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Abstract
Mating	preference	can	be	a	driver	of	sexual	selection	and	assortative	mating	and	is,	
therefore,	a	key	element	in	evolutionary	dynamics.	Positive	mating	preference	by	simi-
larity	is	the	tendency	for	the	choosy	individual	to	select	a	mate	which	possesses	a	simi-
lar	variant	of	a	trait.	Such	preference	can	be	modelled	using	Gaussian-	like	mathematical	
functions	that	describe	the	strength	of	preference,	but	such	functions	cannot	be	ap-
plied	to	empirical	data	collected	from	the	field.	As	a	result,	traditionally,	mating	prefer-
ence	 is	 indirectly	 estimated	 by	 the	 degree	 of	 assortative	 mating	 (using	 Pearson’s	
correlation	coefficient,	 r)	 in	wild	captured	mating	pairs.	Unfortunately,	 r	and	similar	
coefficients	are	often	biased	due	to	the	fact	that	different	variants	of	a	given	trait	are	
nonrandomly	distributed	in	the	wild,	and	pooling	of	mating	pairs	from	such	heteroge-
neous	samples	may	lead	to	“false–positive”	results,	termed	“the	scale-	of-	choice	effect”	
(SCE).	Here	we	provide	two	new	estimators	of	mating	preference	(Crough	and	Cscaled) 
derived	from	Gaussian-	like	functions	which	can	be	applied	to	empirical	data.	Computer	
simulations	demonstrated	that	r	coefficient	showed	robust	estimations	properties	of	
mating	preference	but	it	was	severely	affected	by	SCE,	Crough	showed	reasonable	esti-
mation	properties	and	it	was	little	affected	by	SCE,	while	Cscaled	showed	the	best	prop-
erties	at	infinite	sample	sizes	and	it	was	not	affected	by	SCE	but	failed	at	biological	
sample	 sizes.	We	 recommend	using	Crough	 combined	with	 the	 r	 coefficient	 to	 infer	
mating	preference	in	future	empirical	studies.
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assortative	mating,	correlation	coefficient,	mate	choice,	mating	pairs,	scale-of-choice	effect

1  | INTRODUCTION

Individuals	of	many	animal	taxa	display	mating	preferences	(Andersson,	
1994)	which	can	be	defined	as	the	sensory	and	behavioral	properties	
that	affect	the	propensity	of	individuals	to	mate	with	particular	phe-
notypes	(Heisler	et	al.,	1987;	Jennions	&	Petrie,	1997).	Mating	prefer-
ences	often,	however,	incur	some	fitness	costs	such	as	increased	time,	
energy	expenditure,	and	predation	risk	during	the	search	for	mates.	
As	a	result,	 the	mechanism	by	which	mating	preference	may	evolve	

remains	 the	 subject	 of	 controversy	 (Clark	 et	al.,	 2007;	 Gavrilets,	
2004).	A	range	of	potential	benefits	of	exhibiting	a	mating	preference	
which	 may	 outweigh	 these	 costs	 has	 been	 proposed,	 such	 as	 im-
proved	paternal	care	or	the	acquisition	of	“better”	genes	from	mating	
with	“high-	quality”	mates	(Andersson,	1994),	and	avoiding	inbreeding	
(Consuegra	&	Garcia	de	Leaniz,	2008;	Landry,	Garant,	Duchesne,	&	
Bernatchez,	 2001;	 Lumley	 et	al.,	 2015;	Yeates	 et	al.,	 2009).	Mating	
preference	may	also	evolve	through	incidental	runaway	(sexual)	selec-
tion	(Chandler,	Ofria,	&	Dworkin,	2013;	Lande,	1981),	sexual	conflict	
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(Arnqvist,	Rowe,	Krupa,	&	Sih,	1996),	or	by	other	mechanisms	(Blyton,	
Shaw,	Peakall,	Lindenmayer,	&	Banks,	2016;	Eddy	et	al.,	2016;	Hine,	
McGuigan,	&	Blows,	2011).

Irrespective	of	the	evolutionary	causes,	exhibiting	a	mating	pref-
erence	 has	 two	 distinct	 key	 evolutionary	 consequences	 (Gavrilets,	
2004;	 Lewontin,	 Kirk,	 &	 Crow,	 1968;	 Merrell,	 1950):	 sexual	 selec-
tion	(changing	the	probability	of	transmitting	alleles	in	progeny	of	the	
preference-	targeted	trait,	sensu	Arnold	&	Wade,	1984)	and	assortative	
mating	(nonrandom	mating	between	individuals	bearing	different	phe-
notypes/genotypes,	Gavrilets,	2004).	These	processes	can	be	linked	in	
certain	scenarios,	as	a	preference	causing	positive	assortative	mating	
(similar	 types	are	more	 frequent	 in	mates	 than	expected	by	chance)	
is	expected	 to	generate	positive	 frequency-	dependent	 sexual	 selec-
tion	(Servedio,	2016),	while	a	preference	causing	negative	assortative	
mating	(different	types	are	preferred	in	mates)	is	expected	to	produce	
negative	frequency-	dependent	sexual	selection	(Pusey	&	Wolf,	1996;	
Takahashi	&	Hori,	2008).	These	concepts	and	 their	definitions	have,	
however,	 been	 the	 subject	 of	 much	 debate	 over	 the	 past	 decades	
(Arnold	&	Wade,	1984;	reviewed	in	Andersson,	1994;	Edward,	2015;	
Gavrilets,	2004).

Mating	preference	has	been	shown	to	play	a	key	influence	in	the	
theoretical	 dynamics	 of	 several	 evolutionary	 processes:	 assortative	
mating	and	sexual	selection	(consequences	of	mating	preference),	for	
example,	may	contribute	to	reproductive	isolation	between	incipient	
taxa	(Gavrilets,	2004,	2014;	Santos,	Matos,	&	Varela,	2014;	Servedio,	
2016;	 Thibert-	Plante	 &	 Gavrilets,	 2013;	 Thibert-	Plante	 &	 Hendry,	
2011;	Turelli,	Barton,	&	Coyne,	2001).	A	major	question	is	whether	the	
theoretical	conditions	 that	allow	the	evolution	of	mating	preference	
(intermediate	levels	of	disruptive	selection,	low	mating	cost,	strength	
of	the	mating	preference,	etc.,	see	Gavrilets,	2004)	in	sympatry	can	be	
empirically	observed	 in	the	wild.	A	difficulty	 in	answering	this	ques-
tion	 remains	 in	 linking	 theoretical	 arguments	 (and	 definitions)	 with	
empirical	estimates	(Gavrilets,	2004;	Servedio,	2016;	but	see	Roff	&	
Fairbairn,	2015	for	an	exception).	The	methods	to	model	mating	pref-
erence	and	 their	 consequences	 (e.g.,	 assortative	mating)	have,	how-
ever,	 not	 been	 empirically	 validated.	To	 attempt	 to	 address	 this	we	
briefly	review	the	main	strategies	to	model	theoretically,	and	estimate	
empirically,	true	mating	preferences	from	field	data	in	an	attempt	to	
integrate	these	approaches.

