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A number of empirical Bayes models (each with different statistical distribution assumptions) have now been developed to analyze
differential DNA methylation using high-density oligonucleotide tiling arrays. However, it remains unclear which model performs
best. For example, for analysis of differentially methylated regions for conservative and functional sequence characteristics (e.g.,
enrichment of transcription factor-binding sites (TFBSs)), the sensitivity of such analyses, using various empirical Bayes models,
remains unclear. In this paper, five empirical Bayes models were constructed, based on either a gamma distribution or a log-
normal distribution, for the identification of differential methylated loci and their cell division—(1, 3, and 5) and drug-treatment-
(cisplatin) dependent methylation patterns. While differential methylation patterns generated by log-normal models were enriched
with numerous TFBSs, we observed almost no TFBS-enriched sequences using gamma assumption models. Statistical and
biological results suggest log-normal, rather than gamma, empirical Bayes model distribution to be a highly accurate and precise
method for differential methylation microarray analysis. In addition, we presented one of the log-normal models for differential
methylation analysis and tested its reproducibility by simulation study. We believe this research to be the first extensive comparison
of statistical modeling for the analysis of differential DNA methylation, an important biological phenomenon that precisely
regulates gene transcription.

1. Introduction

High-density oligonucleotide tiling arrays have been widely
utilized to globally analyze chromatin modifications across
entire genomes, including assessments of DNA methylation,
in addition to the identification of transcription factor bind-
ing sites [1–7]. Although the novel sequencing technology
introduces more effective and powerful approach than tiling
arrays, recently, some custom-designed tiling arrays still hold

great promise of advantages, for example, cost-effectiveness
and region customization. In this paper, we investigated
genome-wide DNA methylation patterns, following 1, 3, and
5 cell divisions and exposure to a DNA-damaging agent (the
DNA-crosslinking agent cisplatin) using differential methy-
lation hybridization (DMH) analysis, a microarray-based,
two-color hybridization [8, 9].

To date, there have been numerous statistical inference
frameworks developed for microarray differential analysis,
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including empirical [10] and nonempirical Bayes [11]
and frequentist approaches [12]. As the empirical Bayes
model can borrow information across samples and probes,
it has the advantage over the frequentist approach in small
sample problems. Moreover, as compared to the nonem-
pirical Bayes model, it does not depend on a predefined
and subjective prior distribution, as it provides estimation
of prior distribution and other parameters simultaneously.
In the last decade, numerous empirical Bayes methods and
algorithms have been applied to analyze microarray-based
studies, including gene expression [13–16], protein-to-DNA
binding (chromatin-immunoprecipitation (ChIP)) [17, 18],
and DNA methylation [19, 20]. Therefore, in this study, we
performed a comparison of the accuracy of various empirical
Bayes models for analyzing these universally utilized biologi-
cal assessments.

The fundamental key of empirical Bayes model for char-
acterizing microarray data is the statistical distribution
assumption, which currently includes two common types:
log-normal and gamma distribution. Our group was one of
the first to use the empirical Bayes model for the analysis
of differential methylation microarray data, by developing a
log-normal empirical Bayes model for microarray analysis
of not only differential DNA methylation but also histone
acetylation and differential gene expression, in a “triple
array” system for the simultaneous assessment of these
phenomena in ovarian cancer cells [21]. We then developed
a gamma-normal-gamma mixture model to investigate three
differentially methylated loci in three breast cancer cell lines
[22]. More recently, a joint log-normal empirical Bayes
model was developed to investigate the correlation between
gene expression and DNA methylation [19]. Although both
log-normal and gamma distributions gave rational hypoth-
esis on methylation related analysis, it is not clear which
statistical distribution assumption provides the best differ-
ential methylation analysis. To date, statistical comparison
between two distribution assumptions was never performed
regarding differential methylation analysis.

