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Simple Summary: Ewing sarcoma is a cancer of the bone and soft tissues that affects children
and adolescents. Unfortunately, only 20–30% of patients with metastatic Ewing sarcoma survive,
necessitating the need to identify new, more effective therapies. We screened natural product extracts
from plants and fungal cultures to identify compounds with selective cytotoxic activity against
Ewing sarcoma cells, which led to the identification of altertoxin II as a compound with highly
selective activity against Ewing sarcoma cells. Mechanism of action studies showed that altertoxin II
selectively induces DNA damage in Ewing sarcoma cells, but does not bind to DNA. Additionally,
we found that altertoxin II has antitumor activity in a mouse model of Ewing sarcoma, suggesting it
will be useful as a lead compound to help identify new molecular targets for the development of new
Ewing-sarcoma-specific therapies.

Abstract: A screening program designed to identify natural products with selective cytotoxic
effects against cell lines representing different types of pediatric solid tumors led to the iden-
tification of altertoxin II as a highly potent and selective cytotoxin against Ewing sarcoma cell
lines. Altertoxin II, but not the related compounds altertoxin I and alteichin, was highly effective
against every Ewing sarcoma cell line tested, with an average 25-fold selectivity for these cells as
compared to cells representing other pediatric and adult cancers. Mechanism of action studies
revealed that altertoxin II causes DNA double-strand breaks, a rapid DNA damage response, and
cell cycle accumulation in the S phase. Our studies also demonstrate that the potent effects of
altertoxin II are partially dependent on the progression through the cell cycle, because the G1

arrest initiated by a CDK4/6 inhibitor decreased antiproliferative potency more than 10 times.
Importantly, the cell-type-selective DNA-damaging effects of altertoxin II in Ewing sarcoma cells
occur independently of its ability to bind directly to DNA. Ultimately, we found that altertoxin II
has a dose-dependent in vivo antitumor efficacy against a Ewing sarcoma xenograft, suggesting
that it has potential as a therapeutic drug lead and will be useful to identify novel targets for
Ewing-sarcoma-specific therapies.
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1. Introduction

Ewing sarcoma (ES) is an aggressive bone and soft tissue cancer affecting children,
adolescents, and young adults. This disease is most often caused by a chromosomal
translocation leading to the expression of an abnormal fusion protein that is commonly
designated as EWS-FLI1 [1,2]. While the prognosis for many patients is good, with 70–80%
survival for localized cancers, only 20–30% of patients with metastatic or recurrent ES
survive [2,3]. There is a clear need for new effective therapies to help treat these recalcitrant
cases of ES and provide disease-specific therapies that cause fewer acute and chronic
side effects. Based on the knowledge that ES tumors are caused by the expression of the
EWS-FLI1 fusion protein, the possibility exists for the identification of targeted fusion-
protein-dependent therapies that could achieve high levels of efficacy against ES tumors
while avoiding toxicity to other tissues that do not express the abnormal fusion protein.
To this end, a variety of EWS-FLI1-targeting approaches have been attempted, including
the inhibition of EWS-FLI1 expression, the inhibition of the transcriptional activity of
EWS-FLI1, and the repression of EWS-FLI1 downstream targets [3]. Unfortunately, the
identification of a selective inhibitor of EWS-FLI1 has not yet been successful, in part
because EWS-FLI1 is a highly disordered protein [4].

A screening program at the National Cancer Institute evaluated natural products
from the Molecular Targets Laboratory at NCI (Frederick) for small molecules that inhibit
EWS-FLI1 transcription. Their screen identified multiple natural products, including
mithramycin [5], trabectedin (E-743) [6], and englerin A [7]. Mithramycin advanced
to clinical trials in ES but failed because the serum levels necessary for the inhibition
of transcription were not obtainable [8]. While trabectedin had promising effects in a
Phase I clinical trial, the Phase II trial failed to show activity, with only one of 10 patients
responding [9]. A new clinical trial of trabectedin in combination with irinotecan (SARC037)
is currently enrolling patients (Clinicaltrials.gov (accessed on 1 December 2021)).

Based in part on the success of the NCI in identifying multiple natural products with
activity against ES, we investigated fungal-derived metabolites from the extensive natural
product library at the University of Oklahoma, which contains >76,000 samples prepared
from taxonomically diverse fungi, for compounds with selective cytotoxic activities against
pediatric cancer cell lines. This approach has been effective in identifying multiple leads
against subtypes of triple-negative breast cancer [10–15]. This unbiased, mechanism-blind
screening program also led to the identification of compounds with selective cytotoxic
activities against pediatric solid cancer cells lines, including ES [16,17]. Herein, we describe
the identification of altertoxin II (ATXII) as a highly potent and selective cytotoxin against
ES cells in vitro that also has antitumor activity in vivo against a murine xenograft model
of ES.

2. Materials and Methods
2.1. General Experimental Procedures

Sulforhodamine B salt, Trizma, Dulbecco’s phosphate-buffered saline (DPBS), phenyl-
methanesulfonyl fluoride (PMSF), dimethyl sulfoxide (DMSO), crystal violet, and Kolliphor®

EL were purchased from Sigma-Aldrich (St. Louis, MO, USA). Acetic acid was purchased
from Thermo Fisher Scientific (Waltham, MA, USA). Abemaciclib-mesylate was provided
by Dr. Peter Houghton. The compounds used for in vitro cell treatments were dissolved in
DMSO and stored at−20 ◦C. ATXII for in vivo studies was diluted in 50:50 DMSO:Kolliphor®

EL, stored at−20 ◦C, and diluted 1:10 in DPBS immediately prior to use. LCMS analyses were
performed on a Shimadzu UFLC system with a quadrupole mass spectrometer using a Phe-
nomenex Kinetex C18 column (3.0 mm× 75 mm, 2.6 µm) and a CH3CN-H2O (0.1% HCOOH)
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gradient solvent system. NMR spectra were obtained on a Varian a spectrometer (500 MHz
for 1H and 125 MHz for 13C) using acetone-d6 (Aldrich) as the solvent. HPLC was performed
on a Waters System equipped with a 1525 binary HPLC pump coupled to a 2998 PDA detector
with a Phenomenex C18 column (21.2 × 250 mm or 10 × 250 mm, 5 µm).

2.2. Purification of Secondary Metabolites Altertoxin II, Altertoxin I, and Alteichin

The fungal isolate was identified as an Alternaria sp. (isolate code: SC5920 TV8-1)
based on its ribosomal internal transcribed spacer (ITS) sequence data (GenBank acces-
sion number MW013191). The soil sample from which it was derived was obtained from
South Carolina, USA, through the University of Oklahoma-s Citizen Science Soil Collection.
This isolate was grown in three large mycobags (Unicorn Bags, Plano, TX, USA) charged
with monolayers of Cheerios breakfast cereal supplemented with a 0.3% sucrose solution
with 0.005% chloramphenicol. After four weeks, the contents of the bags were combined,
homogenized, and extracted with EtOAc. The EtOAc extract (29.0 g) was subjected to
silica gel vacuum liquid chromatography with elution steps of 1:1 hexanes-DCM, DCM,
10:1 DCM-MeOH, and MeOH, yielding four fractions. The 10:1 DCM/MeOH fraction
(11.5 g) was then subjected to HP20SS vacuum liquid chromatography and elution per-
formed using a step gradient of MeOH (30%, 50%, 70%, 90%, 100%) in water followed by
1:1 DCM-MeOH, yielding a total of six fractions. The bioassay analysis of the resulting
fractions indicated that the selective cytotoxicity was limited to the 90% and 100% MeOH
fractions. These two fractions were subjected to further bioassay-guided purification using
preparative C18 HPLC (250 mm × 21.2 mm, 5 µm) with a MeOH-H2O gradient (30:70 to
100:0), followed by isocratic semi-preparative C18 HPLC (250 mm × 10 mm, 5 µm) with
MeCN-H2O (50:80) containing 0.1% formic acid to yield altertoxin II (84.0 mg) and its
structural analogues altertoxin I (8.0 mg) and alteichin (54.7 mg).

