. PANC-1). We performed K-means clustering for 
these 711 proteins, which were grouped into six clusters that 
were calculated based on 2000 iterations. 
 
Validation by Western blotting 
To validate the mass spectrometric results, seven proteins 
were quantified by Western blotting. Western blotting was per-
formed as described previously (Han et al., 2011). Briefly, each 
cell line was lysed using RIPA buffer (150 mM NaCl, 50 mM 
Tris-HCl pH 7.4, 0.1% SDC, 1 mM EDTA, 1% NP-40, protease 
inhibitor cocktail, and 0.1 mM PMSF). We separated 30 �g of 
proteins on 8-12% SDS-PAGE gels. Proteins were transferred 
to nitrocellulose membranes for 70 min at 100 V using wet-
transfer techniques. Membranes were blocked with TBST con-
taining 5% BSA for 2 h at room temperature and were then 
incubated with each primary antibody at 4�C overnight, based 
on optimized protein-antibody ratios; anti-vimentin, anti-STAT3, 
anti-cadherin 1, anti-beta catenin, anti-IQGAP1, and anti-filamin 
beta were diluted at a 1:1000 ratio, and anti-FGFBP1 was dilut-
ed at a 1:500 ratio. Membranes were washed with TBST five 
times and were subsequently incubated with HRP-conjugated 
secondary antibody (1:5000) at room temperature for 2 h. After 

washing with TBST five times, the membranes were developed 
using an ECL chemiluminescence system (GenDEPOT, USA), 
and visualized using a LAS-3000 system (Fujifilm, Japan). 
 
Gene expression profiling and proteomic and genomic 
dataset comparisons 
Gene expression profiling was performed as described in a 
previous study (Thu et al., 2014). In previous study, expression 
profiling for PDAC and HPDE cell lines was performed using 
Agilent 4 � 44K expression arrays (Agilent, Canada). Normali-
zation of expression values for each array was calculated using 
the following formula: (median intensity - background intensity) / 
(median array intensity value). To reduce overestimation result-
ing from poor probe performance, the lowest 2% of genes, 
calculated based on expression values in the HPDE cell line, 
were eliminated. 

To compare publically available genomic data with our prote-
omic data, our proteomic data were converted from IPI num-
bers (1931) to gene symbols (1910). Among 1910 gene sym-
bols, 1695 gene symbols overlapped between the genomic 
(30,484 total gene symbols) and proteomic (1910 total gene 
symbols) data. Of these, 697 gene symbols for the differentially 
expressed in our proteomic dataset were subjected to Pearson 
correlation analysis. The fold-changes between dataset com-
parisons were transformed to log2 scales. 
 
Evaluation of the quantitative proteomics platform using 
protein standards 
To examine quantitative linearity, serially diluted ovalbumin 
samples were spiked in the matrix at fixed quantities (into 200 
�g of PANC-1 cell lysate). Ovalbumin was serially diluted to 5.0, 
2.5, 1.25, 0.625, 0.3125, and 0.15625 �g. All experimental 
steps were processed using conditions similar to those de-
scribed above. All samples were analyzed in technical tripli-
cates. The average dNSAF value for ovalbumin was used for 
each sample in technical triplicates to plot linear response 
curves. 

RESULTS AND DISCUSSION 

The overall scheme for the proteomic analysis of pancreatic 
cancer cell lines 
Treatment of PC remains a therapeutic challenge because of the 
high degree of intrinsic and acquired resistance to chemotherapy 
and radiation therapy (Cao et al., 2013; Thu et al., 2014). Despite 
the improved understanding of the molecular pathways involved 
in pancreatic oncogenesis and chemoresistance, the clinical 
impact of targeted drugs, including gemcitabine, remains quite 
limited by the high degree of intrinsic and acquired drug re-
sistance and the heterogeneous genetic makeup of PC (Thu et 
al., 2014). Therefore, understanding the underlying molecular 
mechanisms of intrinsic drug resistance in a well-established 
pancreatic cancer model system would provide valuable infor-
mation to expand the treatment options for this deadly disease 
(Cao et al., 2013; Huanwen et al., 2009; Rathos et al., 2012). 