It was recently shown that specific sequence character-
istics of methylated regions exist in cancerous [23, 24] and
in normal tissues [25–28]. These sequence characteristics
include pattern frequencies, DNA structure prediction, CpG
islands, and transcription factors in promoter regions. Our
own work has shown that hypermethylated gene promoters
had enriched transcription factor-binding sites (TFBSs) in
ovarian cancer chemo drug-resistant cells [29] and DNA
methylation fidelity is greatly attributed to cis-regulatory
elements [30]. Since hyper- or hypomethylated CpG islands
are usually chosen from differentially methylated microarray
probe sequences, it is very critical to study how sensitive
TFBSs are enriched among these sequences selection due
to the log-normal or gamma distribution assumptions in
the empirical Bayes model. Therefore, TFBS enrichment
analysis could be used to provide biological evaluations of the
accuracy of various models used in differential methylation
microarray analysis.

In this paper, we constructed and compared the perfor-
mance of a number of empirical Bayes models, based on
log-normal and gamma distributions, and then compared

their performance in differential methylation analysis on real
data. Finally, we assessed the impact of these models for
a common biological application, TFBS enrichment within
DNA sequences differentially methylated by cell division and
treatment with a DNA-damaging agent.

2. Materials and Methods

2.1. DNA Methylation Assessment. Genomic DNA from
ovarian cancer A2780 cells (ATCC, Manassas, VA, Cal-
biochem, Billerica, MA, USA) and total genomic DNA puri-
fied (DNeasy purification kits, Qiagen, Valencia, CA) follow-
ing 1, 3, and 5 cell divisions were exposed or unexposed
to the DNA adduct-forming agent cisplatin. Differential
methylation hybridization (DMH) was then performed as
previously described [31–33]. Briefly, isolated DNA was
digested with the methylation-insensitive restriction enzyme
BfaI (C∧TAG), followed by ligation of linkers. Linker-
ligated DNA was then digested by the methylation-sensitive
(i.e., methylated cytosines being cleavage resistant) enzymes
HinP1I (G∧CGC) and HpaII (C∧CGG), and digestion
products were then amplified by linker PCR (restriction
enzymes from New England Biolabs, Ipswich, MA). The PCR
products were further amplified using aminoallyl-dUTP
incorporation to facilitate labeling with the fluorophores Cy3
(parental A2780) or Cy5 (1, 3, and 5 divisions of A2780
cells combined with treatment with the DNA-crosslinking
agent cisplatin). The labeled DNA samples were then
combined and hybridized to a customized 60-mer oligo-
microarray containing 40,000 CpG-rich fragments from
12,000 known gene promoters (Agilent, Santa Clara, CA).
Following hybridization and washing, microarray images
were scanned and generated using an Axon GenePix 4200A
scanner (Molecular Devices, Sunnyvale, CA). All DMH
DNA methylation data, in MIAME-compliant format, has
been deposited and can be accessed using Gene Expres-
sion Omnibus (http://www.ncbi.nlm.nih.gov/projects/geo/)
SuperSeries code GSE15709.

2.2. DNA Methylation Microarray Normalization. A numeri-
cal methylation signal for each probe, y, and its associated SE
(background variation), σ , were defined as follows:

y = |F − B|, σ =
√

SD2
F

PixF
+

SD2
B

PixB
, σ ′ = σ

y
, (1)

where F and B represent the foreground and background
intensities of the same dye (Cy3 or Cy5), respectively, and
SD and Pix are the probe signal standard deviation and pixel
number for the corresponding probe, respectively. Then, a
Lowess normalization was performed between M-A plots
for Cy3/Cy5 probe signals for each array and for different
arrays, and each probe’s σ was rescaled according to this
normalization [34].

