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Abstract
Purpose During oncology clinical trials, tumour size (TS) measurements are commonly used to monitor disease progression 
and to assess drug efficacy. We explored inter-operator variability within a subset of a phase III clinical trial conducted from 
August 1995 to February 1997 and its impact on drug effect evaluation using a tumour growth inhibition model.
Methods One hundred twenty lesions were measured twice at each time point; once at the hospital and once at the centralised 
centre. A visual analysis was performed to identify trends within the profiles over time. Linear regression and relative error 
ratios were used to explore the inter-operator variability of raw TS measurements and model-based estimates.
Results While correlation between patient-level estimates of drug effect was poor (r2 = 0.28), variability between the study-
level estimates was much less affected (9%).
Conclusions The global evaluation of drug effect using modelling approaches might not be affected by inter-operator vari-
ability. However, the exploration of covariates for drug effect and the characterisation of an exposure–tumour shrinkage 
relationship seems limited by the high measurement variability that translates to a poor correlation of individual drug effect 
estimates. This might be addressed by the use of more precise computer-aided measurement methods.
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Introduction

Since 1979, several guidelines have been published to 
homogenise the report of response-to-treatment evaluation 
in oncology clinical trials, such as the World Health Organi-
zation (WHO) handbook [1] and the response evaluation 
criteria in solid tumours (RECIST) [2–4], giving tumour size 
(TS) measurements a central role in the assessment of drug 
efficacy. Indeed, even though overall survival remains the 
gold standard to characterise drug-induced patient benefit, 
several surrogate endpoints are based on TS measurements 
(e.g. progression-free survival, time-to-progression, objec-
tive response rate). Therefore, they contribute to decision-
making during drug development and help accelerate experi-
mental drug approvals by regulatory agencies [5, 6].

Tumour size measurements have been observed to be sub-
ject to inter-operator variability [7–9], which was identified 
by Thiesse et al. as one of the four reasons for misclassi-
fication of objective response rates, along with errors due 
to target lesion selection, technical imaging and coexist-
ent diseases [10]. Because of its role during cancer drug 
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development, any variability in tumour burden characterisa-
tion could lead to misinterpretation of clinical outputs and 
jeopardise the future and performance of patients within a 
trial, as well as the global evaluation of drug effect.

Mathematical modelling is increasingly used during 
drug development to analyse the sparse data collected dur-
ing clinical trials and support go no–go decisions to the 
next phase. TS measurements have been used as an input in 
tumour growth inhibition (TGI) models to characterise drug 
effect for different cancer types, including non-small cell 
lung cancer [11]. Pharmacokinetic (PK) metrics have also 
been incorporated in TGI models as a covariate for tumour 
shrinkage to determine the exposure–response relationship, 
which could be used to perform adaptive dosing and tailor 
an individual effective dose for each patient based on tumour 
shrinkage [12]. However, there is limited knowledge about 
the impact of TS measurement inter-operator variability on 
model-based drug effect determination.

In this analysis, the inter-operator variability of TS meas-
urements was explored in a subset of data of a multicentre 
phase III clinical trial. During this study, several computed 
tomography (CT) scans of individual lesions were measured 
by different operators at different sites: once at the hospital 
and once at the centralised centre. A TGI model was applied 
to these two sets of data separately to assess the correla-
tion between parameter estimates and to address whether 
inter-operator variability affects the model-based drug effect 
evaluation at an individual and a population level.

Materials and methods

Tumour size measurement selection

The longest diameters of individual lesions were obtained 
from a phase III clinical trial where patients with stage IIIA, 
IIIB and IV non-small cell lung cancer received cisplatin 
alone or in combination with gemcitabine for up to six 
cycles [13].

Lesions were selected based on the availability of two 
measurements of the same CT-scan at each time point. 
One measurement was performed at the hospital where the 
patient was treated by different radiologists depending on 
the hospital location (local). The other one was measured 
at the centralised centre by a maximum of two radiologists 
(central). This analysis included a subset of 120 lesions 
of 62 (out of 522) patients representing 714 observations 
(357 paired measurements) with an average of 3 (1–5) 
time points per lesion and a median time of 59 (19–116) 
days between two measurements. At baseline, patients had 
a median of 2 (1–6) lesions and a median tumour size of 
3.0 cm (0.25–13.0) and 2.8 cm (0.6–13.6) for the local and 
the central measurements, respectively. TS measurements 

were conducted according to the WHO criteria [1]; there-
fore, bidimensional measurements of tumour size were avail-
able. However, we decided to use the unidimensional longest 
diameter to mimic the RECIST criteria that are more com-
monly used since their publication in 2000 [2].