Accordingly, we performed comparative proteomic analysis be-
tween normal pancreatic duct cells, HPDE cells, and two well-
established pancreatic cancer cell lines, BxPC3 and PANC-1 
cells. Interestingly, despite the presence of KRAS mutations 
(Zimmermann et al., 2013), these two KRAS-independent cancer 
cell lines are known to have different gemcitabine resistance 
profiles (Huanwen et al., 2009) and phenotypes (Deer et al., 
2010; Thu et al., 2014) (Table 1). 
  To increase the numbers of proteins identified in the pancre- 
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Table 1. Clinical and molecular characteristics of 2 PDAC cell lines 

 BxPC3 PANC-1 

Derivation Primary tumor Primary tumor 

Differentiation Moderate to poor Poor 

Metastasis No Yes 

Tissue Pancreatic adenocarcinoma Pancreatic ductal epithelioid carcinoma 

Karyotype NA Hypertriploid 
Mutation 
 

Wild type KRAS 
Mut CDKN2A, MAP2K4, SMAD4, and TP53 

Wild type SMAD4 
Mut KRAS, CDKN2A, MAP2K4, and TP53 

KRAS dependence KRAS independence KRAS independence 

Gemcitabine resistance Sensitive Resistance 

NA, information unavailable on ATCC website; PDAC, pancreatic ductal adenocarcinoma 

 
 
A                               B 
 
 
 
 
 
 
 
 
 
 
 
 
 

       C 
 
 
 
 
 
 
 
 
 
 
 
 
atic cancer cell proteome, we processed proteins extracted 
from the cell lines using FASP, which effects high and stable 
recovery of peptides from protein samples (Wisniewski et al., 
2009; 2011). After LC/MS analysis of the resultant peptides, 
dNSAF was used for relative label-free quantitation to obtain 
more accurate and reproducible quantitation results (Zhang et 
al., 2010). For the linear response curve, the R2 value was 
0.9891 for six amounts of ovalbumin using unweighted spec-
trum counts, but it improved to 0.9903 using dNSAF values. 
Additionally, the average CV for ovalbumin for the six different 
“spiked” amounts improved after being transformed to dNSAF 
from 17.5% to 7.2%. These results indicate that the adoption of 
dNSAF improves the linearity and reliability of quantification 
(Supplementary Fig. S1). To estimate protein expression chang-
es, we adapted a powerful statistical tool, PLGEM (Pavelka et al., 
2008). 

Quantified proteins were functionally annotated using bioinfor-
matics tools, such as the DAVID bioinformatics resource. Addi-
tionally, we performed Western blot validation and comparison 
analysis with previously reported transcriptome data (Fig. 1A).  

To study the mechanism of gemcitabine resistance, we first 
generated BxPC3 and PANC-1 gemcitabine-resistant cell lines 
by exposing cells to varying concentrations of gemcitabine at 
two time points (72 and 96 h). The average IC50 value in BxPC3 
cells was 0.1565 nM, while the average IC50 value in PANC-1 
cells was 39.17 nM (Fig. 1B). 

Next, we assessed the reproducibility of our label-free quanti-
tative proteomic experiment by measuring concentrations of 
ovalbumin that were spiked into the peptide mixtures isolated 
from each cell line. The linearity curves for ovalbumin showed 
that our quantitative measurements were highly reproducible 
(R2 = 0.9903) (Fig. 1C) and the average coefficient of variation 
(CV) for the six amounts of spiked ovalbumin ranged from 1% 
to 13% (Supplementary Table S1). Additionally, the CVs of 
actin and GAPDH, selected as internal standards, were 5.2% 
and 8.7% for all 18 replicates, respectively. Furthermore, CV 
comparisons between traditional spectral counting and dNSAF 
indicated that the label-free quantitation method using dNSAF 
was more reproducible than the traditional method (Supple-
mentary Fig. S1). 