2.3. Phylogenetic Analysis of Citizen Science Alternaria

ITS sequences were generated from cell lysate using ITS1 (5′-TCCGTAGGTGAACCTG
CGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). Amplification was performed
using a LightCycle 480 II (Roche) using the following conditions: 1 cycle of denaturation
at 94 ◦C for 2 min followed by 40 cycles of denaturation at 94 ◦C for 1 min, anneal-
ing at 50 ◦C for 1 min, and extension at 72 ◦C for 1 min. The samples were processed
with Sanger sequencing by GENEWIZ. A cohort of 198 Alternaria sequences were then
aligned using clustalW in Mega, and within group distances were generated using the
Kimura2+G algorithm. A neighbor joining tree was constructed with 500 bootstraps using
the same algorithm.

2.4. Preparation of Alternaria Isolates for Metabolomic Analysis

Isolates indicated as belonging to Alternaria (based on BLAST comparisons to ITS
data contained in the NCBI database) were cultured in duplicate on Cheerios breakfast
cereal supplemented with a 0.3% sucrose solution spiked with 0.005% chloramphenicol.
The cultures were extracted twice using a Tecan Freedom EVO® robot. For the extraction
process, a 3 mL aliquot of ethyl acetate was added to each culture tube followed by 3 mL of
water. After 4 h, the ethyl acetate layer was transferred to a deep-well 96 well-plate. To
increase the recovery rates of organic metabolites, a second 3 mL aliquot of ethyl acetate
was added to each culture tube, which was removed after 2 h, and the ethyl acetate samples
were combined. The organic solvent was removed under vacuum and the samples were
stored at −20 ◦C for analysis.

2.5. LCMS Detection of Altertoxin II

The ethyl acetate soluble material from each fungus was suspended in 135 µL of
90:10 methanol that had been spiked with 0.5 µM sulfadimethoxine (internal quality
control standard). LCMS analyses were conducted on a Thermo Fisher Scientific Vanquish
Flex Binary LC system fitted with a C18 column (Kinetex, 50 × 2.1 mm, 1.7 µM, 100 Å,
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Phenomenex, Torrance, CA, USA) as an interface to a Thermo Fisher Q Exactive Plus hybrid
quadrupole-orbitrap mass spectrometer. Sample elution was performed using a gradient
system with increasing amounts of acetonitrile in H2O (treated with 0.1% formic acid). For
the gradient, conditions were held at 5% acetonitrile/H2O for 1.0 min, increased to 100%
acetonitrile over 8.0 min, and held for 2.0 min. The autosampler was maintained at 10 ◦C,
while the column compartment was held at 40 ◦C. The samples were analyzed in random
order with injection volumes of 5.0 µL. Blanks and pooled quality control samples were
run after every 12 samples, alternating between a methanol blank and a media blank.

High resolution MS data were acquired in the positive ion mode using a scan range of
m/z 100–1500, with a resolution of 35,000 and 17,500 for MS1 and MS2, respectively. MS2
data were acquired in a data-dependent manner: 5 MS/MS scans were acquired of the
most abundant ion during each cycle. Both MS1 and MS2′s maximum injection time was
100 ms. The AGC target was 1E6 and 5E5 for MS1 and MS2, respectively. The isolation
window was m/z 2. The sheath gas and auxiliary gas flow rate was set at 35 L/min and
10 L/min, respectively, at 350 ◦C, whereas the sweep gas flow rate was 0 L/min. The
capillary temperature was maintained at 320 ◦C, and the spray voltage was 3.8 kV. The
S-lens RF level was set to 50 V. MS2 data were collected at the apex within a window of
2–8 s and used normalized collision energy that was increased from 20% to 30% to 40%.
Dynamic exclusion was used to avoid resampling ions within 10 s. Unassigned charges
were excluded from the analysis.

The peak corresponding to altertoxin II was identified by the comparison of the
retention time and the MS2 spectrum of the metabolite’s [M+H-H2O]+ ion to an authentic
sample of the metabolite. Intensity data for compound altertoxin II were plotted against
the isolate number in the R software package. Isolates were classified as either high or low
producers of altertoxin II based on the intensity of this ion. Isolates were characterized
as high altertoxin II producers when the intensity measurement was greater than 1 × 107.
This value was used, since it corresponded to roughly one order of magnitude less than the
intensity of the altertoxin II ion in the Alternaria sp. isolate SC5920 TV8-1 (≈4.30 × 108).

2.6. Cell Culture

RD-ES, SK-ES-1, A-673, D283, A204, SH-SY-5Y, SJCRH30, SK-OV-3, MDA-MB-453,
MDA-MB-231, HCC1806, and HCC1937 cell lines were purchased from the American
Type Culture Collection (Manassas, VA, USA). The CAL-51 cell line was purchased from
Creative Bioarray (Shirley, New York, NY, USA). The BT-549 cell line was obtained from
Lombardi Comprehensive Cancer Center, in Georgetown University (Washington, DC,
USA), and validated by Promega (Fitchburg, WI, USA). The TC32 cell line was provided
by Dr. Alexander Bishop (University of Texas’ Health Science Center at San Antonio
(UTHSCSA)). Cell line identities were confirmed by DNA short tandem repeat analyses
(Labcorp, Burlington, NC, USA). TC32-NR0B1 and TC32-CMV cell lines were provided
by Dr. Patrick Grohar (Van Andel Research Institute, Grand Rapids, MI, USA). The SK-N-
BE(2)-C cell line was provided by Dr. Alexander Pertsemlidis (UTHSCSA). The Hep293TT
cell line was provided by Dr. Gail Tomlinson (UTHSCSA). The SK-OV-3-MDR-1-6/6 is a
single-cell clone we isolated from the SK-OV-3/MDR-1 cell line provided by Dr. Susan
Kane (Division of Molecular Medicine, Beckman Research Institute of the City of Hope,
Duarte, CA, USA) and cultured as previously described [18,19]. SK-ES-1, SH-SY-5Y, MDA-
MB-453, MDA-MB-231, and SK-N-BE2 cells were cultured in Improved Minimum Essential
Medium (Gibco/Thermo Fisher Scientific, Waltham, MA, USA) containing 25 µg/mL
gentamicin (Gibco) and 10% fetal bovine serum (FBS; GE Healthcare, Little Chalfont, UK).
TC32-NR0B1, TC32-CMV, RD-ES, A-673, D283, A204, SJCRH30, Hep293TT, HCC1806,
BT-549, HCC1937, and Cal-51 cells were cultured in a RPMI-1640 medium (Sigma-Aldrich)
containing 50 µg/mL gentamicin and 10% FBS. SK-OV-3 and SK-OV-3-M6/6 cell lines
were cultured in Basal Medium Eagle (Sigma-Aldrich) containing 50 µg/mL gentamicin
and 10% FBS. The cells were maintained in humidified incubators at 37 ◦C with 5% CO2.
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All cell lines were initially expanded and frozen as stocks in liquid nitrogen. The cells were
passaged for less than 3 months after revival.