2.3. Empirical Bayes Models

2.3.1. Binary-Gamma-Gamma Model (BGG). For our use
of the BGG model, first proposed by Newton et al. [10],
we assumed that any specific probe i in both the parental
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(A2780) and cisplatin-treated daughter cells had the same
true but unobserved methylation signal (H0), θi ∼ Γ(a0, ν)
if it was not differentially methylated. We therefore, denoted
(yirkr , yigkg ) as the observed methylation signals having a
between-channel and between-replicate variation described
by yirkr ∼ Γ(a, θi) and yigkg ∼ Γ(a, θi), where (r, g) denote
the Cy5 (cisplatin-treated A2780 progeny cells) and Cy3
(parental, untreated A2780 cells) fluorescence values and
(kr , kg) represent the technical replicates. If a probe i was
differentially methylated (HA), its true but unobserved
methylation in cisplatin-treated daughter cells and untreated
parental A2780 cells was represented by two different
random variables from the same gamma distribution, θir ∼
Γ(a0, ν) and θig ∼ Γ(a0, ν), and its between-replicate varia-
tion follows the same gamma distributions as those under
H0. With the marginal probabilities under H0 and HA

denoted as p0(yir , yig) and pA(yir , yig), respectively, yir =
{yirkr} and yig = {yigkg} and their likelihood function
(Table 2) is

L
(
a, a0, ν, p

) =∏
i

{(
pA
(
yir , yig

)
∗ p

)zi

∗
(
p0

(
yir , yig

)
∗ (1− p

))1−zi}
,

(2)

with parameter (a, a0, ν, p, zi) estimations performed by E-M
algorithm and the E-Step:

ẑi = P
(
zi = 1 | yirkr , yigkg , a, a0, ν, p

)

=
p ∗ pA

(
yir , yig

)
p ∗ pA

(
yir , yig

)
+
(
1− p

)∗ p0

(
yir , yig

) . (3)

The initial values for (a, a0, ν, p) were set as (20, 0.6, 20, 0.2),
thus allowing uniform input for all gamma models. Those
values were selected by multiple trainings on the models for
the purpose of efficient convergence.

Consequently, the M-step was

p̂ = 2 +
∑

i ẑi
2∗ 2 + n

, (4)

where n is the total number of probes and

(â, â0, ν̂) = arg max
a,a0,υ

L
(
a, a0, ν, p

)
, (5)

where the parameters (â, â0, ν̂) were numerically optimized
by the R function nlminb (more details of this derivation are
provided in the Supplementary Material available online at
doi:10.1155/2012/376706).

2.3.2. Binary-Normal-Gamma-Gamma Model (BNGG). For
our microarray differential methylation analysis, we slightly
revised the BGG model, in which the between-replicate
variation is modeled by truncated normal distributions, as
follows: yirkr ∼ TN(ηir , τ2

i ); yigkg ∼ TN(ηig , τ2
i ) (see Table 2),

while the other assumptions and parameters were kept the
same. In the BNGG model, the gamma distribution Γ(a, θi)

aimed to accurately capture the between-channel variation,
with the likelihood function L(τ2

i , a, a0, ν, p) calculated in
similarity to the BGG model. Likewise, the parameters
(τ2

i , a, a0, ν, p, zi) were also estimated through E-M algo-
rithm, similar to the BGG model (for more details see the
Supplementary Material), with the only difference being the
estimations of the additional values of τ2

i (given a total of
n). For this purpose, Hill Climbing was used to optimize
these parameters for each iteration of the M-step, efficiently
reducing the time-cost in function nlminb.

2.3.3. Binary-Normal-Normal-Gamma-Gamma Model
(BNNGG). Our BNNGG model was a further revision
from the BNGG model, with the background variation (at
the pixel level) added as an additional source of variation
yirkr ∼ TN(ηir , σ2

irkr
+ τ2

i ); yigkg ∼ TN(ηig , σ2
igkg

+ τ2
i ), where

(σ2
irkr

, σ2
igkg

) are known (as defined in (1)). The full model

specification, as defined in Table 2, calculates the likelihood
function L(τ2

i , a, a0, ν, p) similarly to the BNGG model. Also,
similar to the BNGG model, the parameters (τ2

i , a, a0, ν, p, zi)
were estimated through E-M algorithm (for more details see
the Supplementary Material).