Fig. 1. An overall flow-chart of the prote-
omics approach. (A) An overall schematic
of this proteomics study. (B) IC50 values
against gemcitabine. To test for chemore-
sistance of BxPC3 and PANC-1 cells
against gemcitabine, IC50 assays were
performed after the treatment of cells with
gemcitabine for 72 and 96 h. The x- and y-
axes represent the concentration of gem-
citabine and cell viability (O.D.), respec-
tively. The red dotted line indicates the
average IC50 at two time points for each
cell line. (C) Evaluation of linearity. To
check the linearity of our quantitative plat-
form, a linear response curve was drawn
for six different amounts of ovalbumin
(3.125, 6.25, 12.5, 25, 50, and 100 pmol)
spiked into the same quantity of cell ly-
sates. All samples were analyzed in tech-
nical triplicates and error bars represent
the linear response curve for each point.
The x- and y-axes represent the log2 value
for the spiked amounts of ovalbumin and
dNSAF, respectively. The R2 value was
0.9972.
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Generic characterization of the pancreatic cancer cell 
proteome 
The 3 cell lines (HPDE, BxPC3, and PANC-1) were analyzed in 
triplicate. Using SEQUEST search engines and stringent filter-
ing, a total of 1931 protein groups were identified at an FDR < 
1%, of which 1307 (68%) were protein groups common to all 
three cell lines (Fig. 2A). Furthermore, 1581, 1672, and 1689 
unique protein groups were identified in the HPDE, BxPC3, and 
PANC-1 cell lines, respectively.

Among 1931 proteins, 1209 (63%) proteins were identified by 
more than 3 peptides, while 868 (45%) proteins were identified 
by more than 4 peptides, and 629 (33%) were identified by 
more than 5 peptides (Supplementary Fig. S2). More detailed 
proteomic information is provided in Supplementary Tables S2 
and S3. 

Label-free quantitation 
For label-free quantification, the technical and biological varia-
bility was evaluated by calculating the correlation value (R2) 
with the representative dNSAF values of each protein after 
converting the unweighted spectrum counts that were obtained 
from Scaffold 3 to dNSAF values (Supplementary Table S3). 
Correlations for the technical and biological replicates in each 
cell line ranged from 0.8132 to 0.975, indicating that our prote-
omic strategy is highly reproducible. Additionally, the correla-
tions for dataset comparisons were as follows: HPDE vs. 
BxPC3 ranged from 0.6777 to 0.7961, HPDE vs. PANC-1 
ranged from 0.3325 to 0.4359, and BxPC3 vs. PANC-1 ranged 
from 0.4639 to 0.5998 (Supplementary Fig. S3A). 

Next, to calculate the CV of the proteins that we identified, 
the spectral counts for groups of high-, medium-, and low-
abundance proteins were  15,  5 and <15, > 0 and < 5, 
respectively. The average CV in the high- and medium-
abundance protein groups was 11.7% and 20.0%, respectively. 
These CV values suggested that the measurements of these 
two groups were reliable, whereas the CV of the low-
abundance group was relatively high (~64.5%). The average 
CV for all proteins identified was ~53.8% (Supplementary Fig. 
S3B). The CV for ovalbumin as the external standard and the 
CVs for actin and GAPDH, as the internal standards, were 
25.4%, 17.3%, and 19.1% against the 27 datasets, respectively. 
The CVs for the external and internal standards suggest that 
this quantitative experiment has no bias or overestimation in 
quantitating proteins. 

Finally, principal component analysis (PCA) was performed 
on a matrix consisting of the objects defined by 3 biological and 
3 technical replicates of the 3 cell lines, and the variables were 
defined as the dNSAF values of each protein identified in each 
cell line. The PCA results revealed the correct segregation of 
the cell lines and each replicate into their corresponding groups, 
which had been generated based on component 1 (Supple-
mentary Fig. S4), the component that accounts for the largest 
amount of variability in the system (59.8% in this case). Conse-
quently, the correlations, CVs, and PCA results in the technical 
and biological replicates all indicated that our proteomic strate-
gy is robust and highly reproducible. 