2.7. Sulforhodamine B Assay

The antiproliferative and cytotoxic activities of ATXII were evaluated using the sul-
forhodamine B (SRB) assay as previously described [20]. The cells were plated into 96-well
plates at predetermined densities ranging from 2500 to 6500 cells/well, depending on the
cell proliferation rate, and allowed to adhere overnight. The cells were treated with ATXII
for 48 h prior to assessing antiproliferative and cytotoxic activities. The cell density at
the time of treatment (T0) was measured to evaluate cytotoxicity. Concentration–response
curves were plotted, and the concentrations causing 50% inhibition of proliferation com-
pared to vehicle control (GI50), total growth inhibition (TGI), and 50% cell death compared
to T0 (LC50) were interpolated from nonlinear regressions of the data (Prism 6; GraphPad
Software, La Jolla, CA, USA).

2.8. Colony Formation Assays

A-673 ES cells were seeded at a density of 500 cells/60 mm tissue culture dish, allowed
to adhere overnight, then treated with DMSO (0.5%) or the indicated concentrations of
ATXII. After 4 h of treatment, the cells were washed with DPBS, and a fresh growth
medium added. After 14 days of colony formation, the cells were fixed and stained with
0.5% crystal violet in 10% methanol. The colonies were counted using the GeneSnap
software (PerkinElmer). The data were analyzed by one-way ANOVA with Tukey’s post
hoc test using Prism 6.

2.9. Whole-Cell Lysis and Immunoblotting

A-673, RD-ES, and SK-ES-1 cells were treated with DMSO (maximum 0.5%) or ATXII
for the indicated time periods, harvested by scraping, and lysed in a cell extraction buffer
(Thermo Fisher Scientific) containing a protease inhibitor cocktail, PMSF, and Na3VO4
(Sigma-Aldrich). The total protein concentrations were measured with a Pierce Coomassie
Plus assay kit (Life Technologies), and 10 µg of total protein was separated by SDS-PAGE
on NuPAGE Bis-Tris gels (Life Technologies). The proteins were transferred to PVDF
membranes (EMD Millipore, Billerica, MA, USA) and probed overnight with antibodies
for Phospho-S345-Chk1, Chk1, Phospho-T68-Chk2, Chk2, Phospho-S15-p53, p53 (Cell
Signaling Technology, Danvers, MA, USA), β-actin (Sigma), or FLI1 (Abcam, Cambridge,
MA, USA; ab15289) diluted in an Odyssey blocking buffer in TBST (LI-COR Biosciences,
Lincoln, NE, USA). The membranes were incubated with appropriate IRDye 680 or IRDye
800 secondary antibodies (LI-COR Biosciences) diluted in an Odyssey blocking buffer in
TBST + 0.01% SDS. Near-infrared fluorescence signals were captured on an Odyssey FC
(LI-COR Biosciences).

2.10. Flow Cytometry

The cell cycle distribution was evaluated by flow cytometry utilizing propidium
iodide staining. A-673, RD-ES, and SK-ES-1 cells were treated with DMSO or the indicated
concentrations of ATXII for 18 h. The cells were then harvested by scraping, washed in
DPBS, and stained with Krishan’s reagent [21]. The DNA content was measured using a
Muse Cell Analyzer (EMD Millipore). The data were analyzed with FlowJo 10 (FlowJo
LLC, Ashland, OR, USA).

2.11. RNA Sequencing

TC32 cells were treated in triplicate with 10 nM ATXII for the indicated amount of
time, and total RNA was isolated using an RNeasy mini kit (Qiagen, Germantown, MD,
USA). Approximately 500 ng of total RNA was used for the RNA-seq library preparation
by following the Illumina TruSeq stranded mRNA sample preparation guide (Illumina,
San Diego, CA, USA). RNA-seq libraries were subjected to quantification and a subse-
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quent 50 bp single-read sequencing module with the Illumina HiSeq 3000 platform. After
the sequencing run, demultiplexing with CASAVA (Illumina, San Diego, CA, USA) was
employed to generate the FastQ file for each sample. An average of ~35 M reads were
generated for each sample. All RNA-seq FastQ reads were aligned with the reference
genome (UCSC human genome build hg19) using TopHat2 [22] default settings. The
BAM files obtained after alignment were processed using HTSeq-count [23] to obtain the
counts per gene in all samples. The R package DESeq [24] was used to normalize gene
expression with the size factor method and to perform pairwise comparisons between
groups to identify differentially expressed genes (DEGs). Genes with an FDR-adjusted
p-value < 0.1 and at least a 2-fold change compared to control were considered signifi-
cantly differentially expressed. Upon obtaining the differentially expressed genes from
all pair-wise comparisons, we performed k-means clustering on the combined gene set
using MATLAB (MathWorks). An additional quality control statistical analysis of outliers,
intergroup variability, distribution levels, PCA, and hierarchical clustering analysis were
performed to validate the experimental data. A pathway analysis was performed with
Ingenuity Pathway Analysis (IPA, Qiagen). A gene set enrichment analysis (GSEA) was
performed with the software package distributed by the Broad Institute [25].

2.12. High-Content Immunofluorescence Imaging

A-673 and SJCRH30 cells were plated into black 96-well cell carrier plates (PerkinElmer)
at a density of 3500 cells/well and allowed to adhere overnight. The cells were treated
in triplicate with DMSO or the indicated concentrations of ATXII for 6 or 24 h, then fixed
with paraformaldehyde. After fixation, the cells were incubated in a blocking solution
of 10% bovine calf serum in DPBS for 20 min at room temperature. The cells were then
incubated in a primary antibody against γ-H2A.X (1:400; Cell Signaling Technology) di-
luted in 1% bovine serum albumin/0.3% Triton X-100 in DPBS, overnight, at 4 ◦C. The cells
were subsequently washed with DPBS and incubated with an Alexafluor-594-conjugated
secondary antibody (1:1000; Life Technologies) for 1 h at room temperature. The plates
were washed with DPBS, and the nuclei stained with NucBlue live cell stain (Life Tech-
nologies) diluted in DPBS. Images were collected using an Operetta high-content imaging
system (PerkinElmer) using a 20× long working distance objective and analyzed with the
Columbus Image Data Storage and Analysis System (PerkinElmer). A minimum of three
fields were collected per well, with all concentrations tested in triplicate.