Almost half of the patients selected for this analysis had 
paired measurements only for one lesion out of the target 
lesions that were originally selected to evaluate response-
to-treatment and therefore, the sum of the longest diameter 
(SLD) was not assessed in this analysis. Around 10% of the 
TS measurements were below the lower limit of quantifica-
tion of 0.5 cm and were replaced by a value that is half the 
lower limit of quantification (0.25 cm).

Correlation analysis

The local and the central profiles were visually compared to 
identify any trends and the percentage of lesion falling into 
specified patterns were derived. Profiles were classified as 
“similar” if the absolute difference between the local and 
the central measurements was equal or lower than the limit 
of quantification of 0.5 cm. If not, they were subjectively 
classified as “different but follow the same trend” if the two 
profiles seemed parallel over time and did not cross each 
other or as “different and did not follow the same trend” 
otherwise. The 62 patients selected for the analysis were 
spread across 28 study sites with a median of 1.5 patients 
per site (1–10); therefore, the study site effect on pattern 
classification could not be explored.

A tumour growth inhibition model was fitted to the local 
and the central data separately using Eq. 1 with an additive 
residual error component (NONMEM 7.3, first-order condi-
tional estimation with interaction) to compute the population 
and the individual parameter estimates (Eq. 2). The models 
were assessed using goodness-of-fit plots and prediction-
corrected visual predictive checks:

where TS (t) is the tumour size profile over time, TS (0) 
is the tumour size at baseline, Kg is a growth rate constant, 
Kd is a decay rate constant.

where P
i
 represents the individual estimate of the param-

eter P for the lesion i, �
P
 is the population estimate of the 

parameter P, �
i
 is the random effect of the parameter P that 

is assumed to follow a normal distribution (0, �2).
The correlation between the local and the central raw 

measurements at each time point and individual estimates 
of TS at baseline, growth rate constant and decay rate con-
stant (drug effect) was explored by using linear regression 
analysis (R version 3.5.2 executed by the Rstudio interface 
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version 1.1.453). Relative error ratios (RERs) were used 
to characterise the variation between the local and cen-
tral raw data points, individual and population parameter 
estimates. Both the local and the central measurements 
contain variability. Therefore, on the basis that the “true” 
TS value should lie somewhere in between the two, we 
decided to apply a similar weight on the local and the 
central measurements, as suggested by Bland and Alt-
man [14]. Thus, RERs were based on the mean local and 
central metrics (Eq. 3) and the limit of agreement (LOA) 
was derived using Eq. 4 [14]. This analysis did not assess 
whether the central measurement is more reliable for drug 
effect evaluation and disease progression characterisation, 
and whether it is more or less reliable for predicting OS.

where RER is the relative error ratio, local and central are 
the metrics derived from the TS measurements performed at 
the hospital and at the centralised centre, respectively, mean 
is the average local and central metrics:

(3)RER = (local − central)∕mean × 100,

where LOA is the limit of agreement and SD is the standard 
deviation of the local and central metrics.

Results

Raw data correlation analysis

Three different patterns were visually observed within the 
local and the central profiles (Fig. 1); trends of the local and 
the central data (percent of data) were (1) similar over time 
(27.5%); (2) different but followed the same trend (40.0%); 
(3) different and did not follow the same trend (32.5%).

The linear regression analysis revealed that the local 
and the central measurements at each time point were cor-
related with an r2 = 0.73 and the slope coefficient was equal 
to 0.87, relatively close to 1 (Fig. 2a). In 36 times out of 
357 paired CT-scan measurements (10.1%), a lesion was 
considered non-existent (or below the quantification limit) 
by one operator while it was considered measurable by the 