To quantify differentially expressed proteins, pairwise 
PLGEM analysis was performed. The dNSAF values of 1931 
proteins that were identified in 27 replicates were imported into 
PLGEM to select differentially expressed proteins. PLGEM has 
been regarded as a reliable model capable of handling large 
proteomic datasets. PLGEM has been proposed to improve the 
confidence of proteomic datasets. Pearson’s correlation was 
calculated between ln (row, Mean) values and the correspond-

  A

 
 
  B

Fig. 2. Venn diagrams of total identified proteins and differentially 
expressed proteins. (A) A Venn diagram of all proteins identified in 
our study. (B) A Venn diagram of the differentially expressed pro-
teins identified in our study.

ing ln (row, S.D.) values for quality control, and an adjusted R2 
value was obtained between the modeling points and the fitted 
PLGEM. Overall, the PLGEM fitted well on all dataset compari-
sons with correlation coefficients of 0.948 and 0.938, adjusted 
R2 values of 0.995 and 0.994, and fitted slope values 0.626 and 
0.63 in HPDE-control and BxPC3-control datasets, respectively 
(Supplementary Figs. S5A, S5E, and S5I). If the fitted slope 
value was less than 0.5, or the Pearson correlation coefficient 
was less than 0.85, or the adjusted R2 value was less than 0.95, 
the dataset quality was considered to be poor. Additionally, all 
proteins identified in this study showed a normal distribution 
and broad dynamic range (Supplementary Figs. S5B, S5C, 
S5F, S5G, S5J, and S5K). In addition, the relationship between 
the standard normal distribution and the distribution about ob-
served residuals showed a good correlation (Supplementary 
Figs. S5D, S5H, and S5L). 

Finally, 837 of 1931 proteins were found to be significantly 
differentially expressed proteins with an adjusted p-value < 0.05 
for at least one pair-wise comparison. After filtering based on 2-
fold changes of dNSAF values, a total of 787 proteins (94%) 
ultimately met this criterion for at least one pair-wise compari-
son. Overall, 267, 628, and 399 proteins were detected in each 
pair-wise comparison (Fig. 2B). Detailed information about the 
differentially expressed proteins is provided in Supplementary 
Table S4. 
 
Clustering of the differentially expressed protein signatures 
To extract protein signatures that significantly segregated the 
three cell lines, we performed K-means clustering of the 711 
differentially expressed proteins, which yielded 6 clusters. Each 
protein cluster was enriched in a specific pathway based on 
KEGG pathway analysis (Supplementary Figs. S6 and Sup-
plementary Table S5). In clusters 0 and 5, proteins were down-
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regulated and up-regulated, respectively, in BxPC3 cells. The 
proteins that were included in cluster 0 were not significantly 
annotated to specific pathways; p < 0.05. Proteins that were 
included in cluster 5 were significantly enriched for seven path-
ways: ARVC (arrhythmogenic right ventricular cardiomyopathy), 
fatty acid metabolism, antigen processing and presentation, 
viral myocarditis, tight junction, adherens junction, and cardiac 
muscle contraction. In clusters 1 and 4, proteins were increased 
or decreased in PANC-1 cells compared with other cell lines, 
respectively. The proteins in cluster 1 were enriched for eight 
pathways: ribosome, aminoacyl-tRNA biosynthesis, pyrimidine 
metabolism, pathogenic Escherichia coli infection, glycoslysis/ 
gluconeogenesis, drug metabolism, purine metabolism, and 
proteasome pathways. The proteins in cluster 4 were significantly 
associated with two pathways: the lysosome and Vibrio cholerae 
infection pathways. In cluster 2, proteins were down-regulated in 
both cancer cell lines, whereas proteins in cluster 3 were up-
regulated. Proteins in cluster 2 were significantly associated with 
18 pathways, including the arginine and proline metabolism, 
ECM-receptor interaction, TCA cycle, limonene and pinene deg-
radation, and glycolysis/gluconeogenesis pathways. The proteins 
involved in cluster 3 were associated with two pathways: the 
ribosome and glycolysis/gluconeogenesis pathways.  

Clustering results were consistent with the properties of each 
cell line. For example, cluster 1 mostly includes up-regulated 
proteins in PANC-1 cells that were enriched for ribosome, bio-
synthesis, and metabolism activities. By contrast, cluster 5 
mostly includes proteins that are up-regulated in BxPC3 cells 
that were enriched for tight junction and adherens junction func-
tions, which are closely related to epithelial cell properties. Both 
BxPC3 and PANC-1 cells are epithelial primary cancer cell 
lines, but BxPC3 cells exhibit epithelial properties, whereas 
PANC-1 cells exhibit more mesenchymal properties.  
 