2.13. Luciferase Reporter Assay

NR0B1 promoter activity was assessed using a luciferase reporter assay as previously
described by Grohar et al. [6]. TC32-NR0B1 and TC32-CMV cells were plated in white,
opaque-bottom 384-well plates (PerkinElmer) at a density of 5000 cells/well in 27 µL
growth medium and allowed to adhere overnight. The cells were then treated at the
indicated concentrations with ATXII diluted in 3 µL DMSO/growth medium for 6 h.
Luciferase reporter activity was measured by adding 30 µL of steadylite plus a reporter
gene assay reagent and measuring the luminescence on a Pherastar FS multimode plate
reader (BMG Labtech). The results represent n = 3 independent experiments, with all
concentrations tested in triplicate.

2.14. LLAMAS Assay

An aliquot (400 µL) of DNA solution (in the experimental group) or control buffer
(in the control group) and 200 µL MeOH were mixed first prior to the addition of 10 µL
alertoxin solution. The samples were passed through the ultrafiltration membrane (100 kDa
cutoff) by centrifugation at 5000× g at 10 ◦C after 30 min incubation at room temperature.
The resulting filtrates were collected for a LC-PDA-MS/MS analysis. In the dissociation
step, the retained DNA-ligand complex in the upper chambers of the microcentrifuge tubes
was washed with 30% MeOH in H2O and subjected to centrifugation at 5000× g, 10 ◦C.
After washing, the DNA-ligand complex was mixed with 600 µL of 95% MeOH in H2O
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with 1% formic acid in a new tube and then incubated with periodic vortexing at room
temperature for 20 min. The solubilized contents were then transferred to microcentrifuge
tubes outfitted with new ultrafiltration filters and centrifuged at 5000× g at 10 ◦C for
10 min. The filtrates were subjected to in vacuo solvent evaporation and suspended in
50 µL MeOH for the LC-MS/MS analysis.

2.15. BioLayer Interferometry

DNA binding events were detected and monitored in real time using a FortéBio Octet
Red 96 Biolayer Interferometer (Molecular Devices, now Sartorius) [26]. DNA sequences
d(5′-biotin-GATTTCAAGATATTAAGAAG-3′), d(5′-CTTCTTAATATCTTGAAATC-3′),
d(5′-biotin-GTGCCTGGACCGCCCGACCT-3′), and d(5′-AGGTCGGGCGGTCCAGGCAC-3′)
were purchased from Integrated DNA Technologies (IDT, Coralville, IA). Streptavidin biosen-
sors and Kinetics Buffer (1× PBS, pH 7.4, 0.02% Tween-20, 0.1% albumin, and 0.05% sodium
azide) were purchased directly from Molecular Devices (San Jose, CA, USA). Single-stranded
DNA oligomers were annealed for 2 min at 94◦C followed by cooling to room temperature
over 1 h. Duplex DNA was then stored at −20 ◦C as a 20 µM solution in a TE buffer (10 mM
Tris, 0.5 mM EDTA, 50 mM NaCl, pH 8) until use. Biotinylated, double-stranded DNA was
immobilized on streptavidin (SA) sensor tips for 1600 s at 25 nM in a 1× Kinetics buffer.
Compound testing was done sequentially at 125 µM in the 1× Kinetics buffer with 5% DMSO
using baseline, association, and dissociation steps for 60, 1600, and 1600 s, respectively. Double
reference subtraction was performed to eliminate the signal associated with atypical binding
events by subtracting data obtained using a separate set of blank sensors with DNA load and a
set of sensors without DNA load, both in buffer [27,28]. The data were aligned using baseline
signals and the curves fitted with a 1:1 best-fit model in FortéBio’s data analysis software.

2.16. Xenograft Studies in Nude Mice

Female athymic nude mice (Envigo, Indianapolis, IN) were injected s.c. with 2 × 106

A-673 cells and suspended in 100 µL DPBS and 100 µL Matrigel® (BD Biosciences, San
Jose, CA, USA), bilaterally into each flank. Once the tumors reached a minimum volume
of 150 mm3, the mice were assigned to three different groups (n = 8 or 10 tumors/group).
One group of mice received doses of 20 mg/kg on days 1, 3, 5, 8, 10, and 12, and another
group of mice received doses of 40 mg/kg on days 1, 3, and 5. The third group consisted
of untreated control animals. ATXII was administered by i.p. injection in a vehicle of 5%
DMSO + 5% Kolliphor EL in DPBS. The mice were weighed and examined daily for signs of
toxicity. The tumors were measured twice per week using calipers, and the tumor volume
(mm3) was calculated as length (mm) × width (mm) × height (mm). All mice were housed
in an AAALAC-approved facility at UTHSCSA and given food and water ad libitum. All
procedures were IACUC-approved.

3. Results
3.1. Bioassay-Guided Purification of Altertoxin II

Crude extracts and fractions prepared from fungi isolated from a combination of
Great-Lakes-derived sediments [29] and the University of Oklahoma Citizen Science Soil
Collection [30] were evaluated for selective cytotoxic activity in cell lines modeling five
different types of pediatric solid tumors: A-673 (Ewing sarcoma), SJCRH30 (rhabdomyosar-
coma), SK-N-BE(2)-C (neuroblastoma), D283 (medulloblastoma) and Hep293TT (hepato-
blastoma). A fraction obtained from a soil-derived Alternaria sp. isolate SC5920 TV8-1
exhibited selective cytotoxic effects against A-673 ES cells as compared to the other cell
lines. Bioassay-guided fractionation of the active fungal sample yielded the perylene
quinone-type metabolite altertoxin II (Figure 1). Concurrent with the bioassay-guided
fractionation, LC-MS analysis was performed on the biologically active fraction, alerting us
to the presence of two co-eluting metabolites. Based on their estimated molecular weights
and photodiode array data, the metabolites were suspected of being putative analogues of
ATXII. The purification and subsequent structure analysis of those compounds led to their
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identification as altertoxin I (ATXI) and alteichin (Figure 1). The dereplication of ATXII,
ATXI and alteichin was carried out by comparing experimentally-derived data to published
accounts of their mass spectrometry data and spectroscopic (i.e., 1D and 2D NMR, ECD,
and optical rotation) properties [31–35].
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Figure 1. Chemical structures of ATXII and its analogues ATXI and alteichin purified from Alternaria
sp. SC5920 TV8-1.

ATXII, ATXI and alteichin were further evaluated in eight cell lines from our pediatric
solid tumor panel representing ES (RD-ES, SK-ES-1, A-673) and non-ES (D283, A204, SK-
N-BE(2)-C, SH-SY-5Y, and SJCRH30) cell lines. These cell lines were chosen because they
represent four different types of pediatric solid tumors and demonstrated differential
sensitivity to the fraction from which ATXII was isolated. The potent, ES-specific effects of
ATXII were recognized to be a distinguishing feature of this metabolite, whereas ATXI and
alteichin did not exhibit selective cytotoxic activity in ES cells compared to other pediatric
cancer cell lines (Figure 2A–C). Considering that the only structural difference between the
compounds is the presence of a 1,2-oxirane system versus a C-2 hydroxy group in ATXII
and ATXI, respectively, we speculate that the epoxide group is critical for the ES-selective
activity of ATXII.
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Figure 2. ATXII, but not altertoxin I or alteichin, has selective activity against Ewing sarcoma cells in vitro. (A) Sulforho-
damine B (SRB) concentration-response curves for the inhibition of cell growth by ATXII, (B) altertoxin I and (C) alteichin.
Results represent mean ± SE; n ≥ 3 independent experiments with each concentration tested in triplicate. (D) Comparison
of GI50 (concentration resulting in 50% inhibition of cell growth relative to vehicle-treated control) for ATXII in EWS and
non-EWS pediatric cancer cell lines. Results represent mean ± SD. Groups compared by two-tailed t-test.

