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Abstract: Background: Parkinson’s Disease (PD) is a chronic neurodegenerative disorder that has
been ranked second after Alzheimer’s disease worldwide. Early diagnosis of PD is crucial to combat
against PD to allow patients to deal with it properly. However, there is no medical test(s) available
to diagnose PD conclusively. Therefore, computer-aided diagnosis (CAD) systems offered a better
solution to make the necessary data-driven decisions and assist the physician. Numerous studies
were conducted to propose CAD to diagnose PD in the early stages. No comprehensive reviews
have been conducted to summarize the role of AI tools to combat PD. Objective: The study aimed
to explore and summarize the applications of neural networks to diagnose PD. Methods: PRISMA
Extension for Scoping Reviews (PRISMA-ScR) was followed to conduct this scoping review. To
identify the relevant studies, both medical databases (e.g., PubMed) and technical databases (IEEE)
were searched. Three reviewers carried out the study selection and extracted the data from the
included studies independently. Then, the narrative approach was adopted to synthesis the extracted
data. Results: Out of 1061 studies, 91 studies satisfied the eligibility criteria in this review. About
half of the included studies have implemented artificial neural networks to diagnose PD. Numerous
studies included focused on the freezing of gait (FoG). Biomedical voice and signal datasets were the
most commonly used data types to develop and validate these models. However, MRI- and CT-scan
images were also utilized in the included studies. Conclusion: Neural networks play an integral and
substantial role in combating PD. Many possible applications of neural networks were identified in
this review, however, most of them are limited up to research purposes.

Keywords: Parkinson’s disease; neural network; deep learning; classification

1. Introduction
1.1. Background

The human brain is the primary controller part of the human body. Any minor
damage to any of its parts will severely affect other organs—one of its adverse effects
is Parkinson’s disease (PD) [1]. “PD is a chronic and progressive neurodegenerative
disease” [2], and it occurs mainly in people over 50 years old [3]. Its symptoms start slowly
and increase over time. PD symptoms are characterized such as motor and nonmotor [4].
Motor symptoms include movement disorders, shaking, walking issues [5], stiffness, and
postural instability [6], while nonmotor symptoms including cognitive dysfunction, mood
disorder [7], depression, and anxiety [8].

Parkinson’s is the second worse neurodegenerative disease worldwide after
Alzheimer’s disease. In 2019, its incident rate ranged from 40.37 to 53.89 per
100,000 population per year in the US alone [9]. Diagnosis of PD in an early stage is
an important issue to mitigate its complications. However, no medical test is available to
diagnose it in the early stages conclusively. In a traditional clinical setup, the physician
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will ask the patient to perform some mental and physical tasks (e.g., moving and walk-
ing around) [10] or take the magnetic resonance imaging (MRI) and/or Positron emission
tomography–computed tomography (PET/CT) scan of the brain. However, it is challenging
to differentiate PD from other neurological disorders, and it depends on the radiologist’s
experience to distinguish and identify it precisely. Therefore, a computer-aided diagnosis
(CAD) system helps the radiologist interpret MRI scans. In 2003, the authors of [7] made
a CAD system to monitor body acceleration to detect the freezing of gait in PD patients.

Several studies were conducted to implement machine learning approaches to detect
PD and differentiate it from other common neurological diseases. Feature engineering is
the difficult part of deploying such systems, and it is expensive to identify the relevant
features in the data. When automatic feature extraction methods and techniques (CNN,
RNN) were proposed, most researchers used deep learning and neural network to detect
PD due to automatic feature extraction, learning more complex patterns, and high accuracy.
Therefore, this scoping review aims to explore and summarize the applications of deep
learning and neural network in PD diagnosis.

1.2. Research Problem and Objectives

The scope of this paper is limited to the detection of Parkinson’s disease (PD) in the
early stage using neural networks. The patient dataset such as electronic health record
(EHR) and medical image can be analyzed using neural network (NN) features; in partic-
ular, patient’s data can undergo many processes; analysis, segmentation, augmentation,
scaling, normalization, sampling, aggregation, and sifting, in order to obtain accurate
prediction that assists healthcare ecosystem and stakeholders in the healthcare domain.
Many studies have been recently conducted to address and propose a solution to mitigate
and prevent neurodegenerative disorders such as PD. However, most of these studies
and research are dispersed. Therefore, summarizing NN technologies’ involvement in
resolving challenges related to PD is needed; an appropriate summarization allows new
researchers to understand the current role of neural networks against PD. It will open
new opportunities for researchers to have the necessary base that allows them to build on
instead of starting from ground zero.