Functional analyses of the pathways associated with 
gemcitabine resistance  
Previous studies have shown that gemcitabine resistance is 
closely associated with the acquisition of an epithelial-
mesenchymal transition (EMT)-like phenotype by cancer cells 
(Kalluri and Weinberg, 2009). The EMT is characterized by the 
loss of cell-cell adhesion and the acquisition of cell motility, 
which leads to increased invasion ability (Kalluri and Weinberg, 
2009). The progression of the EMT involves the loss of proteins 
involved in cell junctions, such as E-cadherin and claudins, and 
the expression of mesenchymal molecular markers, such as 
fibronectin, vimentin, and N-cadherin (Kalluri and Weinberg, 
2009). 

A total 15 of well-known EMT markers were identified in this 
study: ANPEP, ALCAM, DSG3, DSG2, KRT 14, KRT 19, KRT 
8, CLDN1, VIM, CDH1, SDC1, CD44, ITGB1, NT5E, and DSP 
(Kalluri and Weinberg, 2009). Further, 13 proteins that are 
closely associated with the EMT phenotype were detected: 
CAV1, IQGAP1, ITGB4, ITGA6, CTNNB1, ACTN4, FLNA, 
FLNB, KRT18, MYH14, MYH9, MYL6, and PXN (Table 2). 

CDH1, an epithelial cell marker, was significantly downer-
gulated, and VIM, a mesenchymal cell marker, was significantly 
upregulated in PANC-1 cells compared with BxPC3 cells. The 
suppression of CDH1 is a critical step in enhancing the inva-
siveness and EMT in carcinomas (Thiery et al., 2009). This 
result suggests that the EMT progressed further in PANC-1 
versus BxPC3 cells. 

Mechanistically, CAV1 mediates focal adhesion and cyto-
skeletal organization and promotes the EMT through the focal 
adhesion pathway (Bailey and Liu, 2008). In this study, the 

abundance of CAV1 increased ~3-fold in PANC-1 cells. 
IQGAP1 regulates the actin cytoskeleton and resistance to 
gemcitabine (Jameson et al., 2013). Also, IQGAP1 mediates 
the disruption of CDH1 and promotes tumor progression 
(Cavallaro and Christofori, 2004). IQGAP1 was upregulated ~5-
fold in BxPC3 cells and ~8-fold in PANC-1 cells. 

SDC1 governs ECM-receptor interactions, cell-cell interac-
tions, cell proliferation, and cell migration (Juuti et al., 2005), 
and its levels are depressed in a pancreatic cancer cell line 
(Gronborg et al., 2006). SDC1 had a similar expression pattern 
in this proteomic dataset, being markedly decreased in BxPC3 
and PANC-1 cells. 

ITGB1 has been linked to the invasiveness of pancreatic car-
cinoma, and its activity correlates with the invasiveness of pan-
creatic carcinoma cell lines, based on in vitro chemoinvasion 
assays (Arao et al., 2000). ITGB1 is increased ~3-fold in 2 pan-
creatic cancer cell lines compared with HPDE cells. ITGB4-
ITGA6 complexes are involved in epithelial cell migration 
(Mercurio et al., 2001). In this study, ITGB4 and ITGA6 were 
downregulated in both tumor cell lines.  

CTNNB1 binds to the cytoplasmic tails of CDH1 (Reynolds et 
al., 1994), and declined ~22-fold in PANC-1 cells. ACTN4 regu-
lates the focal adhesion pathway (Wei et al., 2011) and was 
consistently upregulated in pancreatic cancer cell lines versus 
HPDE cells (~8-fold in BxPC3 cells and ~13-fold in PANC-1 
cells). Filamin subunits participate in focal adhesion and cyto-
skeletal organization. Upregulation of FLNA and FLNB has 
been reported in pancreatic cancers and precancerous lesions 
(Buchholz et al., 2005; Chen et al., 2005; Sato et al., 2004; Yu 
et al., 2009). FLNA and FLNB were increased ~3-fold and ~5-
fold, respectively, in BxPC3 cells. 