ATXII was next evaluated for antiproliferative and cytotoxic activities in a larger
panel of six ES cell lines and 12 non-ES cell lines (four different pediatric solid tumor cell
lines; two ovarian cancer cell lines, including SK-OV-3-MDR-1-6/6 cells that expresses
P-glycoprotein; and six triple-negative breast cancer cell lines). ATXII showed a highly
selective antiproliferative and cytotoxic effects in all of the ES cell lines with lower potency
in each of the non-ES cells (Figure 2A; Table 1). The average concentration that caused a
50% inhibition of cell proliferation (GI50) was significantly different (p < 0.0001) between
ES and non-ES cells (Figure 2D). The mean GI50 for ATXII was 8 ± 3 nM in the six ES cell
lines and 200 ± 100 nM in non-ES pediatric cancer and adult cancer cell lines, indicating an
average 25-fold selectivity for ES cells compared to non-ES cancer cells. In contrast, the
GI50 values for ATXI and alteichin were 1.9 and 1.1-fold higher in ES cells compared to
non-ES cells, respectively, indicating no selectivity for ES versus non-ES cells (Figure 2B,C).
Similarly, the average concentration of ATXII that caused total growth inhibition (TGI) was
significantly different (p < 0.0001) for ES and non-ES cells (Table 1). The mean TGI for ATXII
was 20 ± 10 nM in the six ES cell lines and 600 ± 300 nM in non-ES cell lines, indicating
an average of 30-fold selectivity for ES cells. The concentration of ATXII resulting in 50%
cell death (LC50) was also significantly different (p = 0.0001) between ES and non-ES cells
(Table 1), with a mean LC50 of 100 ± 100 nM in the six ES cell lines and 2000 ± 1000 nM in
non-ES cell lines, demonstrating that ATXII has, on average, 20-fold cytotoxic selectivity for
ES cells. ATXI and alteichin were not evaluated in this larger panel of cell lines because these
compounds did not show any selectivity for ATXII when evaluated in the smaller panel of
eight cell lines. The activity of ATXII was further assessed in A-673 ES cells by measuring
its ability to inhibit colony formation. ATXII potently inhibited the colony formation of
A-673 cells after a short, 4-h treatment followed by drug washout (Figure 3A,B). These
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data indicate that the effects of ATXII are highly persistent because these relatively short
treatments with concentrations as low as 10 nM were sufficient to significantly inhibit the
A-673 colony formation.

Table 1. Sulforhodamine B assay potency measurements for ATXII. ES, Ewing sarcoma; RMS,
rhabdomyosarcoma; Med, medulloblastoma; NB, neuroblastoma; HB, hepatoblastoma; OV, ovarian,
BR, breast.

Cell Line Type GI50 (nM) TGI (nM) LC50 (nM)

RD-ES ES 7.8 32 380
SK-ES-1 ES 7.6 20 58
A-673 ES 11 37 150
TC32 ES 4.0 12 48

TC32-NR0B1 ES 10 23 57
TC32-CMV ES 5.0 10.0 20
SJCRH30 RMS 120 220 430

D283 Med 100 260 880
SK-N-BE(2)-C NB 270 570 1200

Hep293TT HB 240 540 1300
SK-OV-3 OV 250 550 1300

SK-OV-3-MDR1-6/6 OV 320 770 1900
MDA-MB-453 BR 230 790 2700
MDA-MB-231 BR 400 1200 3700

HCC1806 BR 80 220 650
BT-549 BR 100 380 1500

HCC1937 BR 200 680 2400
CAL-51 BR 230 810 2800
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Figure 3. Altertoxin II has persistent activity in ES cells. (A) Inhibition of colony formation by ATXII
after drug washout. A-673 cells were treated with ATXII for 4 h, the drug was washed out, and the
cells were allowed to form colonies for 14 days. (B) Quantification of colony number after treatment
with ATXII at the indicated concentration for 4 h followed by drug washout. n = 3; *** p ≤ 0.001,
**** p ≤ 0.0001 compared to vehicle; one-way ANOVA with Tukey’s post-hoc test.
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3.2. ATXII Does Not Inhibit EWS-FLI1 Protein Expression or Transcriptional Activity

Due to the high degree of selectivity for ES cells, we assessed whether ATXII affects
the abundance or transcriptional activity of EWS-FLI1, the oncogenic fusion protein that is
the primary driver of ES. A relatively short time point (8 h) after treatment was evaluated
to interrogate the early effects of ATXII on ES cells. The treatment of SK-ES-1 and RD-ES
cells with 100 nM ATXII did not alter the EWS-FLI1 protein abundance, as assessed by
immunoblotting (Figure 4A). Similarly, the treatment of A-673 cells with 10 nM–1 µM
ATXII for 24 h did not affect the protein levels of EWS-FLI1 (Figure 4B). Together, these
data indicate that ATXII does not alter the EWS-FLI1 protein abundance in ES cells and
suggest that the depletion of EWS-FLI1 is not responsible for the selective cytotoxic effects
of ATXII on ES cells.

EWS-FLI1 acts as a transcription factor to globally modulate gene expression and
drive an oncogenic phenotype in ES [1,36–38]. To determine if ATXII affects the transcrip-
tional activity of EWS-FLI1, we evaluated the effects of ATXII on the promoter activity of
NR0B1, a major downstream target of EWS-FLI1, using a luciferase reporter assay. TC32
ES cells stably expressing luciferase reporters under the control of either the NR0B1 or
cytomegalovirus (CMV) promoters were treated with ATXII for 6 h at concentrations rang-
ing from 1 nM to 1 µM before evaluating the promoter activity (Figure 4C). The 1 and
10 nM concentrations of ATXII, the latter of which is sufficient to inhibit ES growth and
colony formation (Figures 2A and 3), had no effects on either the CMV or the NR0B1 pro-
moter activity as compared to vehicle-treated controls (Figure 4C). A small but statistically
significant decrease in the NR0B1 promoter activity was observed after treatment with
higher concentrations, 100 nM or 1 µM ATXII, which was also accompanied by a decrease
in the CMV promoter activity (Figure 4C). These data suggest that the decreased EWS-FLI
transcriptional activity is not a major driver of ES growth inhibition and that the effects of
higher concentrations of ATXII on the NR0B1 promoter are more likely due to a generalized
downregulation of transcription.