Two	mating	preference	mechanisms	have	been	modelled	depend-
ing	 on	 the	 evolutionary	 scenario	 considered	 (reviewed	 in	 Gavrilets,	
2004;	Kirkpatrick,	Rand,	&	Ryan,	2006;	Servedio,	2016;	and	ignoring	
any	 indirect	 mechanism	 to	 find	 a	mate	 via	 habitat	 choice,	 resource	
search,	etc.).	The	first	mechanism	refers	to	the	case	where	individuals	
of	 the	choosy	sex	 (usually	 females)	prefer	certain	mates	 that	display	
particular	variants	of	a	trait	(see	Gavrilets,	2004).	Such	form	of	mating	
preference	may	lead	to	sexual	selection	and,	hence,	as	a	strong	driver	
of	 extreme	 sexual	 dimorphism	 (e.g.,	weapons	 and	ornaments	 in	one	
sex	but	not	in	the	other)	observed	in	many	birds	and	insects	(Crespi,	
1989;	Futuyma,	2013).	The	second	 is	a	preference	based	on	pheno-
type	matching	or	similarity	(i.e.,	a	tendency	to	choose	mates	possessing	
similar	variants	of	a	trait),	and	such	a	preference	by	similarity	may	lead	
to	positive	assortative	mating	observed	in	many	species	(reviewed	in	

Arnqvist	et	al.,	1996;	Crespi,	1989;	Jiang,	Bolnick,	&	Kirkpatrick,	2013;	
Servedio,	2016).	These	preferences	can	be	modelled	by	using	explicit	
genetic	mechanisms	 (Kirkpatrick	 et	al.,	 2006;	 Servedio,	 2016)	 or	 by	
Gaussian-	like	mathematical	 functions	 (Gavrilets,	 2004,	 2014;	 Lande,	
1981).	Explicit	genetic	mechanisms	are	often	adequate	to	model	the	
effects	on	qualitative	traits	(e.g.,	color)	assuming	one	or	two	loci	con-
trol	 the	mating	preference,	while	Gaussian-	like	functions	seem	more	
appropriate	to	model	quantitative	trait	loci	(e.g.,	size	and	length,	Lande,	
1981;	Roff	&	Fairbairn,	2015).	For	example,	under	a	positive	preference	
by	similarity,	any	preference	function	should	give	a	higher	probability	
of	mating	when	the	mating	individuals	share	similar	variants	of	a	trait	
(e.g.,	similar	color	or	size,	Carvajal-	Rodríguez	&	Rolán-	Alvarez,	2014).

Traditionally,	the	Gaussian-	like	functions	originally	developed	for	
theoretical	studies	were	not,	however,	applicable	to	empirical	data	but	
recent	modifications	now	allow	their	application	 (Carvajal-	Rodríguez	
&	Rolán-	Alvarez,	2014).	Different	strategies	have	been	considered	to	
infer	mating	preferences	empirically.	Laboratory	choice	experiments,	
for	example,	have	been	used	to	 investigate	the	mechanisms	of	mat-
ing	 preference	 (Coyne,	 Elwyn,	 &	 Rolán-	Alvarez,	 2005;	 Knoppien,	
1985),	and	the	associated	statistical	tools	to	analyze	such	experiments	
have	also	been	developed	(Gilbert	&	Starmer,	1985;	Rolán-	Alvarez	&	
Caballero,	 2000).	 These	 approaches,	 however,	 have	 limitations	 be-
cause	mating	is	often	difficult	to	induce	under	laboratory	conditions,	
and	the	patterns	observed	under	such	conditions	may	not	reflect	the	
true	 mating	 patterns	 which	 occur	 in	 the	 field	 (Coyne,	 Kim,	 Chang,	
Lachaise,	&	Elwyn,	2002;	Coyne	et	al.,	2005).

An	alternative	strategy	is	to	measure	the	strength	of	mating	prefer-
ence	by	observing	mating	pairs	directly	in	the	field	(reviewed	in	Crespi,	
1989;	Jiang	et	al.,	2013).	In	this	second	strategy,	there	is	one	statistical	
tool	(PSI;	the	ratio	of	the	observed	frequency	of	a	pair/expected	fre-
quency	under	random	mating;	see	Rolán-	Alvarez	&	Caballero,	2000)	
available	that	could,	under	certain	scenarios,	estimate	mating	prefer-
ences	for	qualitative	traits	(e.g.,	color)	in	the	wild.	There	is,	however,	
no	direct	estimator	of	mating	preference	for	quantitative	 traits	 (e.g.,	
size)	 in	 the	wild.	Therefore,	most	 authors	 have	 adopted	 an	 indirect	
approach	 for	 estimating	 the	 mating	 preference,	 focusing	 either	 on	
assortative	mating	 or	 on	 sexual	 selection	 effects.	When	 estimating	
assortative	mating	in	the	field	(presumably	caused	by	mating	prefer-
ence	by	similarity),	the	most	common	strategy	is	to	use	the	Pearson’s	
correlation	coefficient	(r)	or	related	statistics	on	the	trait	values	across	
the	range	of	observed	mates	(reviewed	in	Jiang	et	al.,	2013);	the	larger	
the	 coefficient,	 the	 stronger	 the	 preference	 by	 similarity.	 Recently,	
however,	it	has	been	shown	that	such	a	strategy	can	produce	a	great	
bias	 in	certain	cases	 (e.g.,	simulations	have	shown	that	a	Pearson’s	r 
of	 .8	 could	 be	 observed	 under	 random	mating	 in	 certain	 scenarios;	
see	Rolán-	Alvarez	et	al.,	2015),	caused	by	the	scale-	of-	choice	effect	
(SCE).	The	concept	of	the	SCE	is	that	different	variants	of	a	given	trait	
can	 be	 distributed	 nonrandomly	 across	 spatial	 and	 temporal	 scales,	
and	hence,	pooling	of	mating	pairs	from	such	heterogeneous	samples	
may	lead	to	“false-	positive”	results	(Rolán-	Alvarez	et	al.,	2015).	Indeed,	
mating	pairs	can	be	difficult	to	observe/score	in	the	field	and,	because	
of	this,	researchers	often	pool	these	pairs	over	a	geographic	range	or	
time	series	(e.g.,	Jiang	et	al.,	2013).	The	SCE	will,	therefore,	occur	when	
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two	conditions	are	met:	firstly	that	the	organism	looks	for	a	mate	at	a	
smaller	scale	than	the	pooled	scale	and,	secondly,	that	at	the	smaller	
scale	 there	 is	 some	 trait	 heterogeneity	 (Figure	1).	These	 two	 condi-
tions	could	be	common	in	organisms	which	exhibit	low	adult	mobility	
(Rolán-	Alvarez	 et	al.,	 2015)	 and	 has	 already	 been	 demonstrated	 for	
one	 species	 with	 negative	 assortative	 mating	 (Rolán-	Alvarez	 et	al.,	
2015)	and	two	species	with	positive	assortative	mating	(Ng,	Williams,	
Davies,	Stafford,	&	Rolán-	Alvarez,	2016).