Many studies have been carried out to cover AI techniques that have been used to
mitigate and prevent PD [11–14]. These approaches are conducted in reviews or surveys
that generally focus on artificial intelligence (AI) applications such as patient diagnosis,
epidemiological monitoring, and drug and vaccine discovery [15]. Nevertheless, a massive
number of research papers are constantly being published, which has overwhelmed elec-
tronic databases. Therefore, it is necessary to carry out an updated review that focuses on
the uses of neural networks in PD prevention.

This review aims to identify and illustrate neural network technology’s role in detect-
ing PD early, based on the following aspects: (1) identifying the role of neural networks in
PD detection, (2) highlighting the recent algorithms applied on PD datasets, (3) observing
dataset types, (4) categorizing the type of PD based on symptoms, (5) investigating the
best results achieved by the research community, and (6) providing a recommendation for
researchers and healthcare individuals. The outcome can be used in the healthcare sector as
guidance for developers who consider neural network’s utilization to improve the public
health capability as a response to PD.

2. Methodology

We carried out a scoping review to explore the evidence on neural network’s applica-
tion in diagnosing Parkinson’s disease in a structured manner. In this section, we listed
the details of the adopted methodology to conduct this review. For this purpose, PRISMA
Extension for Scoping Reviews (PRISMA-ScR) [16] was used for this scoping review.
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2.1. Search Strategy
2.1.1. Search Sources

We selected five bibliographic databases (PubMed, IEEE, ACM, ScienceDirect, and
Google Scholar) to retrieve the research studies relevant to the topic. We scanned only
100 articles from Google Scholar; these articles were chosen after scanning based on their
relevance to fit this paper. The backward and forward reference checking lists were not
performed due to the sufficient number of included studies. The search process was
performed from 24 February to 1 March 2021.

2.1.2. Search Terms

In the present review, we considered two different search terms based on popula-
tion and intervention. Given the population of “Parkinson’s disease” and intervention
of “deep learning”, the search strategy was conducted as follows: ((“Parkinson’s disease”
OR “Parkinson*” OR “Parkinsonism” OR “paralysis agitans” OR “shaking palsy”) AND
(“ artificial intelligence* “ OR “ machine learning” OR “ neural network*” OR “ deep learn-
ing” OR “natural language processing” OR “neural network*” OR “supervised learning”
OR “unsupervised learning” OR “ensemble learning” OR “reinforcement learning”)) total
retrieved studies in (Appendix A).

2.2. Study Eligibility Criteria

This study aims to summarize and review the application/use of deep learning,
particularly in diagnosing Parkinson’s disease. Therefore, only the following studies were
eligible to satisfy the below criteria: a deep learning approach or technique introduced
or developed that primarily focused on diagnosing Parkinson’s disease. Further, some
constraints on the types of publication and the language of the studies were made. Only
studies published in English between 2018 and 2021 are selected, and only peer-reviewed
articles, conference proceedings, reports, theses, dissertations were admitted. Reviews,
conference abstracts, commentaries, proposals, editorials were excluded. The details of
exclusion and inclusion for study selection are listed in Table 1.

Table 1. Inclusion and exclusion criteria.

Criteria Specified Criteria

Inclusion

• Studies that aim to diagnose Parkinson’s using deep learning
technique or approach

• Studies that published from 2018 onwards
• Empirical studies only
• Only written in English

Exclusion

• Abstract
• Review including an overview, scoping review, etc.
• Non-English studies
• Non-peer-reviewed articles

2.3. Study Selection

The study selection process was conducted in two stages (screening title and abstracts
of retrieved studies and screening full text of the studies selected in the first stage). In the
first stage, the first reviewer, MA, independently screened all the retrieved studies’ titles
and abstracts; due to time constraints, the second reviewer, US, and the third reviewer, KD,
reviewed the first half and second half of the complete set of articles, respectively. The
Rayyan software, a web-based systematic review tool, was employed for screening title
and abstract [17]. In the second stage, the first reviewer, MA, performed the first stage’s
full-text screening of the identified studies. Any disagreement between reviewers was
resolved through consensus and discussion.
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2.4. Data Extraction and Data Synthesis

To extract the study-specific information and data, an extraction form was created and
tested by eight included studies (Appendix B). MA and US undertook the data extraction,
and the data were extracted to the excel sheet to summarize the following: general char-
acteristic of included studies (e.g., country, types, and year of publication), aim/purpose
of the study, type of Parkinson’s disease, branch/type neural network, type of validation,
performance metrics, the dataset used to train and test the model, number of Parkinson’s
and healthy samples, type of dataset, size of the dataset, data collection device or sensor,
and dataset source. We used the narrative approach to synthesis the extracted data.

3. Results
3.1. Search Results

In total, 1061 studies were retrieved by searching through 5 recognized E-Databases.
Then, 190 (17.90%) were removed due to duplication, while 871 (82.09%) went through
title and abstract screening; in this screening, we excluded 598 (56.36%) studies due to
various reasons, as shown in Figure 1. The remaining 273 (25.73%) studies went through
the full-text screening, and 181 (17.05%) studies were excluded, as detailed in Figure 1. In
total, 91(8.67%) studies were included in this review.