3.3. ATXII Activates DNA Damage Response Pathways and Induces Double-Strand DNA Breaks
in ES Cells

ATXII has been isolated from other fungi of the Alternaria genus, which are plant
pathogens that cause the spoilage of food products, including grains and fruit [33,39,40].
Early studies showed that ATXII causes DNA damage in mammalian cells at concentrations
of 250–750 nM, significantly higher than those where we observe ES-selective cytotoxic-
ity [40,41]. Triggering such an effect would be highly relevant because previous studies
have shown that ES cells are very sensitive to DNA damaging agents and exhibit high
levels of DNA replication stress [42]. To determine if the induction of DNA damage is
involved in the mechanism of action of ATXII in ES cells, the phosphorylation of checkpoint
kinases 1 and 2 (Chk1 and Chk2) and p53 in A-673 and RD-ES ES cells was measured. The
phosphorylation of Chk1 at S345, Chk2 at T68, and p53 at S15 is indicative of a cellular
DNA damage response. The phosphorylation status of Chk1, Chk2, and p53 was assessed
in ES cells after treatment with concentrations of ATXII ranging from 10 to 300 nM for
6 h to capture the acute effects of ATXII rather than secondary effects due to cell death
(Figure 5A). In A-673 ES cells, the phosphorylation of Chk1 and Chk2 was observed at
6 h with 10 nM ATXII with a maximum phosphorylation of Chk1 occurring with 50 nM.
The phosphorylation of Chk1 and Chk2 was also observed in the RD-ES cells, with the
maximal phosphorylation obtained at 6 h with 50 nM ATXII (Figure 5A). An increased
Chk2 phosphorylation was observed with concentrations as low as 10 nM. Interestingly,
higher concentrations of ATXII (100 and 300 nM) resulted in lower levels of total Chk2
protein in RD-ES cells. A robust phosphorylation of p53 at S15 in RD-ES cells was observed
at all the concentrations tested. The total levels of p53 decreased after treatment with 100
and 300 nM, although these may be secondary effects due to cell death at these higher
concentrations. We did not detect total or P-S15-p53 in A-673 cells, which is consistent with
previous studies showing that this cell line is p53-null [43].
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Figure 4. Effects of ATXII on EWS-FLI1 protein levels and transcriptional activity. (A) Immunoblot-
ting for EWS-FLI1 (anti-FLI1) and β-actin in SK-ES-1 and RD-ES lysates following treatment with
100 nM ATXII for 8 h. (B) Immunoblotting for EWS-FLI1 (anti-FLI1) in A-673 lysates following
treatment with a range of concentrations for 24 h. (C) Effects of ATXII on the promoter activity of
the EWS-FLI1 target gene NR0B1. The cells were treated for 6 h with the indicated concentration of
ATXII, and the activity was measured by a luciferase reporter assay. n = 3 independent experiments,
with all concentrations tested in triplicate. ** p ≤ 0.01 compared to vehicle; one-way ANOVA with
Tukey’s post-hoc test.
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Figure 5. ATXII selectively induces DNA double-strand breaks, inhibits DNA synthesis, and is optimally potent in
proliferating cells. (A) Immunoblotting for P-S345-Chk1, P-T68-Chk2, and P-S15-p53 in ES cell lines A-673 and RD-ES after
a 6-h treatment with ATXII. (B) Indirect immunofluorescence microscopy of γ-H2A.X in A-673 cells after an 18-h treatment
with ATXII. (C) Representative heatmap and (D) concentration-response curves for ATXII-induced γ-H2A.X accumulation
in A-673 and Rh30 cells. The cells were treated in triplicate for 6 or 24 h with increasing concentrations of ATXII, and
γ-H2A.X was measured by automated immunofluorescence imaging. Results represent mean ± SE; n = 2. (E) Analysis of
cell cycle distribution by flow cytometry. A-673 cells were treated for 24 h with indicated concentrations of ATXII, and the
DNA content was determined by PI staining of permeabilized cells. (F) Concentration-response curves for ATXII in RD-ES
and (G) A-673 cells after pretreatment with the CDK4/6 inhibitor abemaciclib for 24 h. Results represent mean ± SE for
n = 3 (RD-ES) or n = 1 (A-673) independent experiment(s) with each concentration tested in triplicate.

ATXII and related compounds have been evaluated using the Ames assay, where
they were shown to be mutagenic in Salmonella typhimurium strains [39]. Our results
show that ATXII causes DNA damage in ES cells at concentrations much lower than those
previously shown to induce general toxicity in cancer cells [40,41]. Consistently with these
activities, other DNA-damaging drugs used to treat children with cancer were also positive
in the Ames assay [44]. We evaluated the ES-selectivity of a panel of other DNA damage-
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inducing agents. including gemcitabine, etoposide, SN38 (active metabolite of irinotecan),
melphalan, and the PARP1 inhibitor olaparib, but none of these agents show the degree of
selectivity for ES cells that we see with ATXII (Supplementary Figure S1). These results
suggest that ATXII induces DNA damage through a unique mechanism that cannot be
repaired by ES cells. ES cells are understood to be highly sensitive to genotoxic stress,
and they express low levels of key DNA repair genes, including ATM and BRCA1 [45].
However, our results demonstrate that ATXII has a much greater selectivity for ES cells
in vitro compared to other clinically relevant DNA-damaging agents.

EWS-FLI1 initiates DNA damage and transcriptional stress as measured by high levels
of H2A.X phosphorylation at S139 (γH2A.X) and a slow replication fork progression [46].
Given the effects of the fusion protein and our finding that ATXII activates DNA damage
response pathways in ES cells, studies were conducted to evaluate if ATXII induces the
phosphorylation of H2A.X at S-139 (γ-H2A.X), a marker of DNA double-strand breaks.
The ability of 100 nM ATXII to cause H2A.X phosphorylation was evaluated in A-673 cells
following an 18-h treatment. The cells were stained with a DNA marker (NucBlue) and for
γ-H2A.X with a phospho-specific antibody. The results show a robust increase in γ-H2A.X
in the nuclei of ATXII-treated ES cells (Figure 5B). High-content immunofluorescence
microscopy was performed in A-673 ES and SJCRH30 rhabdomyosarcoma (RMS) cells
treated with 1 nM–10 µM ATXII for 6 or 24 h and the γ-H2A.X intensity per nuclei quantified
for each condition. A heat map presentation of the results shows that γ-H2A.X was
detected in A-673 ES cells at concentrations as low as 100 nM after 6 h and 30 nM after
24 h of treatment with ATXII (Figure 5C). In contrast, γ-H2A.X phosphorylation could
only be detected in SJCRH30 RMS cells after treatment with 10 µM ATXII for 6 or 24 h.
After 6 h of treatment, the EC50 (half maximal effective concentration) for ATXII-induced
γ-H2A.X accumulation was 111 nM in A-673 cells and 5.3 µM in SJCRH30 cells, while
after 24 h of treatment the EC50 was 67 nM in A-673 cells and 8 µM in SJCRH30 cells
(Figure 5D). Interestingly, the concentration-response curves for ATXII-induced DNA
damage (Figure 5D) and ATXII cytotoxicity (Figure 2A) in A-673 cells show that DNA
damage and cell death occur over the same concentration range, with maximal effects
achieved at 1 µM, suggesting that DNA damage is the primary driver of ATXII-induced
cell death in ES cells.