2.3.4. Binary-Log-Normal-Normal Model (BLNN). The
BLNN model was first proposed by Kendziorski et al. [35]
for the analysis of two-color (gene expression) microarray
data and further revised by Li et al. [21] for analyzing both
DNA methylation and histone acetylation. This model
assumes that each probe i in both the drug-treated daughter
and untreated A2780 parental cells has the same true
(but unobserved) logarithmic methylation signal (H0),
ηi ∼ N(μ,ϕ2) if it is not differentially methylated. Denote
(y′irkr , y

′
igkg

) as the log-transformed methylation signals.
Their between-channel and between-replicate variations are
described by y′irkr ∼ N(ηi, τ2

i ) and y′igkg ∼ N(ηi, τ2
i ). If probe

i is differentially methylated (HA), its true but unobserved
logarithmic methylation in cisplatin-treated and untreated
A2780 cells is two different random variables from the same
normal distribution: ηir ∼ N(μ,ϕ2) and ηig ∼ N(μ,ϕ2). Their
between-channel and between-replicate variations follow
the same normal distributions as those under H0. Their
likelihood function L(τ2

1 , . . . , τ2
n ,μ,ϕ2, p) is described in

Table 2. Parameter estimations were performed with E-M
algorithm for (τ2

i ,μ,ϕ2, p, zi) as procedure similar to BNGG
model. Differences included the parameters μ, ϕ2, and p and
the E-step, initial values being 7.8, 1.8, 0.5, set to allow rapid
convergence. A more detailed derivation of this model is
included in the Supplementary Material.

2.3.5. Binary-Log-Normal-Normal-Normal Model (BLNNN).
Our BLNNN model was revised from the BLNN model
(described above), in which the background variation at the
pixel level was added as an additional source of variation:
y′irkr ∼ N(ηi, σ ′irkr

2 + τ2
i ) and y′igkg ∼ N(ηi, σ ′igkg

2 + τ2
i ), where

(σ ′irkr
2, σ ′igkg

2) are known and defined in (1). The full model

specification is defined in Table 2. The likelihood and param-
eters were estimated through E-M algorithm as the same
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as BLNN model (for more details, see the Supplementary
Material).

2.4. Transcription Factor-Binding Site Enrichment Analy-
sis. Our previous study of the fidelity of DNA methyla-
tion inheritance [30] was based on the widely accepted
“stochastic” DNA methylation model that predicts that
the average methylation levels of specific regions result
from the efficiency of two cooperative stochastic processes:
heritable maintenance methylation and de novo methylation,
occurring in concert with DNA replication [36, 37]. Conse-
quently, in that previous analysis, we used Bayesian empirical
modelling to subcategorize two subclasses showing progres-
sive fluctuation, stochastic hypermethylation and stochastic
hypomethylation (Table 1). In addition, we also observed
methylated loci showing random methylation, defined as loci
having transgenerational methylation propagation [36–38].
We then used the transcription factor-binding site (TFBS)
search tool MATCH [39], a weight matrix-based software,
to predict TFBSs based on the DNA nucleotide sequences
of each microarray probe locus. Following compilation
of that list of TFBSs, we determined the frequencies of
the predicted TFBSs between three sequence categories of
DNA methylation fidelity of inheritance (Table 3) and back-
ground sequences by Fisher’s exact test, and a Bonferroni
correction was implemented to justify 459 human TFBSs
[40], and an individual P value threshold was chosen as
0.05/459/3 = 3.63e−05 for multiple comparisons. The back-
ground sequences were 10000 randomly generated promoter
sequences with equal length and GC component matched to
the three sequence categories of DNA methylation fidelity of
inheritance, as we have described previously [30].