(4)LOA = mean ± 2 × SD,

Fig. 1  Individual fit plots of 
hospital (local) and central-
ised (central) measurements 
for selected individual lesions 
classified by patterns: a similar; 
b different but follow the same 
trend; c different and do not 
follow the same trend. The 
blue circles and the magenta 
triangles are the observations 
and the dashed lines are the 
individual model predictions 
for the local and the central 
measurements respectively. TS 
tumour size (individual longest 
diameter)
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other operator (0.5–3 cm). This occured at the last or/and 
before the last measurement, except for one baseline data 
point. Considering that a lesion non-measurable occurred 22 
times (6.2%) for the centralised centre radiologist compared 
to 14 times (3.9%) for the hospital radiologist, the RERs 
were widely distributed from − 169.2 to169.2% (Fig. 2b). 
The LOA ranged from − 98.5 to 114.7%. The range between 
the 1st and the 3rd quantiles was narrower and distributed 
from − 14.0 to 25.0% around a median of 0%.

TGI model output correlation analysis

The exponential growth and decay TGI model used to fit the 
TS measurements adequately described the local and the 
central profiles as shown on the representative individual 
fit plots (Fig. 1), on the goodness-of-fit plots and on the 
prediction-corrected visual predictive checks (see Online 
Resource).

The TGI model parameter estimates are presented in 
Table 1. The population parameters estimated using the 
local and the central set of observations were generally 
similar with RERs mostly below 10%. The local and the 
central tumour size at baseline estimates were particularly 
close (RER = 6%). The local drug effect (Kd) was slightly 
higher than the central population estimate (RER = 9%). The 
growth rate constant (Kg) was the only parameter for which 
the local and the central estimates differed by more than 
10% (RER = 28%).

The linear regression analysis showed that the local and the 
central individual tumour size at baseline parameter estimates 
were correlated with an r2 = 0.65 and with a slope coefficient 
of 0.84, relatively close to 1, similar to the raw measurement 
(Fig. 3a). The correlation between the local and the central 
individual estimates of Kg was also good (r2 = 0.51); how-
ever the slope coefficient was low (slope = 0.48). Mostly, the 
local Kg individual estimates were higher than the central Kg 
estimates. Very few data were on the line of unity and the 

1st and 3rd RER quartiles did not include 0 (15.3%, 34.1%, 
median = 27.7%) (Fig. 3b). Surprisingly, the local and the 
central individual estimates of drug effect were poorly cor-
related (r2 = 0.28) (Fig. 3c). As for Kg, the slope coefficient 
of Kd estimates was low (slope = 0.42); however, individual 
estimates were closer to the line of unity and the 1st and 3rd 
RER quartiles did include 0 (− 18.0%, 31.3%, median = 9.3%). 
The LOA of the model parameter estimates were lower than 
the LOA of the raw measurements, being (− 63.1%, 73.7%), 
(− 25.3%, 72.6%) and (− 83.9%, 96.6%) for tumour size at 
baseline, Kg and Kd estimates, respectively.

Discussion

Tumour burden has a central role in response-to-treat-
ment evaluation of solid tumours during oncology clini-
cal trials, as it is used to generate surrogate endpoints for 

Fig. 2  Correlation plot (a) and 
Bland–Altman plot (b) for 
hospital (local) and centralised 
(central) tumour size measure-
ments at each time point. The 
open blue circles represent the 
observations. a The black line 
is the line of unity. The dashed 
red line is the linear regression 
line. b The black dashed line 
represents the mean of RERs. 
The two dotted black lines are 
the higher and the lower limit of 
agreement of RERs. TS tumour 
size (individual longest diam-
eter), RER relative error ratio

Table 1  Tumour growth inhibition (TGI) model parameter estimates 
for the local and the central sets of observations

TS(0) tumour size at baseline, Kg growth rate constant, Kd decay rate 
constant, IIV inter-individual variability, RSE relative standard error, 
Local set or Central set hospital or centralised centre observations 
used for parameter estimation, respectively, RERs relative error ratios 
of the local–central difference compared to the mean between the 
local and the central population parameters