The	major	focus	of	the	present	study	was,	therefore,	to	develop	new	
estimators	of	mating	preference	by	similarity	that	are	less	biased	by	the	
SCE	(as	compared	to	traditional	approaches	using	Pearson’s	coefficient	
r)	and	hence	provide	a	better	 linkage	between	theoretical	and	exper-
imental	estimates	of	mating	preference.	We	use	a	modified	Gaussian	
function	 from	 traditional	 theoretical	 models	 to	 simulate	 positive	 as-
sortative	mating	and	thus	obtain	a	set	of	simulated	mating	pairs	with	
an	a	priori-	controlled	strength	of	preference.	With	such	a	collection	of	
simulated	mating	pairs,	we	were	then	able	to	evaluate	a	posteriori	dif-
ferent	 estimators	of	 the	 (a	priori)	 strength	of	mating	preference.	The	
simulations	were	derived	under	the	effect	of	several	factors	(trait	mean	
and	variance,	differences	in	trait	between	sexes,	scale	of	the	trait,	etc.)	
in	order	to	assess	how	robust	the	estimations	were.	A	second	round	of	
simulations	were	also	run	to	evaluate	how	the	estimates	behaved	under	
scenarios	affected	by	SCE	(sensu	Rolán-	Alvarez	et	al.,	2015).	Finally,	we	
provide	examples	to	demonstrate	the	application	of	the	new	estimators	
(as	 compared	 to	 the	 traditional	method	using	Pearson’s	 r)	 on	empiri-
cal	data	 for	 three	marine	snail	 species:	Littorina fabalis,	Echinolittorina 
malaccana,	and	Echinolittorina radiata,	where	the	SCE	has	already	been	
demonstrated	(Ng	et	al.,	2016;	Rolán-	Alvarez	et	al.,	2015).

2  | MATERIALS AND METHODS

2.1 | Estimating mating preference

Several	 Gaussian	 mathematical	 functions	 have	 been	 used	 to	 infer	
mating	 preference	 under	 the	 similarity	 preference	model	 (Carvajal-	
Rodríguez	 &	 Rolán-	Alvarez,	 2014;	 Débarre,	 2012;	 Dieckmann	 &	
Doebeli,	 1999;	 Gavrilets	 &	 Vose,	 2007;	 Gavrilets,	 Vose,	 Barluenga,	
Salzburger,	 &	 Meyer,	 2007;	 Thibert-	Plante	 &	 Gavrilets,	 2013;	
Servedio,	2015).	These	functions	predict	the	probability	of	mating	for	
any	particular	pair	based	on	a	few	key	parameters	(Gavrilets,	2004),	
namely:	 (1)	 the	C	 parameter	 (equivalent	 to	 Pearson’s	 r	 in	 empirical	
approaches)	which	represents	the	strength	of	mating	preference	for	
a	 trait	which	 is	 supposedly	evolving	and	contributing	 to	assortative	
mating;	(2)	the	D	parameter,	which	represents	the	absolute	difference	
between	male	and	female	trait	values	(see	Equation	1	below).	In	addi-
tion,	several	of	these	functions	include	a	parameter,	s2,	which	allows	
fine-	tuning	of	 the	preference	under	simulated	conditions,	but	 is	as-
sumed	to	be	biologically	irrelevant	and	is	maintained	constant	within	
the	 simulation	 (Carvajal-	Rodríguez	 &	 Rolán-	Alvarez,	 2014;	 but	 see	
an	alternative	strategy	in	Jennions	&	Petrie,	1997).	Most	theoretical	
functions	were	defined	for	a	specific	D	scale	(typically	Dmax	=	1,),	but	
we	chose	the	function	FND	because	it	is	scale	independent	and	hence	
applicable	to	empirical	data	which	may	not	fit	well	into	the	D	=	1	scale	
(Carvajal-	Rodríguez	&	Rolán-	Alvarez,	2014).	Under	positive	assorta-
tive	mating	(C	>	0	parameter;	see	example	below)	the	FND	function	
value	will	be	proportional	to	the	probability	of	mating	(p)	for	a	given	
couple	having	certain	trait	values	(D	parameter).

where s2	 is	 the	 mating	 tolerance,	 C	 is	 the	 mating	 preference	 itself	
(range	 from	0	 to	1),	D	 is	 the	absolute	difference	between	male	 (Xm) 
and	female	(Xf)	unstandardized	traits	(size	or	shell	length	in	this	case)	
for	each	pair	evaluated,	and	Dmax	is	the	maximum	D	value	that	can	be	
observed	in	the	population.	For	example,	we	can	model	positive	size	
assortative	mating	(say	C	=	0.5)	by	computer	simulation	and	obtain	a	
series	of	N	random	male	and	female	size	pairs	from	a	population	(from	
certain	a	priori	population	mean	and	variance;	see	Table	S1	and	cor-
responding	 explanations	 in	 Appendix	 S1).	 Therefore,	 the	 encounter	 
between	a	male	and	a	female	is	random	but	whether	they	will	mate	or	
not	depends	on	the	mating	probability	given	by	the	preference	function	
FND.	The	FND	value	of	each	mating	pair	is	calculated	by	Equation	1.	
Once	we	have	the	FND	values	of	the	N	randomly	formed	couples,	a	
Monte	Carlo	procedure	based	on	pseudorandom	numbers	 (as	 is	 the	
standard	practice)	will	pick-	up	the	mating	pairs	so	that	the	probability	
of	being	chosen	is	proportional	to	their	FND	values	(see	Appendix	S1).	
The	resulting	set	of	mating	pairs	is	expected	to	show	a	Pearson’s	r	(for	
size)	close	to	0.5	(see	Table	S1).	In	this	example,	the	preference	param-
eter	is	C	=	0.5,	which	has	been	established	a	priori,	while	the	measured	
Pearson’s	r	 is	a	posteriori	and	could	be	considered	as	an	estimate	of	
the C	parameter.