3. Results and Discussion

3.1. Comparing the Performance of Five Empirical Bayes Mod-
els in Differential Methylation Data Analysis. As we men-
tioned in Section 1, we focused on empirical Bayes models in
this paper because of its strength of analysing small sample
size microarray studies. Our goal was to seek out a more
appropriate distribution assumption and consequentially, a
better model within empirical Bayes frameworks.

3.1.1. Model Specifications. For identifying DNA sequences
differentially methylated over 1, 3, or 5 cell divisions
and/or treatment with the DNA-damaging agent cisplatin,
we used a customized 60-mer oligo-two-color microarray,
containing over 40,000 CpG-rich fragments from 12,000
promoters. Methylated versus unmethylated DNA frag-
ments were separated by digesting DNA isolated from
drug-treated daughter (Cy5 labeled for cell generations
1, 3, and 5) cells and untreated parental (Cy3 labeled)
cells to methylation-sensitive restriction enzyme cleavage,
where the raw values of each scanned fluorescent probe
was preprocessed for foreground/background signal nor-
malization, pixel number, and signal standard deviations.
The raw data was first statistically normalized using the
common Lowess method (see Section 2), and the five
empirical Bayes models were then constructed based on

Table 1: Five empirical Bayes models parameter list.

Empirical Bayes
model

Parameters Observed data Missing data

BGG a, a0, ν, p yi jk zi

BNGG a, a0, ν, τi, p yi jk zi

BNNGG a, a0, ν, τi, p yi jk , σi jk zi

BLNN μ,ϕ, τi, p y′i jk zi

BLNNN μ,ϕ, τi, p y′i jk , σ ′i jk zi

Note: i, j and k represent probe, sample and replicate, respectively.

their specific distributions (log-normal versus gamma)
and variation sources (between-replicate, between-channel,
and background variation) to classify differentially methy-
lated probes for downstream analysis (transcription factor-
binding enrichment). As described in Section 2, the five
models were binary-gamma-gamma (BGG), binary-normal-
gamma-gamma (BNGG), binary-normal-normal-gamma-
gamma (BNNGG), binary-log-normal-normal (BLNN), and
binary-log-normal-normal-normal (BLNNN) models. The
distribution definition used for each model, in addition to
their log likelihoods, is specified in Tables 1 and 2 (with
further description in Section 2). More detailed statisti-
cal estimation algorithms (i.e., expectation-maximization
(EM) algorithms) are included in Supplementary Material.
Finally, EM iterations were performed until the convergences
occurred with no more than 0.01% changes in the log-
likelihoods.

3.1.2. Differential Methylation Analysis. Each of the five
empirical Bayes models was then compared for its per-
formance, as determined by the minimized negative
after-convergence log-likelihoods for the EM iterations
(Figure 1(a)) for the distributions of the differentially methy-
lated probes after cell divisions for 1, 3, and 5 generations
(see Section 2). It is clear that the BLNN/BLNNN models
outperformed the BGG/BNGG/BNNGG models, with sig-
nificantly lower negative log-likelihoods (on average, 4.26e +
04/4.14e + 04 versus 1.44e + 06/1.39e + 06/1.40e + 06),
suggesting that log-normal is more accurate than gamma
distributions in modelling microarray-based differential
methylation data. However, given the log-normal model
assumption, BLNNN performed better than the BLNN
model, likely due to its ability to consider variations in
the methylation probe level backgrounds (noise). Quanti-
tatively, the BGG/BNGG/BNGG models identified less than
400 loci (Figure 1(b)) having differential methylation after
three cisplatin-treated A2780 cell generations, while also
showing no consistent patterns among the 3 models. In
addition, the BGG/BNGG/BNGG models seemed applicable
only to loci having noticeable differences in their observed
methylation signals, thus neglecting the various variation
sources (Figure 2), and, consequently, provided no benefits
over the empirical Bayes model. Conversely, both the
BLNN and BLNNN models showed consistently increasing
number of differentially methylated loci from round 1 to
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Table 2: Five empirical Bayes model frameworks.

