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Abstract

Background: Pulmonary fibrosis (PF), the end point of interstitial lung diseases, is characterized by myofibroblast
over differentiation and excessive extracellular matrix accumulation, leading to progressive organ dysfunction and
usually a terminal outcome. Studies have shown that umbilical cord-derived mesenchymal stromal cells (uUMSCs)
could alleviate PF; however, the underlying mechanism remains to be elucidated.

Methods: The therapeutic effects of uMSC-derived extracellular vesicles (uMSC-EVs) on PF were evaluated using
bleomycin (BLM)-induced mouse models. Then, the role and mechanism of uMSC-EVs in inhibiting myofibroblast
differentiation were investigated in vivo and in vitro.

Results: Treatment with uMSC-EVs alleviated the PF and enhanced the proliferation of alveolar epithelial cells in
BLM-induced mice, thus improved the life quality, including the survival rate, body weight, fibrosis degree, and
myofibroblast over differentiation of lung tissue. Moreover, these effects of uMSC-EVs on PF are likely achieved by
inhibiting the transforming growth factor-3 (TGF-{3) signaling pathway, evidenced by decreased expression levels of
TGF-32 and TGF-BR2. Using mimics of uMSC-EV-specific miRNAs, we found that miR-21 and miR-23, which are
highly enriched in uMSC-EVs, played a critical role in inhibiting TGF-B2 and TGF-(R2, respectively.

Conclusion: The effects of uMSCs on PF alleviation are likely achieved via EVs, which reveals a new role of uMSC-
EV-derived miRNAs, opening a novel strategy for PF treatment in the clinical setting.
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Background

Pulmonary fibrosis (PF), the end point interstitial lung
diseases, is described as the deposition of excessive colla-
gen and other extracellular matrix molecules within the
alveolar septa (thickening of the septal interstitium),
with or without structural lung damage and fibrotic
masses, depending on the severity [1-3]. Currently avail-
able treatments for PF fail to significantly increase the
survival rate of patients, especially in the case of the
current pandemic of COVID-19. One currently assumed
pathogenesis of PF is fibroblast-to-myofibroblast transi-
tion (FMT) initiated and driven by the transforming
growth factor-p (TGF-P) signaling pathway [4, 5]. When
the alveolar epithelium is injured, activated fibroblast
proliferation and macrophage infiltration produce a
higher amount of TGF-f [4, 5]. Then, the downstream
genes of the TGF-P signaling pathway, including TGF-p
receptor and Smad, are activated, which leads to the ex-
tensive expression of a-smooth muscle actin (a-SMA)
and collagen, thereby promoting FMT [6]. Therefore,
targeting the TGF-f signaling pathway to inhibit FMT is
considered a practical therapeutic strategy for PF.

In recent years, cell therapy based on mesenchymal stro-
mal cells (MSCs) has been widely used to treat various
diseases [7] and reported excellent therapeutic effects on
tissue injuries, including the bone [8], cartilage [9], skin
[10-12], brain [13], liver [14], lung [15-17], and heart
[18-20]. Among these diseases, MSCs may elicit a super-
jor therapeutic response on lung injury because adminis-
tered MSCs first reach the lung after being transplanted
through a vein [15, 21]; especially under the current situ-
ation, researchers have proposed using MSCs to treat PF
caused by COVID-19 [22]. In addition, MSCs exhibit anti-
fibrosis activities in scar healing of wound [10-12] and
organ fibrosis [14—17], which would be relevant to PF.
MSCs are usually obtained from the adult bone marrow,
umbilical cord blood, adipose tissue, and placenta [23].
However, the differentiation potential of MSCs decreases
as the donor’s age increases, limiting their applications
[24—26]. Umbilical cord-derived MSCs (uMSCs) have high
cell differentiation abilities and thus are preferred for
transplantation in this regard [10, 26, 27].