Parameters (units) Estimates (% RSE) RERs

Local set Central set

TS(0) (cm) 3.1 (5%) 2.9 (6%) 6%
Kg (/d) 0.0012 (15%) 0.00091 (27%) 28%
Kd (/d) 0.0077 (11%) 0.0070 (15%) 9%
IIV—TS(0) 0.31 (14%) 0.33 (12%) –
IIV—Kg 0.20 (33%) 0.43 (28%) –
IIV—Kd 0.44 (31%) 0.59 (28%) –
Additive residual error (cm) 0.43 (9%) 0.40 (12%) 7%
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overall survival such as progression-free survival or objec-
tive response rates, which are used to ascertain drug effect 
and gain regulatory approval for marketed medicines. 
Recently, TS measurements have been used as an input in 
tumour growth inhibition models that allow the determina-
tion of drug effect on the longitudinal TS kinetics and have 
been coupled with survival analysis to investigate early pre-
dictors of drug efficacy [11, 15–17]. Variability on TS meas-
urements has been observed with different cancer types, 
including non-small cell lung cancer [8, 9, 18–20], and has 
led to misinterpretation of response-to-treatment [8–10]. In 
the current analyses, we explored the inter-operator vari-
ability of TS measurements in a selected population of a 
phase III clinical trial and its impact on model-based drug 
effect evaluation at the individual lesion level (individual 
longest diameter).

The visual data exploration has shown that different pat-
terns were present within the hospital (local) and the cen-
tralised centre (central) measurement profiles (Fig. 1), which 
might affect the evaluation of drug efficacy in various ways. 
For 27.5% of the data, the local and the central measure-
ments were similar at each time point and so no impact 
would be observed on drug effect assessment. For 40.0% of 
the measurements, the local and the central profiles were dif-
ferent, but did follow a similar trend over time and so the dif-
ference would mostly affect the estimation of tumour size at 
baseline from a modelling perspective. In addition, the fact 

that one lesion at baseline was considered non-existent by 
one radiologist and measurable by the other one could lead 
to different target lesion selection. As it has been previously 
observed [8–10], it could also affect the determination of 
surrogate endpoints for overall survival that are based on TS, 
such as the objective response rate and PFS. For the objec-
tive response of target lesions, the RECIST criteria defined 
partial response and disease progression based on the per-
centage of change in SLD (partial response: − 30% from 
baseline; disease progression: +20% and at least 5 mm from 
the lower SLD value) [2]. Therefore, even with a similar 
pattern, the percentage change in TS from baseline (or from 
the lower SLD value) would differ according to absolute 
SLD value and will be larger for the smaller measurements, 
potentially leading to different objective response classifica-
tion. For 32.5% of the lesions, the local and the central meas-
urements were different and did follow a different pattern 
and so the difference would directly affect the estimation of 
the drug effect using TGI models, as well as the objective 
response classification.

The linear regression analysis has shown that the local 
and the central measurements at each time point were cor-
related with an r2 = 0.73 (Fig. 2a). This could be considered 
as a good-to-strong correlation between two distinct vari-
ables [21]. However, in this case, where the two analysed 
variables are derived from the same CT-scan and therefore, 
are assumed to take the same “true value”, the only source 

Fig. 3  Correlation plots (a–c) and Bland–Altman plots (d–f) for hos-
pital (local) and centralised (central) individual tumour size at base-
line (a, d), growth constant rate (b, e) and drug effect estimates (c, 
f). The open blue circles represent the individual estimates. a–c The 
dashed red line is the linear regression line. The black line is the line 
of unity. d–f The black dashed line represents the median of RER. 

The two dotted black lines are the higher and the lower limit of agree-
ment of RERs. c The open circle marked with a red cross was con-
sidered as an outlier and was not included for the linear regression 
analysis. TS(0) the tumour size at baseline, Kg growth rate constant, 
Kd decay rate constant, RER relative error ratio
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of variability relies on the operator measurement (mostly 
representing measurement method and human interpreta-
tion) and thus a higher correlation between the two meas-
urements would have been expected. The variation between 
the local and the central data seemed to decrease with the 
increase of the absolute tumour size, as previously reported 
[22]. The RERs were widely distributed from − 169.2 to 
169.2% (Fig. 2b). Higher ratios were mostly observed for 
TS values smaller than 3 cm and when one radiologist meas-
ured a tumour that was considered non-existent or below the 
quantification limit of 0.5 cm by the other radiologist. The 
LOA ranged from − 98.5 to 114.7%, which is particularly 
high compared to other published results on unidimensional 
measurement inter-observer variability, such as the meta-
analysis of Yoon et al. reporting a range of − 22.1 to 25.4% 
[22]. The current study was conducted from August 1995 to 
February 1997; therefore, the part of the inter-observer vari-
ability that is due to measurement tools would be assumed to 
have been reduced over the years due to technical progress, 
allowing a more precise measurement of small tumours. The 
larger variability in TS measurements might also be due to 
the fact that this study was not designed to assess inter-
observer variability and therefore the radiologists may have 
had a different mindset when making the measurements. 
The distribution between the 1st and the 3rd quantiles of the 
RERs was narrower and was distributed mostly from − 14.0 
to 25.0%, closer to the variation observed by Yoon et al. for 
ILD [22]. It has been suggested that TS measurements per-
formed at the hospital where the patient was treated would 
tend to underestimate disease progression because of the 
benevolence of the doctor for his patient [9]. It was not the 
case in this study, as the RERs median was equal to zero, 
indicating that the discrepancies between the two measure-
ments were not systematically biased.