The keratin family is associated with the differentiation of epi-
thelial cancer cells (Seike et al., 2004). KRT18 expression is 
downregulated in pancreatic cancer cells (Yu et al., 2009) and 
declined by more than 2-fold in PANC-1 cells in this study. The 
myosin family is involved in cytoskeletal composition and cellular 
movement (Wei et al., 2011). We detected MYH6, MYH9, and 
MYL14 expression in this study, which were upregulated in pan-
creatic cancer. PXN is a marker of focal adhesion (Wei et al., 
2011), which is a crucial pathway for the EMT (Bailey and Liu, 
2008). PXN expression increased significantly in PANC-1 cells. 

In summary, several EMT markers were identified as being 
differentially expressed between BxPC3 and PANC-1 cells, 
indicating that PANC-1 cells show decreased expression of 
epithelial markers and increased expression of mesenchymal 
markers. Additionally, analysis of the expression patterns of 
several proteins that were either directly or indirectly associated 
with the EMT revealed that PANC-1 cells acquired a phenotype 
that resembled the EMT more closely than did BxPC3 cells. 
This finding suggests that the expression of EMT-related pro-
teins correlates with gemcitabine resistance. 

With regard to therapeutics, the 28 differentially expressed 
proteins that we identified are potential targets for gemcitabine 
resistance in pancreatic cancer, because the EMT pathway is 
related to drug resistance (Arumugam et al., 2009; Singh and 
Settleman, 2010; Voulgari and Pintzas, 2009). In addition, the-
se proteins have not been studied in earlier pancreatic cancer 
proteomic studies of drug resistance by mass spectrometry 
(Chen et al., 2011; Kuramitsu et al., 2010; 2012; Mori-Iwamoto 
et al., 2007; 2008; Poland et al., 2004; Zhou and Du, 2012), 
suggesting that these proteins, related to the EMT phenotype, 
are novel targets for the treatment of drug-resistant pancreatic 
cancer. 
  Furthermore, to investigate pathways that underlie the mo- 
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Table 2. List of EMT-related proteins and proteins involved in Glutathione pathway which annotated in our proteome study 

Pathway IPI accession Protein name Gene symbol Fold change Note 

HPDE

Versus

BxPC3

HPDE 

Versus 

PANC-1 

BxPC3 

Versus 

PANC-1 

EMT  

pathway 

IPI00221224 Aminopeptidase N ANPEP 0 1000 1000 Mesenchymal

marker 

IPI00015102 Isoform 1 of CD166 antigen ALCAM 2.012 0.140 0.070 Epithelial marker

IPI00031547 Desmoglein-3 DSG3 -1000 -1000 0 Epithelial marker

IPI00028931 Desmoglein-2 DSG2 51.663 -1000 -1000 Epithelial marker

IPI00384444 Keratin, type I cytoskeletal 14 KRT14 0.003 0.002 0.947 Epithelial marker

IPI00479145 Keratin, type I cytoskeletal 19 KRT19 0.904 0.077 0.085 Epithelial marker

IPI00554648 Keratin, type II cytoskeletal 8 KRT8 0.959 0.625 0.652 Epithelial marker