uMSCs exert a therapeutic effect on PF due to their
ability to homing to the injured lung and differentiate
into specific cell types needed for the repair [28]. How-
ever, based on the reports [10, 26, 28-30], only few
transplanted MSCs could survive in the injury site; thus,
the therapeutic effects of MSCs are generally believed to
be achieved by their immunomodulatory effects
(interacting with cells of the adaptive and innate im-
mune system) and trophic benefit (neovascularization,
recruitment of cells beneficial for tissue repair or activa-
tion of tissue intrinsic progenitor cells). Most of these
effects may be mediated by their secretome that includes
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secreted soluble factors and extracellular vesicles (EVs).
We consider that uMSCs can transfer functional RNAs
and proteins to other cells through EVs, with beneficial
effects on tissue repair after lung injury. EVs are essen-
tial for cell functions and are considered as a novel para-
crine factor released by cell outward budding [31, 32].
Although the therapeutic effect of uMSC-EVs has been
observed in a previous study [33], the underlying mech-
anism remains to be elucidated.

The present study investigated the antifibrotic effect of
uMSC-EVs using a bleomycin (BLM)-induced mouse
model, and our results demonstrated that uMSC-EVs
alleviated PF through inhibiting the TGEF-B signaling
pathway. MiR-21 and miR-23 are carried by uMSC-EVs
as crucial elements contributing to anti-myofibroblast
differentiation by downregulating TGF-p2 and TGF-BR2
expression. Overall, we believe that our results have
opened up a new avenue for using uMSC-EVs to treat
PF in clinics.

Materials and methods

Cell culture

Human uMSCs were obtained from the China-Japan
Union Hospital, and characterization using surface anti-
gen (Table S1) was performed via flow cytometry (FCM)
and immunofluorescence (IF) staining. WML2 fibroblast
cells were obtained from the Basic Medical Science of
Jilin University. All cells used in this study were in pas-
sage 3-5 and cultured in Dulbecco’s modified Eagle’s
medium (DMEM; BI, Israel) + 10% fetal bovine serum
(FBS; BI, Israel) in a standard incubator with 37 °C, 5%
CO,, and 80% humidity.

EV isolation

uMSCs were grown to 80% density in DMEM with FBS
and then replaced with serum-free medium (BI) and
cultured for 48 h. The culture supernatant was collected,
filtered through a 0.1-um filter device, and then ultra-
centrifuged at 100,000g for 3 h. The precipitates (EVs)
were washed thrice using PBS. uMSC-EVs were con-
firmed using transmission electron microscopy and the
exosomal markers CD9, CD63, and TSG101 (Beyotime,
China) through western blot. The EVs were stored at
- 80°C until use.

Treatment of the cultured cells

WML2 fibroblast cells (1 x 10° cells/mL) were seeded in
a 24-well plate and then cultured in DMEM + 10% EBS
(+TGF-B1; 5ng/mL) for 48h to induce FMT in vitro.
uMSC-EVs (10 ng/mL) were synchronously used to ob-
serve the inhibition effect on the treated cells. MiR-21
mimics (50 nM) or miR-23a mimics (50 nM) were also
used to observe the inhibition effect on the treated cells,
and Lipofectamine 3000 (Thermo, USA) was used for
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the transfection of mimics; a nonsense sequence was
used as the negative control. The expression levels of a-
SMA, TGEF-B2, and TGE-BR2 in the cells were deter-
mined using quantitative real-time polymerase chain
reaction (QRT-PCR) and IF staining analyses.

IF staining

Cells were fixed in 4% paraformaldehyde (30 min),
permeabilized with 0.1% Triton X-100 (15 min), blocked
using 3% BSA (30 min), incubated with primary anti-
bodies at 4°C (12h), and then stained with AF 647- or
AF 488-labeled secondary antibodies (Thermo, USA).
The primary antibodies used in the study were anti-Ki67
(bs-23105R, Bioss, China), anti-a-SMA (bsm-33188M,
Bioss, China), anti-fibronectin (anti-Fn; bs-0666R, Bioss,
China), anti-transforming growth factor-f1 (anti-TGE-
B1; bsm33345M, Bioss, China), anti-transforming growth
factor-pf2 (anti-TGF-B2; bs-20412R, Bioss, China), anti-
transforming growth factor-p3 (anti-TGF-f3; AF8142,
Beyotime, China), anti-transforming growth factor-f
receptor type I (anti-TGF-PR1; bs0638R, Bioss, China),
and anti-transforming growth factor-p receptor type II
(anti-TGF-BR2; AF8151, Beyotime, China). Nuclear
staining was performed with DAPI (Beyotime, China).
Images were examined under a fluorescence microscope
(BX63, Olympus, Japan).