A common consequence of DNA damage is cell cycle accumulation, either in the late
G1- or S-phase, and thus the effects of ATXII on cell cycle distribution were evaluated
in A-673 cells. The cells were treated with 50 or 100 nM ATXII for 24 h, resulting in a
concentration-dependent accumulation of cells in the S-phase of the cell cycle (Figure 5E),
suggesting that the ATXII-initiated DNA damage inhibits DNA synthesis, leading to a cell
cycle checkpoint response and cell cycle arrest. Similar effects on cell cycle distribution
were also observed in SK-ES-1 ES cells (Supplementary Figure S2).

Based on these results, we evaluated whether the potent cytotoxic effects of ATXII in
ES cells require cell proliferation. RD-ES and A-673 cells were treated with the CDK4/6
inhibitor abemaciclib-mesylate, which caused the accumulation of cells in G1 at concentra-
tions as low as 100 nM. Abemaciclib-mesylate did not initiate cytotoxicity at concentrations
as high as 1 µM (Supplementary Figure S3). RD-ES and A-673 cells were first arrested in G1
by treatment with abemaciclib-mesylate for 24 h at 100 nM, a concentration that modestly
inhibited growth but did not promote cytotoxicity on its own, followed by treatment with
ATXII for 48 h. A pretreatment of RD-ES and A-673 cells with 100 nM abemaciclib-mesylate
resulted in a rightward shift in the ATXII concentration-response curves (Figure 5F,G),
increasing the GI50 22.3-fold and 12.4-fold in RD-ES and A-673 cells, respectively, which
were essentially equal to the potency in some non-ES cell lines. These data demonstrate
that ES cells must be actively proliferating for ATXII to have maximal potency and further
support the hypothesis that the potent cytotoxic effects of ATXII in ES cells are due to its
ability to cause a selective induction of DNA damage in these cells at low concentrations.

To further probe the mechanisms of action of ATXII in ES cells, RNA sequencing
(RNA-seq) was performed to assess changes in global gene expression in TC32 ES cells
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after 4, 8, and 12 h of treatment with 10 nM ATXII. TC32 cells were utilized for these
studies in order to determine if ATXII has similar effects in multiple ES cell lines. We
identified 43 genes that exhibit significant differences in expression (fold change > 2;
adjusted p-value < 0.1) in ATXII-treated cells as compared to vehicle-treated cells (Supple-
mentary Figure S4). Gene set enrichment analysis (GSEA) indicated significantly enriched
gene sets related to DNA damage, including those that occur in response to ionizing
radiation and cisplatin, as early as 4 h after ATXII treatment (Supplementary Figure S5).
Collectively, these data strongly suggest that ATXII induces DNA damage in ES cells at con-
centrations as low as 10 nM. Interestingly, GSEA and gene ontology (GO) also indicate an
enrichment in pathways related to type I interferon signaling and inflammatory response
(Supplementary Figure S4), suggesting that these pathways might also play a role in the
cytotoxic effects of ATXII. Induction of type I interferons can occur as a consequence of
DNA damage due to ionizing radiation [47], and so the activation of these pathways is
consistent with the induction of DNA damage by ATXII.

3.4. ATXII Does Not Directly Bind to DNA

Based on our observations that ATXII induces DNA damage and activates DNA
damage response pathways, we sought to determine if these effects were the result of the
direct binding of ATXII to DNA. We recently developed a technique for identifying DNA-
binding molecules in complex mixtures called lickety-split ligand-affinity-based molecular
angling system (LLAMAS) [48]. Using this assay, no binding of ATXII to purified DNA was
observed, suggesting that ATXII-induced DNA damage is not due to direct DNA binding
(Figure 6A,B). To confirm these results, we performed biolayer interferometry assays to
assess the binding of ATXII to GC and AT-rich DNA sequences. Whereas cisplatin showed
detectable binding to DNA, we did not observe any binding of ATXII to the streptavidin-
bound double-stranded DNA (Figure 6C). Collectively, these results indicate that ATXII
does not directly bind to DNA and suggest that the ATXII-induced DNA damage is likely a
consequence of the inhibition of a protein target, potentially one involved in DNA synthesis
or damage repair.

3.5. In Vivo Antitumor Efficacy of ATXII

Our studies show that ATXII exhibits a highly selective cytotoxic activity against
ES cells in vitro. To determine if ATXII has in vivo antitumor efficacy, we evaluated the
effects of ATXII in an A-673 ES murine xenograft model. Mice bearing subcutaneous A-673
xenograft tumors of ~250 mm3 were treated with 20 mg/kg ATXII on days 1, 3, 5, 8, 10,
and 12 or with 40 mg/kg ATXII on days 1, 3, and 5 for a total dose of 120 mg/kg in both
cohorts. We observed a modest inhibition of tumor growth and minimal weight loss in the
mice treated with the 20 mg/kg ATXII dose/schedule over the course of the 17-day trial
(Figure 7A,B; Supplementary Figure S6). On day 17, the tumor volume was significantly
smaller (p < 0.05) in this group compared to the control mice (Figure 7B). A less frequent
dosing with 40 mg/kg ATXII on days 1, 3, and 5 resulted in a greater inhibition of tumor
growth over the 17-day trial (Figure 7A,B). On day 17, tumors in mice in the 40 mg/kg
ATXII group were significantly smaller than control tumors (p < 0.0001; Figure 7B). This
dose and schedule caused more weight loss, although the mice recovered by the end of
the trial (Supplementary Figure S6). Interestingly, the 40 mg/kg dose of ATXII produced
long-lasting antitumor effects after the final dose was administered on day 5 of the trial,
indicating a highly persistent antitumor activity. These results demonstrate that ATXII has
antitumor efficacy against ES xenografts with an acceptable therapeutic window, and that
ATXII is a possible lead molecule for the development of ES-specific therapies.
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LLAMAS. The UV chromatograms (λ 254 nm) and the extracted ion chromatogram (EIC) analysis
revealed that ATXII does not show a recognizable DNA binding activity. (C) BioLayer interferometry
binding sensorgrams for ATXII and cisplatin against GC- and AT-rich DNA (association step 0–1600 s
and buffer dissociation step 1600–3200 s). Compounds evaluated at 125 µM against biotinylated,
double-stranded DNA immobilized on streptavidin.
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Figure 7. ATXII shows dose-dependent antitumor efficacy against an A-673 xenograft model. (A) Tumor growth curves for
untreated control and ATXII-treated mice. The mice were injected i.p. with 20 mg/kg ATXII on days 1, 3, 5, 8, 10, and 12 or
40 mg/kg on days 1, 3, and 5. n = 8–10 tumors per group. (B) Comparison of final tumor volumes on day 17. * p ≤ 0.05,
**** p ≤ 0.0001 compared to untreated control; one-way ANOVA with Tukey’s post-hoc test.