We	were	 interested	to	check	the	robustness	of	the	new	mating	
preference	estimators	 proposed	 in	 this	 study	 following	 a	particular	

(1)p∝e(−C
2 × D2)∕(s2× D2

max
),

F IGURE  1 Scheme	to	explain	how	scale-	of-	choice	effect	(SCE)	
bias	is	estimated	(modified	from	Ng	et	al.,	2016).	The	small,	white,	
circles	in	pairs	represent	putative	mating	pairs,	while	the	relative	size	
of	these	circles	is	correlated	with	the	trait	mean.	The	SCE	occurs	
as	a	consequence	of	pooling	mating	pairs	at	a	larger	scale	(Spooled; 
yellow	area),	while	mate	choice	is	actually	produced	at	a	smaller	
scale	(within	S1–S5;	green	areas),	and	in	addition,	there	are	some	
trait	heterogeneity	at	this	scale	(between	S1	to	S5).	Therefore,	a	
way	to	estimate	the	SCE	is	to	measure	the	statistic	(Pearson’s	r,	
Cscaled,	or	Crough)	at	the	pooled	level	minus	the	average	value	within	
homogeneous	groups	(Groups	1	and	2).	Note	that	SCE	is	expressed	in	
the	same	units	than	the	statistic	used
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trait	distribution	in	mating	pairs	under	a	positive	assortative	mating	
scenario	(C	>	0).	To	do	this,	we	firstly	used	the	Pearson’s	correlation	
coefficient	r	(the	traditional	approach	for	empirical	data)	and	secondly	
two	versions	of	a	direct	estimate	of	the	C	parameter	(Cscaled	and	Crough) 
from	the	FND	mating	preference	function.	An	illustration	of	how	the	
mating	pairs	can	be	simulated	by	FND	 is	shown	 in	Figure	2a,	while	
Figure	2b	illustrates	how	the	strength	of	the	mating	preference	(both	
Cscaled	 and	 Crough)	 can	 be	 estimated	 from	 the	 observed/simulated	
pairs.

Given	a	sample	of	observed	or	simulated	mating	pairs,	the	algorith-
mic	procedure	to	estimate	C,	by	the	positive	assortative	mating	FND	
function,	is	as	follows:

1. Calculating	the	p	value	of	every	copulating	pair	from	the	observed	
set	 of	mating	pairs	 in	 the	 studied	population	using	 the	 ri	 statistic	
(where	 ri = Zm × Zf;	 as	 an	 estimate	 of	 the	 assortative	 mating	 for	
each	 pair	 separately;	 Perez-Figueroa	 et	al.,	 2008),	 where	 Zm	 and	
Zf	 are	 the	 male	 and	 female	 standardized	 traits	 (Xmale	 and	 Xfemale) 
values.	 The	 range	 of	 values	 observed	 for	 ri	 in	 the	 population	 is	
rescaled	 (0.01–0.99)	 to	 avoid	 indeterminate	 solutions	 when	 es-
timating	 C	 from	 Equation	1	 (see	 step	 3	 below	 and	 Figure	3	 for	
an	 example	 of	 conversion	 of	 ri	 to	 probabilities).

2. Estimating	 for	every	pair	 the	value	of	D	 (D = |Xmale	−	Xfemale|)	 and	
Dmax	for	each	population	(Dmax = |Xmax	−	Xmin|). X	is	the	value	of	the	
trait	 (shell	size	 in	our	experimental	model)	used	 in	the	pair	 (Xmale,	
Xfemale)	or	in	the	population	(Xmin,	Xmax).	The	same	tolerance	is	used	
in	all	simulations	and	during	empirical	estimation	(s2 = 0.01).

3. Solving	C	from	Equation	1.	This	approach	occasionally	gives	C	esti-
mates	(C′)	larger	than	1,	and	so	the	way	to	correct	for	this	will	char-
acterize	the	two	alternative	statistics	proposed:	Crough	excludes	any	
C	value	larger	than	1,	and	so	the	sample	size	for	estimation	would	
be	reduced	when	the	data	sample	size	is	low	and	the	a	priori	C	val-
ues	high.	Alternatively,	Cscaled	allows	all	C	values,	but	the	final	mean	
estimate	is	rescaled	to	range	between	0	and	1.

F IGURE  2  (a)	Scheme	of	how	the	FND	function	can	be	used	to	simulate	a	set	of	mating	pairs	under	certain	a	priori	strength	of	mating	
preferences.	(b)	Scheme	of	how	a	set	of	observed/simulated	mating	pairs	can	be	used	to	estimate	any	C	parameter	(Cscaled or Crough,	see	Section	2)

FIGURE 3 Example	of	conversion	of	ri	statistics	to	mating	probabilities	
for	a	similar	set	of	putative	mating	pairs	obtained	from	a	population	with	
the	same	mean	and	variance	and	under	different	mating	preferences	(C 
values).	(a)	Histogram	of	ri	statistic	(contribution	of	each	pair	to	Pearson’s	r; 
see	Perez-	Figueroa	et	al.,	2008)	generated	in	populations	under	different	
a	priori	strength	of	mating	preferences	(C).	(b)	The	former	ri	values	were	
rescaled	from	0.01	to	0.99	to	match	probability	estimates.	Note	that,	as	
expected,	the	mating	pairs	would	produce	a	probability	distribution	with	
lower	mean	P	under	high	preference	(C	=	0.5),	because	a	high	preference	
would	render	a	high	probability	exclusively	if	the	pairs	show	very	similar	
trait	values	(rare	cases	with	low	D)
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2.2 | Validation of the estimation process by 
simulations (EP simulation)

Simulations	were	undertaken	to	validate	the	mating	preference	esti-
mations	under	different	scenarios	(Table	1).	Simulations	were	achieved	
by	generating	different	mating	pairs	(Npair	=	30,	100	and	1,000)	under	
different	levels	of	positive	assortative	mating	(C	range	0–1,	with	0.1	
steps	under	FND).	Additionally,	the	scenarios	involved	different	Dmax 
ranges	 (1,	5,	 and	10)	 and	 four	different	 trait	 distributions	 (with	dif-
ferent	mean	and	variances	across	sexes:	distribution	0–3	in	Table	1).	
The	null	case	distribution	 (case	0)	considered	certain	mean	 (Dmax/2) 
and	standard	deviation	(Dmax/4;	named	case	0),	but	considered	three	
further	alternative	scenarios:	case	1	(female	mean	=	5	×	Dmax/2),	case	
2	(SD = Dmax),	and	case	3	(SD= Dmax;	female	mean=	Dmax).	Mating	pref-
erences	were	simulated	using	different	tolerances	(s2=	0.1,	0.01,	and	
0.001,	although	as	the	results	were	qualitatively	similar,	only	results	
for	0.01	are	presented).	Each	simulation	was	 repeated	1,000	 times.	
Once	the	mating	pairs	were	generated,	mating	preferences	were	esti-
mated	by	using	classical	Pearson’s	correlation	(r)	and	C′,	as	explained	
above.

These	 estimates	were	 compared	with	 the	 a	 priori	 true	C	 values	
and,	 therefore,	 the	 robustness	 of	 the	 different	 estimators	 (r,	Crough,	
and	Cscaled)	was	compared	by	measuring	bias	(=	true	C	−	estimated	C),	
range	 of	 estimation,	 regression	 coefficient	 between	 estimators	 and	
true	C,	and	coefficient	of	variation	among	computer	samplings	(which	
allow	inference	of	sampling	robustness),	as	in	Carvajal-	Rodríguez	and	
Rolán-	Alvarez	(2014).