Mouse model

All procedures that were carried on mice were approved
by the Administration Committee of the Institute of
Antler Science and Product Technology of Changchun
Sci-Tech University (Approval No.: IASPT202006).
Adult male C57BL/6 mice (6-8weeks old) were
purchased from Liaoning Changsheng Biotechnology
Co., Ltd. (Benxi, China). Mice were intratracheally in-
stilled with a single dose of BLM (3 U/kg) on day 0 to
induce PF. The control group was treated similarly as
above but BLM was replaced with PBS. BLM-induced
mice were randomly allocated into three groups: (1)
uMSC (1 x 10°), (2) uMSC-EVs (20 ug) in 100 pL of PBS,
and (3) equal volumes of PBS. The treatments were
carried out via intravenous injection on days 7 and 21,
respectively. All mice were euthanized on day 35 and
lung was collected. Each lung was divided into two parts:
one part was fixed in 10% formaldehyde solution for 48 h,
and the other was stored at — 80 °C.

uMSC- and uMSC-EV-tracing in PF mice

First, uMSCs and uMSC-EVs were labeled with PKH67
for living cell staining following the manufacturer’s
instructions (Umibio Co. Ltd., China). Then, the
PKH67-labeled uMSCs or uMSC-EVs were injected via
mouse tail veins on day 7 after BLM stimulation. The
lung tissues were sampled on days 1, 4, and 7 and after
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treatment with uMSCs or uMSC-EVs. The lung tissues
were embedded in OCT (Tissue-Tek O.C.T.), cut at
5 um, stained with DAPI (Beyotime, China), and then
examined/photographed under a fluorescent microscope
(BX63, Olympus, Japan). Hematoxylin and eosin (H&E)
staining were also performed.

Hydroxyproline assay

The content of collagen in the lung homogenate was
analyzed using a hydroxyproline (HYP) assay kit
(Solarbio, China).

Histology and immunostaining

The right lung tissues were embedded in paraffin and
sliced into 4-um sections. For histologic evaluation, the
sections were stained with HE to observe the structure
and with Masson to detect collagen deposits. Three pa-
thologists scored the development of lung lesions. The
sections were stained via IF, referred to as cell immuno-
staining, for analysis of garget gene expression. Sections
were photographed using Leica Microsystems (Leica
DMi8, Germany) and fluorescent microscope (BX63,
Olympus, Japan).

qRT-PCR

The total RNA of the cells and lung tissues was isolated
using Trizol reagent (Sigma-Aldrich, USA) and then re-
verse transcribed into cDNA using a cDNA synthesis kit
(TaKaRa, Japan). SYBR premix (Roche, Switzerland),
primers, and cDNA were combined on qRT-PCR Detec-
tion System (qQTOWER °G, Germany). qRT-PCR of
miRNA was performed using the miScript SYBR Green
PCR Kit (Qiagen, China) in accordance with the manu-
facturer’s instructions. All results were normalized to U6
small RNA levels measured with the Hs_ RNU6B_2 miS-
cript Primer Assay kit (Qiagen). The primers are listed
in Table S2.

Statistical analysis

Data are expressed as mean+ SEM. Comparison of
variables between multiple groups was performed using
one-way ANOVA with Tukey post hoc test: *p < 0.05,
*p < 0.01, and **p < 0.001.