IPI00000691 Claudin-1 CLDN1 1000 0 -1000 Epithelial marker

IPI00009236 Isoform Alpha of Caveolin-1 CAV1 2.691 1.280 0.476  

IPI00009342 Ras GTPase-activating-like protein IQGAP1 IQGAP1 4.962 8.359 1.684  

IPI00216221 Isoform Alpha-6X1A of Integrin alpha-6 ITGA6 0.331 -1000 -1000  

IPI00013808 Alpha-actinin-4 ACTN4 8.172 12.875 1.575  

IPI00302592 Isoform 2 of Filamin-A FLNA 2.756 1.943 0.705  

IPI00289334 Isoform 1 of Filamin-B FLNB 5.026 1.918 0.382  

IPI00554788 Keratin, type I cytoskeletal 18 KRT18 1.289 0.401 0.311  

IPI00337335 Isoform 1 of Myosin-14 MYH14 6.322 1.030 0.163  

IPI00019502 Isoform 1 of Myosin-9 MYH9 3.257 1.178 0.362  

IPI00335168 Isoform Non-muscle of Myosin light 

polypeptide 6 

MYL6 5.961 2.396 0.402  

IPI00220030 Isoform Alpha of Paxillin PXN 0 1000 1000  

IPI00220845 Isoform Beta-4A of Integrin beta-4 ITGB4 0.251 -1000 -1000  

IPI00418471 Vimentin VIM 0.654 47.428 72.513 Mesenchymal

marker 

IPI00017292 Isoform 1 of Catenin beta-1 CTNNB1 3.928 0.044 0.011  

IPI00025861 Cadherin-1 CDH1 1.392 -1000 -1000 Epithelial marker

IPI00002441 Syndecan-1 SDC1 -1000 -1000 0 Mesenchymal

marker 

IPI00418465 Isoform 4 of CD44 antigen CD44 1.011 5.672 5.609 Mesenchymal

marker 

IPI00217563 Isoform Beta-1A of Integrin beta-1 ITGB1 3.409 3.667 1.076 Mesenchymal

marker 

IPI00009456 5�-nucleotidase NT5E 1000 1000 2.628 Mesenchymal

marker 

IPI00013933 Isoform DPI of Desmoplakin DSP 4.601 0.009 0.002 Epithelial marker

Glutathione 

pathway 

IPI00216008 Isoform Long of Glucose-6-phosphate 

1-dehydrogenase 

G6PD 1.992 4.189 2.103  

IPI00024266 Microsomal glutathione S-transferase 3 MGST3 0.045 0.473 10.406  

IPI00011118 ribonucleoside-diphosphate reductase 

subunit M2 isoform 1 

hCG_23833 1000 1000 14.503  

IPI00005102 Isoform 1 of Spermine synthase SMS -1000 3.156 1000 Novel in this study

IPI00221224 Aminopeptidase N ANPEP 0 1000 1000 Novel in this study

IPI00010157 S-adenosylmethionine synthase isoform 

type-2 

MAT2A 0.202 2.788 13.829 Novel in this study

IPI00217966 Isoform 1 of L-lactate dehydrogenase A chain LDHA 0.838 2.949 3.522 Novel in this study

IPI00219029 Aspartate aminotransferase, cytoplasmic GOT1 1000 1000 17.912 Novel in this study
Note: remarkable substance for each protein 
Twenty eight proteins were discovered as EMT-related proteins at previous papers and 8 proteins were annotated with Glutathione pathway which in-
volved in drug resistance. The average values of fold changes for each compare set are shown at this table. The fold changes of extremely changed 
proteins are represented at -1000 and 1000, respectively. The proteins which were not identified for each compare set are represented at 0. 
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lecular mechanism of gemcitabine resistance, we analyzed 
differentially expressed proteins in BxPC3 and PANC-1 cells 
using the KEGG pathways database (Fig. 3). Most of the 178 
up-regulated proteins in BxPC3 cells were linked to the fatty 
acid degradation, phenylalanine metabolism, tight junction, and 
adherens junction pathways (Fig. 3A). Notably, ten proteins 
linked to the tight junction and adherens junction pathways 
were also closely associated with the progression of the EMT, 
suggesting that increased expression of cell-cell adhesion pro-
teins may be associated with increased gemcitabine sensitivity 
in pancreatic cancer cells (Supplementary Table S6). 

The majority of up-regulated proteins in PANC-1 cells are likely 
to be involved in metabolic pathways, such as pyruvate metabo-
lism, the pentose phosphate pathway, glycolysis/gluconeogenesis, 
pyrimidine metabolism, and aminoacyl-tRNA biosynthesis (Fig. 
3B and Supplementary Table S6), which is consistent with the 
relationship between gemcitabine resistance and metabolic 
pathways (Chen et al., 2011; Fryer et al., 2011; Kuramitsu et al., 
2010). 

Glutathione is a tripeptide thiol, composed of cysteine, gluta-
mate, and glycine, which plays a critical role in DNA synthesis, 
multidrug and/or radiation resistance, and tumor surveillance 
(Griffith, 1999). Glutathione biosynthesis is critically dependent 
upon the metabolism of cysteine and methionine (Griffith, 1999). 
In several cancers, glutathione and cysteine/methionine me-
tabolism have been previously associated with drug resistance 
(Lo et al., 2008). However, the characterization of these me-
tabolism-related proteins in the development of gemcitabine 
resistance in pancreatic cancer cells has been limited (Lo et al., 
2008; Locasale, 2013; Sato et al., 2011). 