Figure 1. PRISMA chart.

3.2. General Description of the Included Studies

As shown in Table 2, the included citations were published in more than 30 different
countries, as shown in Figure 2, about 13 studies from the US (14.13%), followed by
9 studies from China and India (9.78%) (Figure 3). This shows that numerous papers were
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published in the last 3 years; for instance, 30 papers (32.60%) were published in 2019 and
2020. More than half (56.2%) of the included studies were conference papers. However,
most conference papers (n = 18) were published in 2018, and 2020, respectively, and only
(n = 16) conferences article were reported in 2019. In addition, (n = 39) journal articles were
published in last few years: (n = 10) in 2018; (n = 14) in 2019; (n = 12) in 2020; and (n = 3)
in 2021.

Table 2. General characteristics of the included studies (n = 91).

Characteristics Studies, n (%) Ref.

Year of publication

2021: 4 (4.34) [6,18–20]
2020: 30 (32.60) [21–51]
2019: 30 (32.60) [4,52–85]
2018: 28 (30.43) [3,86–105]

Country

US: 13 (14.13) [18,27,29,57,61,65,74,82,87,88,92,95,104]
China: 9 (9.78) [33,40,52,53,66,67,85,89,90]
India: 9 (9.78) [3,31,37,50,51,55,60,63,105]
Canada: 6 (6.52) [35,38,45,46,83,93]
UK: 4 (5.43) [48,58,62,103]
Korea: 4 (4.34) [30,41,56,98]
Turkey: 4 (4.34) [4,36,77,101]
Brazil: 3 (3.26) [75,97,102]
Australia: 3 (3.26) [20,42,100]
Italy: 3 (3.26) [21,49,96]
Spain: 3 (3.26) [76,91,94]
Greece: 2(2.17) [54,99]
Bangladesh: 2 (2.17) [44,59]
Japan: 2 (2.17) [6,72]
Lebanon: 2 (2.17) [68,69]
Malaysia: 2 (2.17) [39,84]
Germany: 2 (2.17) [71,79]
Morocco: 2 (2.17) [23,25]
Saudi Arabia: 2 (2.17) [28,80]
Singapore: 2 (2.17) [32,81]
Belgium: 1 (1.08) [43]
Colombia: 1 (1.08) [70]
France: 1 (1.08) [47]
Lithuania: 1 (1.08) [22]
Netherlands: 1 (1.08) [78]
Pakistan: 1 (1.08) [86]
Palestine: 1 (1.08) [73]
Portugal: 1 (1.08) [64]
Russia: 1(1.08) [26]
Slovakia: 1 (1.08) [19]
Romania: 1 (1.08) [24]
Egypt: 1 (1.08) [34]

Type of publication
Conference: 52 (56.52) [3,18,21–27,29–31,36,44–51,53–61,63–66,68–

71,74,77,79,81–89,92,95,96,99–105]

Journal article: 39(42.39) [4,6,19,20,28,32–35,37–43,52,62,67,72,73,75,
76,78,80,90,91,93,94,97,98]
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Figure 2. Number of publications for each country.

Figure 3. Type of publication and year.

3.3. Description of Detection Techniques

The study’s primary aim is to investigate the role of neural networks in the diagnosis
of PD. We classified neural networks into five well-known algorithms used in the in-
cluded studies: CNNs, RNNs, FNNs, ANNs, and other NNs. Around half of the included
studies used convolution neural networks (n = 37); afterward, other neural networks
(n = 31) were implemented in the included studies, followed by artificial neural networks
(ANNs) (n = 10), recurrent neural networks (RNNs) (n = 9), and fuzzy neural networks
(FNNs), as shown in Table 3. In the end, the most imitated neural network architec-
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ture in the included studies was LSTM (n = 11) [6,34,36,38,40,65,70,74,77,80,83], VGG
(n = 3) [18,27,58], and DNN (n = 6) [34,35,60,91,92,103]. Recently, with the developments
of new techniques such as convolutional neural network [101] and transfer learning [63],
deep learning gained significant advances in the computer vision tasks, e.g., ImageNet [77].
Therefore, most of the studies used different imaging data to diagnose PD, such as MRI
(n = 12) [41,47,54,56,58,66,72,78,82,86,90,95] and handwritten images (n = 9) [3,19,25,30,69,
75,101,102], as well as PET and CT imaging (n = 6) [28,59,67,71,88,90] and DaTscan imaging
(n = 4) [54,76,99,103]. However, CNN and transfer learning techniques were not limited to
imaging data; they also learn complex features from voices and signal data [29]. Numer-
ous studies used the biomedical voice (n = 21) [4,6,22,23,29,33,44,48,50,52,53,55,60,61,73,74,
84,93,100,104,105] and biometric signal (n = 14) [26,31,34,36,45,46,57,62,64,65,68,89,96,98];
a few of the included studies used EEG and EMG signals (n = 5) [32,39,51,83,85].