2.3 | Validation of the scale- of- choice effect by 
simulations (SCE simulation)

The	SCE	is	the	bias	caused	by	measuring	assortative	mating	at	an	inap-
propriate	scale	(Rolán-	Alvarez	et	al.,	2015),	and	it	can	be	measured	by	
the	difference	between	the	estimator	(e.g.,	r or Crough)	at	the	incorrect	
scale—the	estimator	at	the	appropriate/true	scale	(Figure	1).	In	order	
to	investigate	how	SCE	could	affect	our	estimators,	an	additional	set	
of	 simulations	 were	 performed	 following	 the	 same	 scenarios	 used	
above	 (Table	1;	Rolán-	Alvarez	 et	al.,	 2015),	 using	11	 choice	 (C)	 val-
ues,	three	different	numbers	of	pairs	(N	=	20,	100	and	500),	two	sets	
of	 subgroups	 (Ngroups		 =	10	 and	100)	 to	 contribute	 to	 the	 SCE	with	
11	different	levels	of	variation	among	those	subgroups	(coefficient	of	

variation;	CV	=	0–1,	step	by	0.1),	and	three	different	levels	of	varia-
tion	within	groups	(SD	=	0.1,	0.3,	and	0.45;	Table	1).	The	SCE	bias	is	
expected	to	emerge	whenever	CV	 is	 larger	 than	0	as	demonstrated	
by	Rolán-	Alvarez	et	al.	(2015)	using	Pearson’s	coefficient	r.	The	new	
simulations	 introduce	 a	 few	 relevant	 differences	 in	 the	 method	 to	
simulate	assortative	mating	as	compared	to	the	previous	simulations.	
Specifically,	 while	 in	 Rolán-	Alvarez	 et	al.	 (2015)	 mating	 pairs	 were	
generated	from	a	correlated	bivariate	distribution	(with	a	range	of	C 
from	−1	 to	1),	 in	 the	present	simulation	we	used	 the	FND	function	
to	mimic	the	mating	preference	(range	of	C	from	0	to	1,	step	by	0.1;	
Table	1).

2.4 | Estimating mating preference from wild mating 
pair (empirical) data

The	 new	 estimators	 (Crough	 and	 Cscaled)	 were	 applied	 and	 com-
pared	with	the	classical	Pearson’s	r,	to	mating	pair	data	(shell	size)	
from	 species	 where	 SCE	 has	 been	 previously	 detected	 (L. fabalis,	
E. malaccana,	and	E. radiata)	using	both	published	data	on	the	two	
Echinolittorina	 species	 and	 unpublished	 data	 from	 L. fabalis	 (Ng	
et	al.,	2016;	Rolán-	Alvarez	et	al.,	2015).	The	 locality	and	sampling	
details	for	L. fabalis	were	identical	to	the	Rolán-	Alvarez	et	al.	(2015)	
study	except	that	the	samples	were	obtained	in	July	2014.	The	SCE	
measures	the	magnitude	of	bias	in	estimating	the	correlation	coef-
ficient	 by	 taking	 into	 account	 the	 nonrandom	 distribution	 of	 dif-
ferent	 size	 classes	 among	 the	 samples	 from	 different	 small	 areas	
on	the	shore	(see	Figure	1).	Five	homogeneous	sets	of	size	classes	
(or	 subgroups)	 were	 used	 in	 the	 SCE	 analyses,	 derived	 from	 the	
mean	 individual	 size	 in	 each	 small	 area.	 The	 Statisticsaveraged	was,	
therefore,	calculated	over	these	homogeneous	sets	of	size	classes,	
and	 the	 significance	 of	 the	 SCE	was	 evaluated	 by	 comparing	 the	
Statisticsaveraged	 (Pearson’s	r or Crough)	against	the	Statisticspooled	as	
a	null	value	using	a	t	test.	The	SCE	can,	therefore,	be	estimated	as	
Statisticpooled	−	Statisticaveraged	across	the	five	classes	(see	Ng	et	al.,	
2016;	Rolán-	Alvarez	et	al.,	2015).	We	also	added	a	short	simulation	
step	by	resampling	the	empirical	data	under	C	=	0	in	order	to	statis-
tically	check	whether	the	observed	Crough	could	be	explained	solely	
by	random	mating.	The	algorithm	to	calculate	Crough	and	Pearson’s	
r	 from	empirical	data	were	 implemented	 in	C++,	and	the	software	
is	available	from	DRYAD	(Fernández-	Meirama	et	al.,	2017;	https://
doi.org/10.5061/dryad.5jd7j).

TABLE  1 Combination	of	scenarios	used	in	the	two	different	simulations	(estimation	process	[EP]	and	scale-	of-	choice	effect	[SCE])

Simulation Choice Npair Dmax Distribution Ngroup CV SD N Scenarios

EP 0–1
 step	0.1

30,	100,	1,000 1,	5,	10 0,	1,	2,	3 — — — 396

SCE 0–1
 step	0.1

20,	100,	500 1 0 10,	100 0–1
 step	0.1

0.1,	0.3,	0.45 2,178

Npair	is	number	of	pairs	simulated,	Dmax	the	maximum	possible	difference	in	the	population	for	the	trait.	Distribution	represents	four	distinct	scenarios	for	
mean	and	variance	of	the	trait	across	sexes.	For	the	SCE	simulation,	Ngroup	is	the	number	of	subgroups	simulated,	CV	the	coefficient	of	variation	expected	
across	the	simulated	subgroups	and	SD	the	standard	deviation	within	those	groups.	Finally,	N	scenarios	are	the	number	of	combinations	of	scenarios	in	each	
simulation.	Each	combination	was	replicated	1,000	times.

https://doi.org/10.5061/dryad.5jd7j
https://doi.org/10.5061/dryad.5jd7j
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3  | RESULTS

3.1 | Validation of estimation process

The	 robustness	of	 the	 three	 estimators	of	 positive	mating	prefer-
ence	 by	 similarity,	 Crough,	 Cscaled,	 and	 Pearson’s	 correlation	 coef-
ficient	 (r)	 were	 evaluated	 (Table	2).	 All	 statistics	 showed	 a	 high	

and	 significant	 (all	 cases	 p	<	.05)	 linear	 regression	 slope,	 but	 only	
Pearson’s	 r	 and	 Cscaled	 showed	 a	 slope	 close	 to	 1	 (Table	2),	 and	
hence,	these	two	estimators	of	mating	preference	(C)	were	relatively	
more	robust	than	the	Crough	considering	this	property	(Figure	4).	This	
Crough	limitation	in	estimating	C	occurs	because	the	range	of	the	esti-
mated	values	was	only	about	one-	third	of	expected	values	(Table	2,	
Figure	4).	The	robustness	of	all	estimators	was	improved	with	larger	

TABLE  2 Summary	of	results	obtained	under	the	estimation	process	simulation	for	the	three	statistics	(Pearson’s	r,	Cscaled,	and	Crough)

Npair Dmax Distr.