Results

uMSC-EV treatment alleviated pulmonary fibrosis in the
BLM-induced mice

uMSCs were confirmed using FCM and IF staining, and
the results showed that uMSCs were positive to CD73,
CD90, and CD105, negative to CD34 and CD45 (Fig. 1a,
b). uMSC-EVs were confirmed using a transmission
electron microscope, NanoSight, and western blot ana-
lysis. Results showed that the particle size of uMSC-EVs
was between 50 and 160nm (Fig. 1c, d); uMSC-EVs
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Fig. 1 Identification of uMSCs and characterization of uMSC-EVs. a, b The surface antigen (CD34, CD45, CD73, CD90, and CD105) in uMSCs was
detected using FCM and IF staining, scale bar =100 pm. ¢ Morphological characteristics of uMSC-EVs were observed via transmission electron
microscopy, scale bar =100 nm. d Exosomal markers (CD9, CD63, and TSG101) of uMSC-EVs were detected using western blot assay. e uMSC-EV
particle size was detected using NanoSight. FCM, flow cytometry; IF, immunofluorescence staining; uMSCs, umbilical cord-derived mesenchymal
stromal cells; uMSC-EVs, umbilical cord-derived mesenchymal stromal cell-derived extracellular vesicles

were intensively stained with exosomal markers CD9
and CD63 and TSG101 (Fig. 1e).

Mice were treated with uMSC-EVs through intra-
venous injection on days 7 and 21 after BLM admin-
istration to evaluate the effect of uMSC-EVs on PF
(Fig. 2a). Results showed that BLM-treated mice had
lower survival rate and body weight, damaged tissue
architecture, and dense deposition of collagen. How-
ever, both uMSC and uMSC-EV treatments im-
proved the survival rate and body weight of PF mice

compared with the PBS treatment (Fig. 2b, c). Both
the degree of lung tissue damage and collagen de-
position were also improved by uMSC and uMSC-
EV treatments compared with the PBS treatment
(p <0.05; Fig. 2d—f). The expression levels of Ki67 in
lung tissues were investigated, and results showed
that BLM treatment resulted in decreased Ki67 ex-
pression. Interestingly, Ki67 expression was strongly
stimulated by the uMSC and uMSC-EV treatments
compared with the PBS treatment; moreover, the
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Fig. 2 uMSC-EVs alleviated BLM-induced pulmonary fibrosis. Mice were intratracheally instilled with a single dose of BLM (3 U/kg), and then each
mouse was randomly allocated to receive either uMSC (1 X 10°) or uMSC-EVs (20 pg) in 100 pL of PBS or equal volumes of PBS alone via
intravenous injection on days 7 and 21; normal mice were served as control. a Schematic of the experimental design. b, ¢ Survival rate and
change of body weight after BLM treatment. d H&E and Masson staining was subjected for lung tissue sections. Scale bar =100 um. e Ashcroft
score of histological images was determined by pathologists blind to the study design. f HYP content of lung tissue. Mean + SEM; *p < 0.05, **p <
0.01, **p < 0.001; n=5. BLM, bleomycin; control (CTRL); H&E, hematoxylin and eosin; HYP, hydroxyproline

Ki67" cells and EpCAM" (maker of epithelial cells)
[34] cells were found to be overlapped in the lung
tissue sections (Fig. 3). Notably, both uMSCs and
uMSC-EVs showed no significant difference in thera-
peutic effects of the BLM-treated mice, suggesting
that uMSCs can alleviate PF, at least in part via
uMSC-EVs.

uMSC-EVs suppressed myofibroblast differentiation via
inhibiting the TGF-f signaling pathway in lung tissue of
the PF mice

a-SMA and Fn are critical fibrotic markers of myofibro-
blasts and fibrotic diseases [5, 6]. The expression levels
of a-SMA and Fn in the lung tissues were measured
using IF staining and qRT-PCR analysis. As expected, a-
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Fig. 3 uMSC-EVs enhanced the proliferation of alveolar epithelial cells in BLM-induced pulmonary fibrosis. Expression levels of Ki67 (proliferating
cell) and EpCAM (epithelial cell) were detected using IF staining. Scale bar =200 um