As shown in Figure 4, some studies target specific symptoms of PD, such as freezing
of gait, vocal impairment, and tremor disorder. A more limited number of included studies
proposed a deep learning approach to detect tremor disorder (n = 5) and vocal impairment
(n = 13). However, various studies used the deep learning technique to diagnosis PD
(n = 50), in general, and freezing of gait (FoG) (n = 23), in particular.

Figure 4. Different symptoms of Parkinson’s disease in the included studies.

As reported in Table 3, the neural network is divided into five main branches (CNN,
RNN, ANN, FNN, NN); all types of subclassification techniques are listed as backbone
model; moreover, we noticed that LSTM was heavily used in a different study (n = 11),
followed by none deep learning classifier SVM (n = 8); however, we have reported SVM in
this review because many studies used neural networks to perform data extraction, but the
classification was handled by the machine learning classifier such as SVM; hence, DNN
was used and reported in (n = 6), and a predefined model such as VGG was used in (n = 3);
other types of algorithms that were used rarely depended on each of the studies’ design or
achieved a remarkable result.
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Table 3. Description of PD detection techniques (n = 91).

Characteristics Studies, n

Type of PD
symptoms PD: 49 FoG: 23 Vocal impairments:13 Tremor disorder: 5 Vocal impairments

and FoG:1

Dataset Source Public:57 Private:31 NA: 3

Type of Dataset
MRI: 12 DaTscan: 4
PET&CT images:6

Handwriting Images: 9
Biomedical Voice:21 Biometric signal: 14 EEG and EMG: 5 VGRF time series: 4

Video: 4

Neural Network

CNN: 37
RNN:9

ANN: 10
FNN:4

Other NN: 31

Model Backbone LSTM: 11
SVM: 8

DNN: 4
VGG: 4

Autoencoders
(AE): 2

DCNN: 2
MLPs: 2

Inception v3: 1
AlexNet: = 1

RestNet: 1
U-Net:1

WGAN: 1
ASE: 1
SSAE: 1

LSVRC: 1
DNMLDM: 1

DPRNN: 1

LRNN: 1
MTL: 1
GCN: 1

GS-RNN: 1
NR-LBP: 1

TCN: 1

OPF: 1
FRP: 1

FCNN: 1
EFMMOneR: 1

Encoder-Decoder
DBN: 1

MOGA: 1
BiLSTM: 1

SSM-PCA: 1
SNN: 1

Training dataset Volume ≥80%: 20 ≥70%: 19 ≥60%: 5 ≥50%: 3 ≥40%: 1 NA: 43

Testing dataset Volume ≥50%: 3 ≥40%: 1 ≥30%: 6 ≥20%: 18 ≥10%:8 ≥5%: 2 NA: 53

Validation Method 10-FCV: 29 5-FCV: 12 LOSO: 3
LOPO: 2

LOOCV: 2
3-FCV: 2

4-FCV: 1
6-FCV: 1
7-FCV: 1
8-FCV: 1

Holdout: 1 NA: 36

Evaluation Metrics Accuracy: 56 Recall/Sensitivity: 35 Specificity: 24 Precision: 16 F1-Score: 7 AUC: 8

Developed software Diagnosis dashboard: 1
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In most of the studies, the dataset was divided into three parts training, testing, and
validation due to the limited number of studies that divided the datasets only into the
training set and validation set, as presented in Table 3. We reported only the training and
testing datasets. Furthermore, most of the experiments (n = 21) used ≥80%) volume of
the training dataset, and (n = 9) used (≥70%). However, only few experiments provided
less volume of the training dataset, as seen in (n = 5) used (≥60%) and (n = 3), (n = 1) used
(≥50%), (≥40%), respectively. However, (n = 43) of the studies did not mention the volume
of the training dataset. In addition, the volume of the testing dataset is not clarified in most
of the studies; we noticed that (n = 53) did not specify the volume of the testing dataset
that was used during the experiment; however, the volume of (≥20%) was mostly used in
(n = 18), followed by (≥10%) that were mentioned in (n = 9), and the volume of (≥30%)
was observed in (n = 6). The testing dataset is usually used in low volume, compared to
the training dataset; however, we noticed that half of the dataset (≥50%) was used only in
(n = 3). In addition, low volumes of testing dataset, i.e., (≥5%) and (≥40%), are reported in
(n = 2) and (n = 1), respectively.