Pearson’s r Cscaled Crough

Slope Mean Slope Mean Slope Mean

30 1 0 0.96 0.64 1.07 0.46 0.26 0.54

1 0.96 0.64 1.09 0.48 0.28 0.55

2 0.95 0.65 1.07 0.46 0.30 0.56

3 0.96 0.65 1.09 0.46 0.30 0.56

5 0 0.96 0.64 1.09 0.46 0.27 0.54

1 0.96 0.64 1.04 0.44 0.28 0.55

2 0.95 0.66 1.12 0.47 0.30 0.56

3 0.95 0.65 1.11 0.47 0.30 0.56

10 0 0.96 0.64 1.12 0.48 0.26 0.54

1 0.96 0.64 1.12 0.46 0.28 0.55

2 0.95 0.65 1.09 0.46 0.29 0.55

3 0.95 0.65 1.15 0.49 0.29 0.55

Averaged	±	SD 0.95	±	0.005 0.65	±	0.007 1.10	±	0.031 0.47	±	0.013 0.28	±	0.014 0.55	±	0.005

100 1 0 0.99 0.61 1.08 0.44 0.36 0.61

1 0.99 0.60 1.08 0.45 0.36 0.61

2 0.99 0.60 1.08 0.44 0.36 0.61

3 0.99 0.60 1.08 0.45 0.36 0.61

5 0 0.99 0.60 1.05 0.43 0.35 0.61

1 0.99 0.60 1.05 0.43 0.35 0.61

2 0.99 0.60 1.04 0.43 0.36 0.61

3 0.98 0.61 1.08 0.44 0.36 0.61

10 0 0.99 0.60 1.07 0.42 0.36 0.61

1 0.98 0.61 1.08 0.43 0.36 0.61

2 0.99 0.61 1.08 0.43 0.36 0.61

3 0.99 0.61 1.04 0.42 0.36 0.61

Averaged	±	SD 0.99	±	0.001 0.60	±	0.001 1.07	±	0.018 0.43	±	0.010 0.35	±	0.023 0.61	±	0.001

1,000 1 0 0.99 0.53 1.06 0.42 0.40 0.66

1 0.99 0.53 1.06 0.42 0.40 0.66

2 0.99 0.53 1.06 0.42 0.40 0.66

3 0.99 0.53 1.06 0.42 0.40 0.66

5 0 0.99 0.53 1.05 0.41 0.39 0.66

1 0.99 0.53 1.06 0.41 0.40 0.66

2 0.99 0.53 1.06 0.41 0.39 0.66

3 0.99 0.53 1.06 0.41 0.39 0.66

10 0 0.99 0.53 1.06 0.41 0.40 0.66

1 0.99 0.53 1.05 0.41 0.40 0.66

2 0.99 0.53 1.06 0.41 0.40 0.66

3 0.99 0.53 1.06 0.41 0.40 0.66

Averaged	±	SD 0.99	±	0.001 0.53	±	0.000 1.06	±	0.004 0.41	±	0.003 0.40	±	0.001 0.66	±	0.001

Npair,	Dmax,	and	Distribution	(Distr.)	as	in	Table	1.	The	regression	coefficient	b	of	the	true	choice	simulated	against	the	estimate	(Slope)	is	given,	as	well	as	
the	mean	of	the	estimates	across	the	full	set	of	choices	simulated	(expected	value	0.5).
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sample	sizes	(Npair;	see	Table	2).	Additionally,	the	overall	error	in	es-
timation	of	C	was	relatively	moderate	for	the	three	estimators	(ex-
pected	mean	value	should	be	0.5),	although	the	bias	for	the	Crough 
and	Cscaled	increased	somewhat	at	the	largest	sample	size	(Table	2).	
These	properties	were	rather	insensitive	to	the	different	scenarios	
proposed	(see	low	SD	 in	Table	2),	and	the	estimation	errors	within	
each	scenario	were	typically	small	enough	to	effectively	distinguish	
the C	values	differing	by	0.1	units	(except	for	Crough	when	estimating	
values	of	C	 larger	than	0.6,	Figure	4).	When	using	simulation	aver-
ages	 across	 scenarios,	 Pearson’s	 r	 and	Cscaled	 outperformed	Crough 
in	estimating	C.	The	sampling	 robustness	of	estimators	was	meas-
ured	by	the	mean	coefficient	of	variation	of	the	different	statistics	
across	 the	1,000	computer	 simulations	within	 the	 scenarios	 (sum-
marized	across	scenarios	by	averages	±	SD):	CVPearsonr	=	1.0%	±	1.5;	
CVCscaled	=	392%	±	818.0;	 CVCrough	=	9%	±	1.3.	 The	 results	 clearly	
showed	that	both	Pearson’s	r	and	Crough	outperformed	Cscaled,	which	
showed	severe	sampling	errors	during	simulations,	which	limits	the	
utility	of	this	estimator.

3.2 | Validation of SCE

The	sensitivity	of	each	estimator	(Pearson’s	r,	Cscaled,	and	Crough)	of	mat-
ing	preference	by	similarity	to	the	SCE	bias	was	evaluated	(Tables	1	
and	3).	The	results	were	averaged	across	subgroups	(CV)	and	level	of	
variation	within	groups	(SD)	as	they	did	not	produce	any	great	varia-
tion	on	SCE	trends	(except	under	small	CV;	see	Figure	5).	Pearson’s	r,	
as	expected,	showed	a	strong	bias	for	those	scenarios	that	included	
the	pooling	of	subgroups	which	showed	a	certain	degree	of	hetero-
geneity	(i.e.,	CV	>	0.5).	The	bias	was	rather	insensitive	to	sample	size	
(Npair;	Table	3).	The	SCE	biased	the	estimation	of	mating	preference	
(C)	based	on	Pearson’s	r	from	low	to	high	values	(up	to	0.6),	while	C	es-
timates	based	on	Crough	and	Cscaled	were	biased	to	a	much	lesser	extent	
(moderately	to	no	bias;	Figure	5).	In	this	case,	Cscaled	and	Crough	clearly	
outperformed	Pearson’s	r	and	were	less	sensitive	to	the	problems	as-
sociated	with	the	SCE.

3.3 | Application of the new estimators of mating 
preference to empirical data

The	estimations	of	mating	preference	(C)	using	Cscaled	were	too	noisy	
to	be	useful	(see	above)	and	are	not	presented,	but	the	estimated	C 
based	on	Crough	averaged	across	the	five	homogeneous	subgroups	and	
its	corresponding	estimated	SCE	are	illustrated	in	Table	4.	The	Crough 
across	 samples	was	 relatively	 similar	 between	 species	 (around	0.4).	
The	estimated	SCE	was,	however,	reduced	by	half	in	E. malaccana	and	
E. radiata,	although	it	remained	similar	in	L. fabalis,	which	indicates	the	
ability	of	Crough	to	reduce	the	SCE	bias	at	least	in	those	cases	with	the	
highest	SCE.