The linear regression analysis of the modelling outputs 
has shown that the local and the central individual estimates 
of TS at baseline were correlated, similar to the raw meas-
urements (Fig. 3a). There was a correlation between the local 
and the central individual estimates of Kg (r2 = 0.51); how-
ever, the slope coefficient was low (slope = 0.48). Mostly, the 
local Kg individual estimates were higher than the central 
Kg estimates, very few data points were on the line of unity 
and the 1st and 3rd RER quartiles did not include 0 (15.3%, 
34.0%, median = 27.7%) (Fig. 3b). This suggests that the Kg 
parameter is particularly sensitive to inter-operator variabil-
ity at an individual level and might not be reliable. Surpris-
ingly, the local and the central individual estimates of drug 
effect were poorly correlated (r2 = 0.28) (Fig. 3c), indicating 
that the variability induced by the operators when measur-
ing TS has a direct impact on the estimation of drug effect 
at an individual level when using such precise and data-
dependent approaches as TGI models. The fact that different 
responses were observed for the same lesion, exposed to a 

certain drug level also suggests that the determination of the 
exposure–tumour shrinkage relationship might be affected 
by inter-operator variability. Therefore, to date, TS meas-
urements might not be sufficiently precise for use in adap-
tive dosing approaches where individual effective dose are 
tailored for each patient based on tumour shrinkage [12]. In 
this analysis, we did not assess the level of precision that 
would be needed to perform adaptive dosing approaches. 
As for Kg, the slope coefficient of Kd estimates was low 
(slope = 0.42); however, individual estimates were closer 
to the line of unity and the 1st and 3rd RER quartiles did 
include 0 (− 18.0%, 31.3%, median = 9.3%). The TGI model 
allows the estimation of a residual error and therefore, the 
identification of the “true” tumour size profile, which results 
in lower LOAs for the parameter estimates, being (− 63.1%, 
73.7%), (− 25.3%, 72.6%) and (− 83.9%, 96.6%) for tumour 
size at baseline, Kg and Kd estimates, respectively, com-
pared to the LOA of the raw measurements (− 98.5 to 
114.7%) (Fig. 3d–f). This suggests that using TGI model 
might be slightly more precise than raw data.

The population parameter estimates were found to be 
mostly similar with less than 10% variation between the 
local and the central estimates, including for the drug effect 
estimate (Kd) where only 9 days difference between the local 
and the central halving time (3.0 and 3.3 months, respec-
tively) was observed. This suggests that drug-response 
interpretation for a typical patient would be close and that 
the evaluation of the drug effect at a population level might 
be similar. This is partially reassuring as these TGI models 
are mainly used to assess the global effect of a cancer drug 
rather than individual profiles during drug development. 
However, individual profiles are used to explore potential 
covariates (e.g. drug exposure) and give further insight on 
drug effect. Therefore, as long as TS measurements are not 
precise enough, the trust that we can have on the relationship 
between covariates and tumour shrinkage is compromised 
and thus, information provided by TGI models are limited 
for this application. TGI models are still informative of drug 
effect on target lesions; however, this limitation needs to be 
kept in mind, especially when TGI models are used with 
dosing optimisation purposes. Among the population param-
eter estimates, only the growth constant rate was very differ-
ent depending on the observation sets, with 6 months differ-
ence between the tumour size doubling time (19 months and 
25 months for the local and the central data, respectively). 
This suggests that the Kg parameter might also be particu-
larly sensitive to inter-operator variability at a population 
level. There are different potential reasons why Kg seems 
more affected by inter-operator variability that Kd. It might 
come from the structure of the bi-exponential model used 
to describe TS profiles that results in a correlation between 
Kd and Kg making the parameters more difficult to identify. 
It might also be due to the fact that generally, the estimation 