The validation method is highly considered in this review; we have reported all
the studies’ validation mechanisms. The most common K-fold cross validation (K-FCV)
methods used are the tenfold cross-validation, which was used in (n = 30), followed by
fivefold cross-validation in (n = 12), whereas fewer K-FCV methods were reported as
threefold cross-validation, fourfold cross-validation, sixfold cross-validation, sevenfold
cross-validation, and eightfold cross-validation in (n = 2), (n = 1), (n = 1), (n = 1), and
(n = 1), respectively. Furthermore, other validation methods such as LOSO, LOPO, LOOCV,
and holdout were rarely used, and are reported in (n = 3), (n = 2), (n = 2), and (n = 1),
respectively. However, (n = 36) did not mention any type of validation method within
their experiments.

Various evaluation metrics used to check each model’s performance and accuracy
are the most commonly used metrics to calculate the model’s efficiency in predicting the
result based on the testing dataset. In (n = 57), the accuracy of the models was reported.
On the other hand, along with the accuracy, other evaluation methods were used, such
as recall/sensitivity that was reported in (n = 36), followed by specificity in (n = 24)
and precision (n = 17); however, few studies (n = 8) used area under the curve (AUC)
as an evaluation metric.

During summarization of all (n = 91) results, unfortunately, we did not come across
any empirical validation/real-life implementation in any hospital. Moreover, from the
(n = 91) studies, we only found one study that developed diagnosis software that identified
any neurological disorders such as PD and that can be employed in the medical center [51].

3.4. Dataset Description
3.4.1. Public Dataset

As discussed, an earlier total number of the public dataset (n = 57), Table 4, summa-
rized the most used (n = 36) public available dataset sources and repositories (n = 36),
e.g., Parkinson Progression Markers Initiative database (PPMI), UCI database repo, and
PhysioNet; these were the most used datasets to develop and validate the AI models. Other
public dataset sources used by the included studies were as follows: Kaggle, HandPD,
DaphNet, the NTUA Parkinson Dataset, Neurovoz corpus, PC-GITA database, etc.

Table 4 only provides a sample of the public datasets used within the included studies.
As seen, the number of males in the PD sample is higher than the number of females,
and the number of males in healthy control is higher than the number of females in most
cases. Furthermore, different types of hardware devices were used to collect the dataset;
we have noticed that most of the data are in the form of images collected with different
devices, starting from hospital imaging device including MRI, CT, DaTscan and ending
with smartphone images that were used to capture handwriting or drawing of the PD
samples (n = 28) and (n = 4) for recording video.
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Table 4. Public dataset descriptions.

Dataset Source/Host Used Device/Sensor
Number of PD Patient Number of

Healthy Control Ref.
Male Female Male Female

Public

PhysioNet (n = 4) 16 sensors
s under each foot 8 per foot 59 34 40 32 [21,49,55,81]

The University of California,
Irvine Machine Learning repository

UCI (n = 10)
NA 84 40 23 41 [3,4,23,33,44,53,55,60,

84,105]

Neurovoz corpus NA 32 20 27 29 [74]

PPMI (Parkinson Progression
Markers Initiative) database

(n = 14)
MRI Machine 129 57 [20,28,41,47,59,66,67,

76,82,86,88,90,94,95]

The NTUA Parkinson Dataset
(n = 1) DaTscan and MRI Machine 55 23 [99]

PC-GITA database
(n = 1) Professional audio card 25 25 25 25 [50]

Department of Neurology in
Cerrahpasa Faculty of Medicine,

Istanbul University
(n = 1)

Wacom Cintiq 12WX
graphics tablet 57 15 [101]

HandPD dataset
Botucatu Medical School, São Paulo

State University
(n = 2)

Smartphone Camera 59 15 6 12 [19,102]

Daphnet Dataset
University of California,

Irvine Machine Learning repository
(n = 2)

sensor was attached to a belt
and above the ankle
and above the knee

7 3 NA NA [62,65]

Parkinsons drawing spirals
and waves

Kaggle

Tablet for capture
the drawing 27 28 [30,101]

Biometric signal and time-sensor-based dataset were collected using the digital key-
board or sensor/accelerometer (n = 16) attached to the PD and healthy control sample
or placed at a different angle to measure the severity of the freezing gait or the tremor.
Moreover, devices such as a high-quality standalone microphone or smartphone were
used to collect the biomedical voice dataset, and (n = 15) reported a public vocal dataset.
Moreover, in the public dataset, only (n = 11) reported the gender of PD and healthy control
sample, and only (n = 5) studies identified each sample’s mean age.