4  | DISCUSSION

A	mathematical	description	of	any	potential	evolutionary	mechanism	
is	a	prerequisite	 to	 fully	understand	and	predict	biological	phenom-
enon	(Servedio	et	al.,	2014).	In	this	study,	we	proposed	a	new	method	
to	 estimate	 positive	mating	 preference	 by	 similarity	 using	 the	 FND	
mathematical	 function	 (Carvajal-	Rodríguez	 &	 Rolán-	Alvarez,	 2014).	
This	 strategy	 can	 be	 used	 to	 infer	 mating	 preference	 in	 organisms	
that	show	positive	assortative	mating	for	size	 (or	any	similar	trait	 in	
both	sexes).	The	method	is	based	on	the	assumption	that,	without	a	
priori	knowledge	of	the	genetic	mechanisms	contributing	to	the	pref-
erence,	a	mathematical	function	can	amalgamate	all	the	preferences	
into	 one	 variable,	C	 (sensu	Gavrilets,	 2004,	 2014;	 Thibert-	Plante	&	
Hendry,	2011;	Débarre,	2012;	Thibert-	Plante	&	Gavrilets,	2013;	Roff	
&	Fairbairn,	2015),	which	itself	could	be	determined	by	many	quanti-
tative	loci.	Such	a	strategy	has	been	used	since	the	origin	of	quantita-
tive	genetics	(Falconer	&	Mackay,	1996)	but	previously	was	only	used	
for	making	theoretical	predictions.	The	FND	Gaussian-	like	function	is	
a	modification	of	the	traditional	methods	used	in	theoretical	studies	
which	is	able	to	accommodate	empirical	data	and	as	such	provides	a	
link	between	the	two	research	approaches.

F IGURE  4 All	estimated	statistics	(Pearson’s	r,	Cscaled,	and	Crough)	for	the	true	strength	of	the	preference	(C)	simulated	a	priori	and	the	three	
different	mating	pair	sample	sizes	(Npairs).	The	true	values	regressed	against	the	estimated	statistics	are	shown.	Note	that	the	statistics	are	
basically	not	affected	by	the	six	scenarios	(Ngroup × SD;	see	Table	1)	considered
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For	the	first	time,	we	were	able	to	formally	evaluate	how	the	clas-
sical	Pearson’s	r	is	related	to	the	strength	of	mating	preference	using	
the	FND	function	in	a	combination	of	simulations	and	empirical	data.	
Interestingly,	Pearson’s	r	showed	excellent	estimation	properties	and	
allowed	 efficient	 estimations	 of	mating	 preferences	 in	 all	 scenarios,	

except	 in	 situations	when	 the	SCE	was	 simulated.	Here	we	showed	
that	when	SCE	was	not	present,	Pearson’s	r	could	be	a	valuable	tool	
to	 estimate	 the	 strength	of	mating	preference,	 but	 as	 shown	previ-
ously	(Rolán-	Alvarez	et	al.,	2015),	when	the	SCE	is	present,	it	can	pro-
duce	huge	bias	 in	Pearson’s	 r	 as	an	estimator	of	mating	preference.	
Therefore,	 for	 any	 model	 organism	 in	which	 SCE	 has	 been	 experi-
mentally	shown	to	be	small	or	negligible,	Pearson’s	r	can	be	used	to	
infer	mating	preference	directly	in	the	wild.	Using	such	an	approach,	
theoretical	predictions	and	empirical	studies	can	be	connected,	which	
allows	fundamental	progress	in	our	understanding	of	the	role	of	mat-
ing	preference	in	driving	genetic	differentiation	in	the	wild	(Gavrilets,	
2004;	Roff	&	Fairbairn,	2015;	Servedio,	2016).	Future	theoretical	pre-
dictions	regarding	mating	preferences	by	similarity	can,	therefore,	be	
empirically	verified	whenever	the	study	has	corrected	for	any	potential	
SCE	bias.	Where	 there	 is	a	bias	due	 to	 the	SCE,	 there	are	only	 two	
known	strategies	to	correct	for	this.	The	first	uses	the	information	of	
nonmating	 individuals	surrounding	the	mating	pair	to	reorganize	the	
dataset	 into	a	 series	of	homogeneous	 subgroups	and	 then	uses	 the	
averaged	 of	 Pearson’s	 r	 across	 subgroups	 to	 correct	 for	 the	 pooled	
estimate	(see	Figure	1	and	Table	4;	also	see	Rolán-	Alvarez	et	al.,	2015;	
Ng	et	al.,	2016).	This	strategy	is	feasible,	but	it	requires	extra	sampling	
effort	and	cannot	be	used	on	published	data	that	have	not	applied	an	
appropriate	experimental	design.

The	 second	 strategy	 makes	 use	 of	 specific	 estimators	 of	 the	
strength	of	mating	preference,	such	as	the	Cscaled or Crough	described	
here.	 From	 our	 evaluation	 of	 the	 two	 new	 estimators	 (Crough	 and	
Cscaled),	one	of	 them	 (Cscaled)	 showed	 ideal	 theoretical	properties	but	
failed	when	applied	 to	 realistic	sample	sizes,	while	 the	other	 (Crough) 
showed	limited	theoretical	properties	but	behaved	reasonably	well	at	
low	sample	sizes.	We	also	empirically	demonstrated	that	Crough	greatly	
reduced	the	SCE	bias	as	compared	with	the	traditional	approach	using	
Pearson’s	 r	 in	 some	 cases	 (C	<	0.6).	 This	 new	 estimator,	 therefore,	
could	be	useful	and	provide	a	complementary	approach	with	Pearson’s	
r	(showing	high	bias	due	to	SCE	for	C	<	0.5)	to	infer	mating	preferences	
directly	in	the	wild.	The	theoretical	limitations	of	Crough,	however,	sug-
gest	 it	 should	 be	 used	 with	 caution,	 especially	 when	 the	 estimate	
shows	 values	 larger	 than	 0.60,	 as	 such	 values	 are	 not	 proportional	
to	the	true	strength	of	mating	preference	(Figure	4).	Comparing	field	
data	with	how	the	different	estimators	behave	further	corroborated	
the	simulated	results.	Crough	statistics	could	reduce	(even	half)	the	SCE	
effects	 compared	 to	Pearson’s	 r. The Crough	 statistics,	 therefore,	 can	
be	applied	to	those	datasets	which	lack	information	about	nonmating	
individuals	surrounding	the	mating	pair	in	order	to	check	whether	such	
estimators	do,	 in	fact,	change	any	 interpretation	based	on	Pearson’s	
r.	It	would	be	insightful,	for	example,	to	reanalyze	the	data	reviewed	
by	Jiang	et	al.	(2013)	to	see	whether	halving	the	SCE	bias	on	average	
changes	the	overall	patterns	observed.