SMA and Fn were highly expressed in the lung tissues of
PF mice. Interestingly, these high expression levels of a-
SMA and Fn were reduced with the uMSC and uMSC-EV
treatments (Fig. 4). Furthermore, TGF-f2 and TGF-BR2,
the upstream genes of a-SMA and Fn in the TGEF- sig-
naling pathway [5, 6], were highly expressed in the lung
tissues of PF mice. Consistently, both uMSC and uMSC-
EV treatments also reduced high expression levels of these
two genes (Fig. 5). Notably, there was no significant
difference being detected between the uMSC and uMSC-
EV treatments in the above gene expression in the lung
tissue of BLM-treated mice. These results suggest that
uMSC-EVs can inhibit myofibroblast differentiation likely
through inhibiting the TGF-p signaling pathway in the
lung tissue of PF mice.

uMSC-EVs suppressed TGF-1-induced myofibroblast
differentiation in vitro

Lung fibroblast cells (WML2) were cultured in the pres-
ence of TGF-P1 to induce myofibroblast differentiation
in vitro, through which the effect of uMSC-EV treatment
on myofibroblast differentiation was verified. Cultured
cells increased the expression level of a-SMA with
increased dosage of TGF-PB1 through IF staining and
qRT-PCR, suggesting that the cell model is reliable (Fig.
S1). Then, 10 ng/mL uMSC-EVs were added to TGF-f1
(5 ng/mL)-treated cells. The results of IF staining and

qRT-PCR analysis showed that uMSC-EV treatment
strongly inhibited the TGF-fB1-induced high expression
of a-SMA (Fig. 6a, b). The expression levels of TGF-2
and TGF-BR2 in TGF-B1-induced WML?2 fibroblast cells
were also reduced with uMSC-EV treatment (Fig. 6¢c—e).
The results indicate that uMSC-EVs could effectively
suppress TGF-B-induced myofibroblast differentiation
in vitro.

uMSC-EV-specific miRNAs target TGF-32 and TGF-R2 to
inhibit the TGF-B signaling pathway

The levels of miRNAs enriched in uMSC-EVs and their
functions were investigated to determine the role of
miRNAs in the uMSC-EVs in the inhibition of myofibro-
blast differentiation. We analyzed the sequencing results
of miRNAs in uMSC-EVs reported by Fang et al. [10].
Results showed that miR-21-5p, miR-23a-3p, miR-125b-
5p, let-7f/a, and miR-145-5p were highly expressed in
uMSC-EVs (Fig. 7a). Then, the potential target genes of
these miRNAs were predicted through Microrna (http://
www.microrna.org) and TargetScan (http://www.
targetscan.org/). Results showed that miR-21-5p and
miR-23-3p were found to directly target TGF-B2 and
TGEF-BR2, respectively (Fig. 7b). Mimics were added in
the WML2 fibroblast cell (+TGF-B1) culture system to
determine whether or not they can directly affect the ex-
pression of TGF-f2 and TGF-BR2, and thus verify the
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Fig. 4 uMSC-EVs inhibited myofibroblast differentiation in lung tissues of BLM-induced mice. a, b Expression levels of a-SMA and Fn were detected
using IF staining and gRT-PCR. Scale bar = 200 um. Mean + SEM; **p < 0.01, ***p < 0.001; n = 5. a-SMA, a-smooth muscle actin; Fn, fibronectin

role of these two miRNAs in uMSC-EV function. The
results of IF staining and qRT-PCR analysis showed
that miR-21 and miR-23 significantly inhibited the ex-
pression of TGF-B2 and TGF-BR2, respectively, and
decreased the expression of a-SMA (Fig. 7c—f). Our
results suggest that uMSC-EVs could effectively in-
hibit myofibroblast differentiation at least partially
through miR-21-5p for TGF-B2 inhibition and miR-
23-3p for TGF-BR2 inhibition.