3.4.2. Private Dataset

As mentioned, the earlier total number of private datasets (n = 31) is shown in Table 5.
We summarized the dataset that was clearly explained within studies (n = 5). This dataset
was collected and labeled in different entities such as hospitals, universities, and research
centers. The number of PD and healthy control samples are reported, including gender.
Table 5 only provides a sample of the private datasets used within the included studies.
The number of males in the PD sample is higher than the number of females, whereas
the number of females in health control is higher than the number of males. Furthermore,
different types of hardware devices were used to collect the dataset; we have noticed that
most of the data were in the form of images collected with different devices, starting from
hospital imaging device including MRI, CT, DaTscan and ending with smartphone images
that were used to capture handwriting or drawing of the PD samples (n = 11).
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Table 5. Private dataset descriptions.

Dataset Source/Host Used Device/Sensor
Number of PD Patient Number of Healthy Control

Ref.
Male Female Male Female

Private

Wearable Bio mechatronics
Laboratory at Western University

wearable assistive devices for
suppressing tremor 13 NA NA [46]

Pacific Parkinsons
Research Centre (PPRC)”

wearable headset
with 27 electrodes to capture

the EEG signals.
10 10 11 9 [83]

Hospital at Sun Yat-sen University 64-electrode Geodesic Sensor
Net (Electrical Geodesics Inc.) 25 15 18 12 [85]

RMIT University,
Melbourne, Australia Apple iPhone 6S plus® 41 40 [100]

n/A Digital software keyboard 18 15 [79]

Biometric signal and time-serious-based dataset were collected using the digital key-
board or sensor/accelerometer (n = 14) attached to the PD and healthy control sample
or placed at a different angle to measure the severity of the freezing gait or the tremor.
Moreover, devices such as a high-quality standalone microphone or smartphone were
used to collect the biomedical voice dataset, and (n = 6) reported a private vocal dataset.
Moreover, in the private dataset, only (n = 4) reported the gender of PD and healthy control
sample, and only (n = 4) studies identified each sample’s mean age.

4. Discussion
4.1. Principal Findings

Although this study focuses on identifying and addressing deep learning and neu-
ral network application to detect Parkinson’s disease in the early stage, we found some
proposed models show promising results and can be employed in hospitals. This review
provides recommendations for professional healthcare and researchers based on the in-
cluded studies’ outcomes. Moreover, we noticed that five studies [21,37,49,55,81] used
the Vertical Ground Reaction (VGRF) dataset, which was obtained from PhysioNet hub to
train the classification models including fuzzy neural networks (FNNs), stacked 2D CNNs,
deep neural networks (DNNs), artificial neural networks (ANNs), and neighborhood rep-
resentation local binary pattern (NR-LBP). However, DNN in [49] surprisingly achieved
outstanding results for early detection of PD using the VGRF dataset, compared to the
other studies.

Furthermore, for imaging dataset including MRI, PET CT, and DaTSCAN were mainly
obtained from Parkinson Progression Markers Initiative (PPMI) to train classifier, as seen
in [20,28,41,47,59,66,67,76,82,86,88,90,94,95]; hence, among all studies, CNN in [20] and
FNN in [28] achieved an outstanding result for image classification.

We found that most of the biomedical voice measurements dataset was obtained from
the University of California (UCI) Irvine Machine Learning repository; in [53,84] and [23],
the same dataset is used; however, 19 achieved outstanding result using the sequential
model in a deep neural network for detection PD based on voice measurement. In [33,44],
and [4], the same voice measurement datasets with 756 instances and 754 attributes were
used to identify PD, and the autoencoder neural network in [33] achieved better results
than other studies.

Electroencephalograph (EEG) dataset was obtained from a different source and used
in five studies [32,38,51,83,85]. In [38,83], we found that long short-term memory (LSTM)
achieved outstanding results, indicating the best option to deal with EEG data. On the other
hand, seven studies [3,19,25,27,40,69,101,102] focused on the classification of handwriting
image to identify PD in the early stage, and we found that outstanding results were
achieved in ANN + SVM in [3], dual-path RNN (DPRNN) in [40], and CNN + Optimum-
Path Forest (OPF) in [102], respectively.

As mentioned earlier, the detection of PD using a neural network is not an easier
task than other types of diseases because PD symptoms (vocal disorder, tremor disorder,
freezing gait disorder) are inconsistent, and it is difficult to collect data concerning the
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type of the device. Therefore, many public repositories mainly focus on collecting and
process certain types of datasets. Moreover, based on our findings, we can conclude that
the sequential model in DNN and autoencoder neural network proved to be suitable
models for PD detection from speech. Moreover, DNN is recommended to identify PD
from VGFR data. Additionally, CNN is still on top for medical image classification such as
MRI, PET/CT, and DaTSCAN. Moreover, the FNN shows significant results in classifying
a medical image. On the other hand, in regard to images of handwritings, we found that
ANN with machine learning classifier SVM had a remarkable result for the identification
of PD from handwriting.