A	 new	 question	 that	 arises	 is	why	 our	 new	 estimators	 seem	 to	
be	 less	sensitive	to	 issues	of	 the	SCE	or	why	Pearson’s	 r	coefficient	
is	more	sensitive	to	the	SCE.	In	fact,	statisticians	have	yet	to	have	a	
good	understanding	of	why	Pearson’s	r	coefficient	is	affected	by	data	
heterogeneity	producing	such	unpredictable	biases	(see	discussion	in	
Hassler	&	Thadewald,	2003).	The	new	proposed	estimators	are	based	

TABLE  3 Summary	of	the	mean	scale-	of-	choice	effect	(SCE)	bias	
(statisticpooled	−	statisticaveraged;	see	Section	2)	obtained	under	the	
SCE	simulation	for	the	three	statistics	(Pearson’s	r,	Cscaled,	and	Crough) 
for	all	Npair	and	choice	values	and	averaged	across	the	rest	of	factors	
(Ngroups,	SD	and	CV)

Npair Choice

SCE

Pearson’s r Cscaled Crough

20 0 0.62 0 0.28

0.1 0.56 0 0.27

0.2 0.42 −0.01 0.23

0.3 0.28 −0.01 0.19

0.4 0.18 −0.01 0.15

0.5 0.13 −0.01 0.12

0.6 0.09 −0.01 0.09

0.7 0.07 −0.01 0.09

0.8 0.05 0 0.08

0.9 0.05 0 0.09

1 0.04 0 0.11

Averaged 0.23	±	0.214 −0.01	±	0.005 0.15	±	0.076

100 0 0.62 0 0.25

0.1 0.58 0 0.24

0.2 0.48 0 0.22

0.3 0.36 0 0.18

0.4 0.26 −0.01 0.14

0.5 0.18 −0.01 0.1

0.6 0.13 −0.01 0.07

0.7 0.1 −0.01 0.05

0.8 0.08 −0.01 0.02

0.9 0.06 0 0

1 0.05 0 0

0.26	±	0.213 0.00	±	0.005 0.12	±	0.096

500 0 0.62 0 0.23

0.1 0.59 0 0.23

0.2 0.52 0 0.21

0.3 0.42 0 0.18

0.4 0.32 0 0.14

0.5 0.24 0 0.11

0.6 0.18 0 0.08

0.7 0.13 −0.01 0.05

0.8 0.1 0 0.03

0.9 0.08 0 0.01

1 0.07 0 −0.01

0.30	±	0.209 0.00	±	0.003 0.11	±	0.089
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on	a	different	 algorithm	 from	Pearson’s	 r	which	 is	 known	 to	be	ex-
tremely	affected	by	outliers	 (Rousselet	&	Pernet,	2012).	 In	addition,	
our	methods	indirectly	limit	the	effects	of	outliers	due	to	partial	resca-
ling	(or	excluding	extreme	values),	and	this	could	be	part	of	the	expla-
nation.	Nevertheless,	more	research	will	be	needed	to	understand	this	
kind	of	bias	(or	its	absence)	in	statistics	related	either	directly	or	indi-
rectly	to	correlation	coefficients.	The	new	proposed	estimators	could,	
however,	be	further	improved	in	the	future,	ideally	to	a	level	without	
bias	due	to	the	SCE	in	estimating	mating	preference.

Several	 authors	 have	 called	 for	 improvement	 in	 the	 relationship	
between	 theoretical	 and	 empirical	methodologies	 to	 allow	 progress	

in	evolutionary	theory	(Gavrilets,	2004,	2014;	Roff	&	Fairbairn,	2015;	
Servedio,	2015).	In	this	paper,	we	add	to	the	strategy	initiated	by	Roff	
and	Fairbairn	(2015)	trying	to	connect	both	frameworks,	by	proposing	
a	new	estimator	 (Crough)	 for	mating	preferences	 (as	well	 as	 checking	
the	applicability	of	Pearson’s	r	for	the	same	purpose)	from	mating	pairs	
directly	captured	in	the	wild.	Although	the	method	could	be	problem-
atic	for	estimating	unbiased	preferences,	it	may	be	sound	and	robust	
enough	for	comparing	estimates	among	groups	and	testing	hypotheses	
on	mate	choice	evolution.	The	priority	would	be	to	use	this	function	in	
theoretical	and	empirical	studies,	as	well	to	check	whether	theoretical	
predictions	can	be	supported	or	rejected	by	observations	in	the	field.	

FIGURE  5 Representation	of	the	magnitude	of	the	mean	simulated	scale-	of-	choice	effect	error	(Statisticpooled	−	Statisticaveraged;	with	correspond-
ing	standard	errors)	for	the	different	estimators	of	mating	preference	at	different	simulated	preference	strengths	(C):	(a)	Pearson’s	r,	(b)	Cscaled,	and	
(c)	Crough.	The	relationship	is	summarized	for	three	representative	coefficients	of	variation	(CV)	and	three	mating	pair	sample	sizes	(Npair)

Species Locality

Pearson’s r All samples

Caveraged SCECSCE5
® N Cpooled

Echinolittorina 
malaccana

Shek	O 0.49* 40 0.51 0.32	±	0.051 0.19**

Cape	D’Aguilar 0.47* 228 0.60 0.38	±	0.025 0.22**

Echinolittorina radiata Cape	D’Aguilar 0.54* 49 0.53 0.30	±	0.041 0.23***

Littorina fabalis Abelleira 0.12 95 0.40 0.28	±	0.044 0.13***

The	SCE	is	experimentally	obtained	by	Cpooled	−	Caveraged	(see	Ng	et	al.,	2016;	Rolán-	Alvarez	et	al.,	2015).
*p	<	.05;	**p	<	.01;	***p < .001.

TABLE  4 Crough	estimates	from	
experimental	data,	and	experimental	
estimations	of	the	scale-	of-	choice	effect	
(SCE)	for	this	new	estimator,	which	can	be	
compared	with	the	SCE	estimates	from	
Pearson’s	r
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Our	approach	could	be	applied,	for	example,	to	ecological	models	for	
studies	of	speciation,	such	as	Littorina saxatilis	(Rolán-	Alvarez,	2007),	
stick-	insects	 (Nosil,	 Egan,	 &	 Funk,	 2008;	 Nosil	 &	 Feder,	 2013),	 the	
stickleback	(Kraak	&	Hart,	2011;	Hendry,	Hudson,	Walker,	Räsänen,	&	
Chapman,	2011;	Vines	et	al.,	2016),	or	cichlids	(Gavrilets	et	al.,	2007;	
Martin,	2013;	Seehausen	et	al.,	2008),	 to	check	whether	 theoretical	
predictions	match	 empirical	 estimates	 in	 the	wild.	Additionally,	 this	
methodology	could	be	used	for	testing	whether	runaway	sexual	selec-
tion	could	contribute	to	the	allopatric	process	of	speciation	(reviewed	
in	Servedio	&	Bürger,	2014).
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