Empirical Bayes model H0 : p0(yir , yig) HA : pA(yir , yig)
Likelihood∏

i{(pA(yir , yig)∗ p)zi ∗
(p0(yir , yig)∗(1−p))1−zi}

H0 : θir = θig = θi (r /= g) HA : θir /= θig (r /= g)

BGG yirkr ∼ Γ(a, θi); yigkg ∼ Γ(a, θi) yirkr ∼ Γ(a, θir); yigkg ∼ Γ(a, θig) L(a, a0, ν, p)

θi ∼ Γ(a0, ν) θir ∼ Γ(a0, ν); θig ∼ Γ(a0, ν)

H0 : θir = θig = θi (r /= g) HA : θir /= θig (r /= g)

yirkr ∼ TN(ηir , τ2
i ) yirkr ∼ TN(ηir , τ2

i )

BNGG yigkg ∼ TN(ηig , τ2
i ) yigkg ∼ TN(ηig , τ2

i ) L(τ2
1 , . . . , τ2

n , a, a0, ν, p)

ηir ∼ Γ(a, θi); ηig ∼ Γ(a, θi) ηir ∼ Γ(a, θir); ηig ∼ Γ(a, θig)

θi ∼ Γ(a0, ν) θir ∼ Γ(a0, ν); θig ∼ Γ(a0, ν)

H0 : θir = θig = θi (r /= g) HA : θir /= θig (r /= g)

yirkr ∼ TN(ηir , σ2
irkr + τ2

i ) yirkr ∼ TN(ηir , σ2
irkr + τ2

i )

BNNGG yigkg ∼ TN(ηig , σ2
igkg + τ2

i ) yigkg ∼ TN(ηig , σ2
igkg + τ2

i ) L(τ2
1 , . . . , τ2

n , a, a0, ν, p)

ηir ∼ Γ(a, θi); ηig ∼ Γ(a, θi) ηir ∼ Γ(a, θir); ηig ∼ Γ(a, θig)

θi ∼ Γ(a0, ν) θir ∼ Γ(a0, ν); θig ∼ Γ(a0, ν)

H0 : ηir = ηig = ηi (r /= g) HA : ηir /=ηig (r /= g)

BLNN y′irkr ∼ N(ηi, τ2
i ); y′igkg ∼ N(ηi, τ2

i ) y′irkr ∼ N(ηir , τ2
i ); y′igkg ∼ N(ηig , τ2

i ) L(τ2
1 , . . . , τ2

n ,μ,ϕ2, p)

ηi ∼ N(μ,ϕ2) ηir ∼ N(μ,ϕ2); ηig ∼ N(μ,ϕ2)

BLNNN

H0 : ηir = ηig = ηi (r /= g) HA : ηir /=ηig (r /= g)

y′irkr ∼ N(ηi, σ ′irkr
2 + τ2

i ) y′irkr ∼ N(ηir , σ ′irkr
2 + τ2

i )

y′igkg ∼ N(ηi, σ ′igkg
2 + τ2

i ) y′igkg ∼ N(ηig , σ ′igkg
2 + τ2

i )
L(τ2

1 , . . . , τ2
n ,μ,ϕ2, p)

ηi ∼ N(μ,ϕ2) ηir ∼ N(μ,ϕ2); ηig ∼ N(μ,ϕ2)

Table 3: Time-dependent methylation pattern definitions. Between the parent A2780 cell and its cisplatin-treated 1st, 3rd, and 5th
generation daughter cells, a probe with increased methylation (probability ≥ 0.8) is defined as hypermethylation (i.e., up), a probe with
decreased methylation (probability ≥ 0.8) is defined as hypomethylation (i.e., down), and otherwise, the methylation change is even. Probes
showing decreased methylation from generations 1 to 3 to 5 were defined as having “stochastic hypomethylation.” Analogously, probes
showing increased methylation from generations 1 to 3 to 5 were considered to exhibit “stochastic hypermethylation.” Finally, probes showing
mixed increased and decreased methylation from generations 1 to 3 to 5 were defined as having “random differential methylation.”