Based on the findings of this review, we can highlight the most used repositories that
contain PD public datasets for the research community as follows: (1) UCI Repository
of Machine Learning Database, University of California; (2) PhysioNet Laboratory for
Computational Physiology, Massachusetts Institute of Technology; (3) Parkinson’s Progres-
sion Markers Initiative (PPMI); (4) Pacific Parkinson’s Research Institute; and (5) Botucatu
Medical School, São Paulo State University, Brazil.

4.2. Strengths and Limitations
4.2.1. Strengths

This review covered deep learning neural network techniques used for PD detection
regardless of the characteristics, country, and study design. We claim that this review
is a comprehensive study of neural network approaches used for PD detection. It will
help researchers to understand how neural network is used efficiently for detecting PD in
early stages. Compared with other reviews [106–108] that do not focus on PD disease, this
review is unique in its field because it describes and summarizes features of the identified
neural network models, datasets, available repository, type of PD evaluation, validation,
and research implication. Moreover, this review is different from the previously mentioned
reviews by following the latest version of PRISMA-ScR [16]. Unlike other reviews, we
retrieved the studies from the most popular computer science and healthcare database to
determine the most relevant studies possible.

4.2.2. Limitations

In the beginning, we carried out a primary search from 2015 to 2021 through the
five selected databases, and we retrieved a massive number of studies. Therefore, we
limited our search to the period between 2018 to 2021. Due to that, we may have missed
some significant studies. Due to many studies that we included (n = 92), backward and
forward reference checking was not performed in this review. PD is an extensive topic
and divided into many types of diseases, including various symptoms. Therefore, we may
have missed categorizing some diseases from a clinical perspective.

4.3. Practical and Research Implications

Although this review investigates the neural networks used to detect Parkinson’s
disease (PD), some applications could significantly mitigate this neurodegenerative disor-
der. Nowadays, computer-aided diagnosis systems are essential because they are less
time consuming and more user friendly. For example, the authors of [51] designed
a GUI system that physicians may use for fast diagnosis of Parkinson’s disease in its
early stages. Researchers can also use the system to continue their future research on dis-
ease diagnosis, especially neurodegenerative disorders. The system will show the patient’s
disease progression and help clinicians monitor the disease in its early stages.

Furthermore, the system can differentiate between PD patients and healthy subjects
and compare various parameters (EEG, EMG, MRI/PET scan). In both PD and control
subjects, the model can detect the region of dopamine output in the substantia nigra. As
a result, the proposed model would be a novel solution containing all of the PD detection
parameters in a single window, which would be extremely useful for disease monitoring.
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In the included studies [6,18,19,30,61,75,87,91,92,96,98,101], clinicians could obtain
PD Patient data in telemonitoring using devices such as tablets and smartphones. It is
a promising solution because they can increase monitoring frequency without putting
a strain on professional resources during the COVID-19 pandemic. However, the cost of
training and testing the detection algorithm on a smartphone was too high; thus, the results
were measured on a remote server and then transferred to the computer.

Clinical studies can refer to a video recorded for the patient while performing physical
activities such as a PD bed test. As mentioned, in [18,43,70,87], a neural network was
able to identify the symptoms of PD through a video sample of the patient. In the future,
the clinical studies may analyze any video recorded in the hospital for other patients, for
example, during therapy sessions, and predict if this patient is suspected of having PD in
the future.

5. Conclusions

This scoping review summarized studies by investigating the use of neural networks,
specifically deep learning algorithms, for early diagnosis of PD based on various data
collected from different public and private sources (91 studies), including medical image,
biomedical voice, and sensor signal, for both PD and healthy control samples. Included
studies were categorized into different groups based on the neural network model, type
of PD symptoms, and type of dataset. Additionally, the most used dataset and best
performance model were highlighted based on the detection of particular symptoms of
PD in this review. All technical experiment methods were reported, including submodel,
dataset volume, training, testing, evaluation metrics, and validation type. We indicated
any real-time implementation used in each hospital or university setting, and based on this
review, we recommended particular suggestions for healthcare professionals. Future work
could be a meta-analysis to examine each study and provide a comprehensive comparison
between them in terms of quality.
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FoG Freezing of gait
NA Not Available
MRI Magnetic Resonance Imaging
PET Positron emission tomography
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EEG Electroencephalogram
EMG Electromyography
VGRF Vertical Ground Reaction Force
CNN Convolutional Neural Network
RNN Recurrent Neural Network
ANN Artificial Neural Network
FNN Fuzzy Neural Network
NN Neural Network
DBN Deep belief network
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MOGA Multi-Objective Genetic Algorithm
BiLSTM Bidirectional Long short-term memory
LSTM Long short-term memory
OPF Optimum-Path Forest
FRP Fuzzy Recurrence Plot
DCNN Deep Convolutional Neural Network
FCNN Fully Connected-Neural Network
DNN Deep Neural Network
EFMMOneR Fuzzy Minmax Neural Network with The One R Attribute Evaluator
LRNN Layer Recurrent Neural Network
MTL Multi-Task Learning
GCN Graph Convolutional Network
GS-RNN Gradient Stabilized Recurrent Neural Network
NR-LBP Neighborhood Representation Local Binary Pattern
TCN Temporal Convolutional Neural network
WGAN Wasserstein Generative Adversarial Networks
SAE Stacked Auto Encoder
SSAE Stacked Sparse Auto-Encoder
LSVRC Large Scale Visual Recognition Challenge
DNMLDM Deep Neural Mapping Large Margin Distribution Machine
MLP Multiple Layer Perceptron
SVM Support Vector Machine
SSM-PCA Scaled Subprofile Modeling Using Principal Component Analysis
SNN Siamese Neural Network
FCV Fold-Cross Validation
LOOCV Leave-One-Out Cross-Validation
LOSO Leave One Subject Out
AUC Area Under Curve