Discussion

MSC-based therapies reportedly reduce collagen depos-
ition and inflammatory infiltration in PF treatment [35,
36]. Previous studies have reported that uMSC treatment
could alleviate PF, but whether or not uMSCs participate
in tissue repair directly by themselves or indirectly by
their paracrine factors has not yet been clearly explained
[17, 37]. In this work, we demonstrated that uMSC-EVs
showed similar effects on BLM-induced PF mice as the
uMSCs, which increased the survival rate, improved the
weight loss and the destruction of normal lung tissue
architecture and dense deposition of collagen, and stim-
ulated the proliferation of lung epithelial cells, revealing
for the first time the therapeutic effects of uMSCs in PF,
which can be, at least in part, via uMSC-EVs. To a

certain extent, the present report provides a new insight
for PF treatment in the clinic using uMSCs.

The umbilical cord is an acceptable, economical, and
efficient source of MSCs. Compared with bone marrow-
derived MSCs and adipose-derived MSCs, uMSCs have
more advantages due to their stronger proliferation and
differentiation abilities [37, 38]. The function of MSCs in
cell therapy on tissue injury, including immunomodula-
tion, anti-inflammatory activity, anti-apoptotic activity,
and angiogenesis regulation, might be realized through
paracrine pathway. As reviewed elsewhere [10, 26, 28],
most of these effects are mediated by their secretory
EVs. Consistently, we observed that after intravenous in-
jection of PKH67-labeled uMSCs into PF mice, the ma-
jority of uMSCs could be detected within 1-7 days.
However, only very few uMSCs were observed on day 14
(Fig. S2), indicating that their paracrine activities exert
the main therapeutic effects on uMSCs, rather than that
uMSCs per se participating in the formation of new
tissues.

EVs contain a cell-specific cargo of nucleic acids, pro-
teins, and lipids to modulate the activity of recipient
cells and play essential roles in tissue injury [31, 32]. Be-
cause of enveloped with a lipid bilayer, the EV-carried
“cargoes” are protected from degradation, suggesting
that it has advantages for storage and transport.
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Fig. 5 uMSC-EVs inhibited TGF-32 and TGF-BR2 expression in lung tissues of BLM-induced mice. a, b Expression levels of TGF-32 and TGF-R2
were detected using IF staining and gRT-PCR. Scale bar =200 um. Mean + SEM; *p < 0.05, **p < 0.01, ***p < 0.001; n = 5. TGF-B2, transforming

Interestingly, in the present study, uMSC-EVs could be
detected on days 1-7 after injection into the PF mice
(Fig. S3), suggesting that uMSC-EVs can function in the
body stably within 1 week after treatment. Furthermore,
application of the EVs as a cell-free therapy provides
crucial advantages over stem cell therapies [39], (1) can
avoid many risks associated with the transplantation of
living cell, including tumorigenicity, immune compatibil-
ity, and the transmission of infections; (2) can be evalu-
ated for safety, potency, and dosage in a more accurate
manner; (3) can be stored without toxic cryopreservative
agents for an extended period with product potency; (4)
can be mass-produced through tailor-made cell lines;
and (5) can obtain the desired specific EVs through
modifying the parent cells. However, there are still some
problems in EV applications; their purity and yield re-
strict their ready clinical application. In the present
study, we used differential ultracentrifugation to prepare
uMSC-EVs, the most widely used laboratory method-
ology [40]. However, this method might lead to aggrega-
tion and co-precipitation with soluble proteins presented
in the biofluid or even cause vesicle rupture or fusion
with contaminants and other proteins [41]. Moreover,
this method is undoubtedly challenging to translate into
the clinic given their time-consuming costs, low yield,
requiring a specialized ultracentrifuge, and lack of

automatization [42]. Alternative procedures have been
explored and tried to allow purer EV preparations with
easy implementation. The most practical one is the size
exclusion chromatography (SEC), which removes most
of the overabundant soluble proteins, reduces time-
consuming, and maintains the major EVs’ characteristic
in EV preparation [43]. If uMSC-EVs are used to treat
PF in the clinic in the future, further improved SEC may
be the best choice for preparing EVs.