4. Discussion

Unlike most adult cancers, that are caused by a lifetime of accumulated genetic
changes, ES is caused by the expression of an aberrant transcription factor, EWS-FLI1,
initiated most commonly by a t(11;22) (q24;q12) chromosomal translocation. Current
therapies are effective for most children but are accompanied with long-term treatment-
inducted morbidities [49,50]. New therapies that can improve survivors’ quality of life
and the efficacy for patients with metastatic or recurrent disease are needed. The potential
to target the unique vulnerabilities of ES caused by fusion protein expression suggest
that targeted therapies for ES can be identified. Significant challenges remain, however,
because EWS-FLI1 is a highly disordered transcription factor, making direct targeting
unlikely. Additionally, the chimeric fusion protein causes both transcriptional activation
and repression, which will be difficult to differentially regulate using a single therapeutic
strategy to inhibit EWS-FLI1 transcription [2,51]. While ES is characterized as having
a “quiet” mutational landscape, recent studies on the genetic vulnerabilities of ES cell
lines show that they have complex dependencies, rivaling those of adult cancers [52].
Interestingly, these genetic dependences are different from the common vulnerabilities
seen in adult cancers, highlighting the need to discover ES-specific therapies.

Natural products have a long history of use as pharmaceuticals, and several natural
products, including mithramycin, englarin A, and trabectedin were identified in a screen
for inhibitors of EWS-FLI1 transcription [5–7]. The success of this screen suggests that the
investigation of additional natural sources could be fruitful. We embarked on a discovery
project using a high-throughput phenotypic screen of natural product extracts and fractions
that is based on identifying mixtures containing constituents with selective cytotoxic
activities against ES cells. A mechanism-blind phenotypic screen has the advantage of being
unbiased towards the target and provides the opportunity to identify new unanticipated
targets. The initial detection of an active fungal fraction, followed by bioassay-guided
fractionation, identified ATXII as a highly selective cytotoxin in ES models. Our results
confirm the continuing value of screening natural product libraries for compounds with
selective activities against ES.
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The advantage of a differential sensitivity screen is that compounds with high selec-
tivity can be identified from complex mixtures. This was held to be true in that ATXII has
exquisite potency against every ES cell line that we tested as compared to all other child-
hood and adult solid tumor cell lines. In our decades of experience, this highly consistent
degree of ES selectivity, greater than 20-fold, is noteworthy. While the cytotoxic effects of
ATXII in cancer cell lines have been previously described, the potencies reported are in the
range of the non-ES cell lines in our study, reinforcing that ES lines are uniquely sensitive
to ATXII [40,41]. Mutagenic effects of ATXII in the Ames assay have been reported, but
the mutagenic effects in mammalian cells also occur at concentrations higher than those
that inhibit the proliferation and promote cytotoxicity in ES cell lines [39–41]. There is
good reason to be cautious about the use of a mutagen in children and young adults, but
it should be noted that the drugs used for the treatment of ES, including doxorubicin,
cyclophosphamide, and melphalan [2], are also mutagenic in the Ames assay [44].

The structure–activity relationships among ATXII, ATXI, and alteichin demonstrate the
critical importance of the epoxide moiety in the potency and ES selectivity of ATXII. Con-
sidering the bias that epoxide groups are indiscriminately reactive, we were nevertheless
surprised when our studies showed that ATXII does not bind directly to DNA. Yet while
ATXII does not bind to DNA, it causes a rapid DNA damage response at concentrations as
low as 10 nM, specifically in ES cells. Interestingly, previous studies have demonstrated
that ES cells exhibit high levels of DNA replication stress and are particularly susceptible
to DNA damaging agents [42]. Our results are consistent with these findings. However,
we demonstrate that many clinically relevant agents that induce DNA damage, including
topoisomerase inhibitors and the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib,
do not show the same degree of selectivity for ES that we observe with ATXII, suggesting
that ATXII induces a unique type of damage that is particularly difficult for ES cells to
repair. Our findings also indicate that the cytotoxic effects of ATXII are partially dependent
on cellular proliferation, suggesting the ability of ATXII to interfere with DNA replication.

The high levels of DNA replication stress are a defining feature of ES, although the
direct molecular causes of this replication stress are not clear. This phenotype of elevated
replication stress induces genomic instability and is thought to confer sensitivity to DNA
damaging agents. Replication stress can be caused by a variety of factors, including the
deregulation of nucleotide synthesis, the inhibition of DNA polymerase/helicase, and the
accumulation of DNA–RNA hybrids(R-loops), among others [53,54]. Indeed, ES shows
elevated levels of R-loops compared to other cancer types, and it is thought that these
R-loops induce genomic instability and a sensitivity to DNA damaging agents [42]. Our
results suggest that the high sensitivity of ES cells to ATXII results from an undefined yet
selective induction of DNA damage. However, our data additionally demonstrate that
ATXII does not directly bind to DNA, suggesting that it induces DNA damage through
an indirect mechanism. ATXII might inhibit DNA repair through the direct inhibition of a
protein involved in the cellular DNA damage response or inhibition of DNA replication,
leading to an accumulation of stalled replication forks. Interestingly, we observed the
accumulation of ES cells in the S phase after treatment with low concentrations of ATXII,
and the effects of ATXII are at least partially dependent on cellular proliferation. These data
are consistent with ATXII inhibiting DNA replication, which could increase the replication
stress and lead to an accumulation of DNA damage. In the future, we plan to conduct
additional binding studies with radiolabeled ATXII, which will be used to identify its direct
molecular target(s). Additionally, a CRISPR-Cas9-mediated gene knockout screen will be
employed to further define the mechanism of ATXII-induced DNA damage in ES cells [55].
Lastly, the development of an ATXII-resistant ES cell line, followed by whole-exome and
RNA sequencing, would be useful in identifying both genetic and epigenetic mechanisms
of ATXII resistance, and may provide further insight into its mechanisms of action.

We demonstrate that altertoxin II has in vivo antitumor efficacy against an A-673
xenograft model of ES. It is likely that an increased antitumor efficacy will be observed
by combining ATXII with other agents that act through a different mechanism of action.
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Specifically, ES is known to exhibit a “BRCAness” phenotype with deficiencies in homolo-
gous recombination [42], making these tumors particularly sensitive to PARP inhibitors. It
is possible that ATXII will show increased efficacy in the combination with PARP inhibitors,
or that a lower dose of ATXII may be utilized to minimize the general toxicity. Our future
studies will be aimed at identifying optimal drug combinations with ATXII both in vitro
and in vivo to treat ES tumors.

5. Conclusions

We identified the fungal metabolite ATXII as a compound with highly selective cyto-
toxic activity against ES cells. Mechanism of action studies indicate that ATXII selectively
induces DNA double-strand breaks and S-phase accumulation but does not directly bind to
DNA. The high degree of selectivity for ES cells suggests that ATXII acts through a unique
mechanism of action compared to other clinically relevant DNA-damaging agents. Overall,
the efficacy of ATXII in an ES xenograft model, combined with its unique mechanistic ef-
fects, demonstrates that ATXII will be a valuable chemical probe for identifying ES-specific
vulnerabilities and new drug targets for ES and as a potential therapeutic lead for this
pediatric cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13246176/s1, Figure S1: Clinically used DNA-damaging agents do not show selectivity
for Ewing sarcoma cells, Figure S2: Analysis of cell cycle distribution in SK-ES-1 cells by flow
cytometry, Figure S3: Analysis of abemaciclib-induced cytotoxicity and cell cycle arrest in RD-ES
cells, Figure S4: Heatmap of differentially expressed genes in TC32 cells following ATXII treatment,
Figure S5: Gene set enrichment analysis of TC32 cells treated with ATXII, Figure S6: Mean percent
change in mouse weights over the course of the trial.
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