Interestingly, we observed that eight proteins linked to the 
glutathione and cysteine/methionine metabolism pathways 
were up-regulated in PANC-1 cells (Supplementary Table S7). 
In addition to the previously reported proteins (G6PD, MGST3, 

and hCG_23833) (Chen et al., 2011; Kuramitsu et al., 2010; 
Mori-Iwamoto et al., 2007; 2008; Poland et al., 2004; Zhou and 
Du, 2012), we were the first to identify the expression of five 
such metabolism-related proteins, SMS, ANPEP, MAT2A, 
LDHA, and GOT1, in this study. Thus, these 5 proteins could 
represent novel targets for gemcitabine resistance in pancreatic 
cancer. Detailed information about these proteins is presented 
in Supplementary Table S7. 

Validation using western blotting and comparisons with 
transcriptome data 
To validate our mass spectrometry quantification results, we 
measured changes in the abundance of seven proteins (VIM, 
CDH1, CTNNB1, FGFBP1, IQGAP1, FLNB, and STAT3) by 
Western blotting (Fig. 4A). The analyses of the three different 
cell lines showed similar changes in protein abundance by both 
mass spectrometry quantification and western blotting, support-
ing the reliability of our label-free quantitation results. 

We next assessed the correlation between our proteomic da-
tasets and public gene expression datasets (Thu et al., 2014) 
for the three pancreatic cell lines. For three dataset compari-
sons (HPDE vs. BxPC3, HPDE vs. PANC-1, and BxPC3 vs. 
PANC-1), Pearson correlation analysis was performed. Overall 
correlations between the proteomic and transcriptomic data 
were calculated as 0.145, 0.435, and 0.528 for the three da-
taset comparisons (HPDE vs. BxPC3, HPDE vs. PANC-1, and 
BxPC3 vs. PANC-1), respectively (Supplementary Table S8). 
Notably, the mRNA expression patterns of genes encoding the 
seven proteins assessed by western blotting were significantly 
correlated with the label-free quantitation results (Fig. 4B). 

In summary, a comprehensive proteomic analysis of model 
pancreatic cancer cell lines was conducted to investigate the 
molecular mechanisms of drug resistance and PC biology. We 
performed a comprehensive proteome analysis of two PDAC 

Fig. 3. KEGG pathway analysis. KEGG pathway 
analysis results for comparison 1 (up-regulated pro-
teins in BxPC3 cells compared with PANC-1 cells) 
(A), and for comparison 2 (up-regulated proteins in 
PANC-1 cells compared with BxPC3 cells) (B) are 
shown. The x- and y-axes represent the fold enrich-
ment (indicating the magnitude of enrichment in our 
dataset against the population background based on 
analysis using DAVID bioinformatics tools) and the 
categories of pathways, respectively. 



Quantitative Proteomic Analysis of PDAC Cell Lines 
Yikwon Kim et al. 
 

896  Mol. Cells http://molcells.org 

A
 
 
 
 
 
 
 
 
 
 
 
 
B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cell lines (BxPC3 and PANC-1) and a normal pancreatic ductal 
cell line (HPDE) using combined proteomic methods, including 
FASP, dNSAF, and PLGEM. We confidently identified 1931 
proteins and a subset of proteins that may be associated with 
intrinsic gemcitabine resistance. We found that the majority of 
differentially expressed proteins are involved in tight junctions, 
adherens junctions, and glutathione and cysteine/methionine 
metabolism pathways, which are related to drug resistance in 
pancreatic cancer. We identified 15 known EMT markers and 
13 EMT-related proteins in the comparison between BxPC3 
and PANC-1 cells, suggesting that the EMT-related proteins 
may confer gemcitabine chemoresistance. Using well-validated 
pancreatic cell lines, we generated comprehensive proteome 
profiling data that can serve as baseline information associated 
with gemcitabine resistance in the major pancreatic cell lines. 
Further studies are needed to validate the functional roles of 
the other proteins that we identified in conferring gemcitabine 
resistance. 
 
Note: Supplementary information is available on the Molecules 
and Cells website (www.molcells.org). 
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