Myofibroblasts are the primary collagen-producing
cells in PF [1-3]. FMT lung fibroblasts in situ are the
main contributor to myofibroblasts [44, 45]. Consistent
with these findings, we observed that the lung tissues of
PF mice exhibited increased myofibroblast markers a-
SMA and Fn. Notably, uMSC-EV treatment significantly
reduced the expression levels of a-SMA and Fn. Simi-
larly, the FMT model of WML2 fibroblast cells induced
by TGE-P1 in vitro showed that uMSC-EVs reduced the
high expression level of a-SMA. TGF-p1, which activates
the TGF-f signaling pathway, is reportedly a pivotal fac-
tor in producing a-SMA and stimulating FMT [5, 6].
However, direct TGF-p-based antifibrotic therapy has an
adverse immune response [46, 47]. Therefore, interven-
ing with the critical upstream effectors of the TGF-$
pathway provides a therapeutic target for PF. uMSC-EVs
decreased the expression levels of TGF-f signaling
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pathway-related genes, including TGF-2 and TGF-BR2
in vivo (Fig. 5) and in vitro (Fig. 6). These findings sug-
gest that uMSC-EVs in PF treatment may specifically
target TGF-B2 and TGEF-BR2 to inhibit myofibroblast
differentiation. Besides, we also detected the expression
of TGE-P1, TGF-B3, and TGF-PR1 using IF staining of
lung tissues in mice (Fig. S4) and found that there was
no significant difference in TGF-B3 expression among
the groups; however, TGF-f1 and TGE-BR1 were highly

expressed in the lung tissue of the PF mice. Both uMSC
and uMSC-EV treatments reduced the expression level
of TGF-B1 but had no significant effect on TGF-BR1. In
the present study, we mainly focused on TGF-B2 and
TGF-BR2; thus, the expression status of TGF-f1 needs
further research in the future. Furthermore, we found
that uMSCs serve a critical role in PF alleviation and
myofibroblast differentiation inhibition through their
derived miRNAs. The FMT suppression function of
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uMSC-EVs-miRNAs might be associated with their tar-
geted roles for the expression of TGF-f2 and TGF-pR2
inhibition. The results of the present study showed that
miR-21-5p, miR-23a-3p, miR-125b-5p, let-7f/a, and
miR-145-5p were enriched in uMSC-EVs. The target
genes of these miRNAs were predicted using TargetScan
(http://www.targetscan.org/) and Microrna (http://www.
microrna.org), and results revealed that miR-21-5p and

miR-23-3p directly target TGF-p2 and TGF-PR2, re-
spectively. Then, mimics were used for verification, and
results showed that miR-21 inhibited TGF-p2 and miR-
23 inhibited TGF-PR2 expression significantly (Fig. 7).
MiR-21-5p and miR-23-3p have been previously re-
ported to suppress fibrotic diseases, including wound
scar formation [10], liver fibrosis [48], and kidney fibro-
sis [49], which is consistent with our present findings.
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The repair mechanism of miRNAs in different organs
and tissues possibly is similar. Therefore, the anti-FMT
effects of miR-21-5p and miR-23-3p in uMSC-EVs may
help us to understand the functions of miRNAs. These
uMSC-EV-specific miRNAs could be critical inhibitors
of the TGE-PB signaling pathway, suppressing FMT in
pulmonary fibrogenesis.

Overall, the present study focused on the antifibrotic
effects of uMSC-EVs. However, the immunomodulatory
effect of MSCs also takes part in tissue repair [28].
Recent studies reported that intravenous administration
of MSC:s elicits an immunomodulatory response through
polarization of macrophages [50], induction of regula-
tory T cells [51], and producing anti-inflammatory
cytokines [52]. Therefore, whether uMSC-EVs could re-
capitulate the immunomodulatory effects of their parent
cells is deserved to investigate in the future study. Also,
the optimal dosage, timing, and delivery route of uMSC-
EVs are needed to be investigated.

Conclusion

This study in the first time revealed the therapeutic
effects of uMSCs on PF likely through their secreted
EVs. uMSC-EV-derived miR-21-5p and miR-23-3p ef-
fectively suppressed the TGEF-f signaling pathway via
inhibiting TGF-f2 and TGF-BR2 expression (Fig. 8).
As an alternative strategy for stem cell therapy,
uMSC-EVs could become a new advantageous clinical
method for PF treatment.
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