823Cancer Chemotherapy and Pharmacology (2020) 85:817–825 

1 3

of Kg relies only on two time points, as patients will be 
withdrawn from the treatment after progression and imag-
ing will stop, whereas more time points will be available to 
characterise Kd in case of response, making Kd estimation 
more robust. The growth rate constant has been identified as 
a biomarker for drug efficacy [23, 24]; however, its sensitiv-
ity to inter-observer variability might suggest that it could 
not be a parameter of choice for OS prediction. Therefore, 
this parameter should be used carefully, especially as it has 
been suggested that Kg might not be linked to patient sur-
vival post-progression [25].

This analysis was conducted using ILD rather than SLD 
(RECIST criteria) as almost half of the patients selected for 
this analysis had paired measurements for one tumour only. 
The meta-analysis conducted by Yoon et al. has suggested 
that inter-operator variability might slightly be reduced 
when computing the SLD rather than ILD reporting a 95% 
LOA ranging from − 19.2 to 19.5% for SLD and from − 22.1 
to 25.4% for ILD [22]. However, this decrease in LOA does 
not necessary lead to a better agreement on the objective 
response categorisation, as the variability due to the imaging 
methods would be added on top [20, 26]. Indeed, Erasmus 
et al. observed an increase in misclassification when using 
SLD compared to ILD (increasing from 30 to 31% for dis-
ease progression and from 3 to 15% for partial response) [8].

In 1984, Warr et al. shared their concerns about the 
variability in TS measurements being close to the objec-
tive response thresholds of the WHO criteria, especially 
for the determination of disease progression of target 
lesions [9]. These concerns have been partially taken into 
account in 2000 by the first release of the RECIST crite-
ria, which uses the more conservative threshold of +20% 
of the SLD for disease progression. Assuming spheroid 
tumours, +20% of the SLD would correspond to +44% of 
the sum of the products of the longest diameters, which 
is higher than the +25% of the sum of the products of the 
longest diameters originally recommended by the WHO 
criteria [2]. However, this threshold of +20% might not 
be sufficiently restrictive, as the variability in TS meas-
urements can exceed this value when (1) the tumour edge 
is not well defined, (2) when only one target lesion is 
selected, or/and (3) when different radiologists perform 
the measurements over time (inter-observer is typically 
higher than intra-observer variability) [8, 22]. Therefore, 
it would be interesting to consider new thresholds that 
would be more likely to account for this variability in TS 
measurements, notably for disease progression categori-
sation, as suggested by Warr et al. [9]. Otherwise, efforts 
should be made to generalise the use of computer-aided TS 
measurements, which have shown to considerably reduce 
variability in TS measurements [19] or artificial intelli-
gence, which have shown to outperform radiologist in the 

screening of breast cancer [27]. Rather than categorisa-
tion, the use of a longitudinal approach like TGI models 
should be considered as it allows the analysis of the entire 
TS profile. Even though these approaches are particularly 
dependent on the data, they do allow the estimation of a 
residual error and the identification of a “true” value for 
tumour size and appear to give lower LOAs on parameters 
compared to the LOA on raw measurements. However, 
as long as TS measurements are not precise enough, the 
exploration of covariates for tumour shrinkage is limited, 
as is also the characterisation of the exposure–response 
relationship. This might be addressed by the use of more 
precise computer-aided measurement methods. TGI mod-
els can still be informative of drug effect; however, this 
limitation needs to be kept in mind, especially when TGI 
models are used with dosing optimisation purposes. There 
may be other biomarkers of drug efficacy which may be 
more appropriate, such as circulating cancer cells, circulat-
ing tumour DNA or neutrophil counts.

In summary, this analysis confirmed that the operator 
is an important aspect in the variability in tumour size 
measurements. This variability could affect the individual 
model-based interpretation of drug response as well as 
the characterisation of exposure–response relationship, as 
poor correlation was observed between the local and the 
central individual drug effect estimates. However, drug-
response interpretation for a typical patient will be simi-
lar as population parameter estimates were comparable; 
suggesting that the global evaluation of drug efficacy by 
modelling approaches might not be affected.
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