Appendix A

Table A1. Used search terms and total number of retrieved studies per database.

Database Name Used Research Terms Number of
Retrieved Studies

PubMed

(“Parkinson’s Disease” OR “Parkinson*” OR “Parkinsonism” OR “paralysis agitans”
OR “shaking palsy”) AND (“artificial intelligence “ OR “ machine learning” OR “

neural network*” OR “ Deep learning” OR “natural language processing” OR “Neural
network*” OR “supervised learning” OR “unsupervised learning” OR “ensemble

learning” OR “reinforcement learning”)

549

IEEE

“Parkinson’s Disease” OR “Parkinson*” OR “Parkinsonism” OR “paralysis agitans”
OR “shaking palsy” AND “artificial intelligence” OR “machine learning” OR “neural

network*” OR “Deep learning” OR “natural language processing” OR “Neural
network*” OR “supervised learning” OR “unsupervised learning” OR “ensemble

learning” OR “reinforcement learning”

303

ACM

(“Parkinson’s Disease” OR “Parkinson*” OR “Parkinsonism” OR “paralysis agitans”
OR “shaking palsy”) AND (“artificial intelligence” OR “machine learning” OR “neural

network*” OR “Deep learning” OR “natural language processing” OR “Neural
network*” OR “supervised learning” OR “unsupervised learning” OR “ensemble

learning” OR “reinforcement learning”)

19

Science Direct
(“Parkinson’s Disease” OR “Parkinson” OR “Parkinsonism” OR “paralysis agitans”

OR “shaking palsy”) AND (“artificial intelligence” OR “machine learning” OR “neural
network” OR “Deep learning”)

151

Google Scholar

(“Parkinson’s Disease” OR “Parkinson*” OR “Parkinsonism” OR “paralysis agitans”
OR “shaking palsy”) AND (“ artificial intelligence “ OR “ machine learning” OR “

neural network *” OR “ Deep learning” OR “natural language processing” OR
“Neural network*” OR “supervised learning” OR “unsupervised learning” OR

“ensemble learning” OR “reinforcement learning”)

39

Total studies 2018–2021 1061
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Appendix B

Table A2. Data extraction form.

Concept Definition

Study Characteristics

Author The first author of the study.

Year Submission The year in which the study was submitted.

Country of publication The country where the study was published.

Publication type The paper type (i.e., peer-reviewed, conference or preprint).

AI technique characteristics

Purpose/use of AI What are the applications or uses of AI in diagnosis of Parkinson (e.g., diagnosis,
classification, and detection)?

AI branches The branches/areas that were used (e.g., traditional machine learning, deep learning,
natural language processing).

AI models/algorithms The specific AI models or algorithms that were used (e.g., Decision tree, Random
forest, Convolutional neural network).

Dataset Characteristics

Data sources Source of data that were used for the development and validation of
AI models/algorithms (e.g., public databases, clinical settings, government sources).

Data types Type of data that were used for the development and validation of AI
models/algorithms (e.g., radiology images, biological data, laboratory data).

Dataset size The total number of data that were used for the development and validation of AI
models/algorithms.

Type of validation How the dataset was split/used to develop and test the proposed models/algorithms
(e.g., Train-test split, K-fold cross-validation, External validation).

Proportion of training set Percentage of the training set of the total dataset.

Proportion of validation set Percentage of validation set of the total dataset.

Proportion of test set Percentage of the test set of the total dataset.

Type of device The device used to collect the data (e.g., accelerometer, smartphone, etc.)

At-risk group The number of Parkinson’s participants included in the study.

Control group The number of healthy participants included in the study
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