Categories
Differential methylation

Parental versus Generation 1 Parental versus generation 3 Parental versus generation 5

Stochastic hypomethylation
Down Down Down

Even Down Down

Even Even Down

Stochastic hypermethylation
Up Up Up

Even Up Up

Even Even Up

Random differential methylation

Down Up Down

Down Up Even

Down Even Down

Even Up Down

Even Up Even

Even Down Even

Even Down Up

Up Down Up

Up Down Even

Up Even Up
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Figure 1: Model performance comparisons in differential methylation data analysis. Five empirical Bayes models were compared: (1) binary-
gamma-gamma (BGG); (2) binary-normal-gamma-gamma (BNGG); (3) binary-normal-normal-gamma-gamma (BNNGG); (4) binary-
log-normal-normal (BLNN); (5) binary-log-normal-normal-normal (BLNNN). Negative log-likelihoods (a) and the number of identified
differentially methylated CpG islands (b) of the five Bayesian models as applied for comparing methylation differences between A2780
parental cells and their cisplatin-treated 1st, 3rd, and 5th generation daughter cells.

5, in accord with previous studies by our group [41] and
others showing cisplatin-associated de novo methylation.
Interestingly, BLNNN yielded less differentially methylated
loci than BLNN (Figure 1(b)), likely due to low signals and
oversensitivity to probe level background noise (Figure 2),
thus indicating the importance of considering background
noise when identifying differentially methylated loci and the
better performance of BLNNN model.

3.2. Transcription Factor Enrichment Analysis of Stochastic

Differential Methylation Probes

3.2.1. Time Dependent Differential Methylation Patterns.
Prescribed differential methylation analysis is applicable to
compare DNA methylation signals before and after A2780
cells divided and were treated with cisplatin at a given
time point. Our previous study of the heritable fidelity of
DNA methylation during DNA replication [30], based on
the widely accepted “stochastic” DNA methylation model
[36, 37], used Bayesian empirical modelling to subcate-
gorize two subclasses showing stochastic hypermethylation
(progressively increased) and stochastic hypomethylation
(progressive decreased), showed distinct cell division and
DNA damage effect on alterations in methylation patterns
[30]. To summarize the cell division-dependent differential
methylation patterns after 1, 3, and 5 A2780 cell generations,

we defined three categories (Table 3) as our previous work
[30]: stochastic hypomethylation describes the decreasing
methylation pattern, stochastic hypermethylation describes
the increasing methylation pattern, and randomly differen-
tial methylation represents nonunidirectional (or nonmono-
tone) methylation change from round 1 to 5. Consequently,
we compared the performance of the five empirical Bayes
models for correctly categorizing differentially methylated
loci into the three heritability categories (Figure 3). One
common feature among all five models was that random
differential methylation was predominant, while in both
the BLNN and BLNNN models, stochastic hypermethylation
and stochastic hypomethylation yielded similar numbers of
loci. We also observed numerous overlapped stochastically
hypomethylated loci and hypermethylated loci among the
five empirical Bayesian models (Figure 4). Among the three
gamma models, however, there was little or no overlap,
similar to negligible overlap between the gamma and log-
normal models (Figure 4). By contrast, the two log-normal
models showed considerable overlap of methylation patterns
within the two methylation heritability categories, although
slightly more loci were identified by the BLNN.

3.2.2. Transcription Factor-Binding Site (TFBS) Enrichment
Analysis. To assess a possible systems biological application
for this work, we compared the degree of TFBS enrichment
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Figure 2: Differentially methylated CpG islands before and after cisplatin treatment identified by empirical Bayes models. Scatter plots of the
logarithmically transformed DNA methylation intensities before and after 1, 3, and 5 cell divisions of cisplatin-treated A2780 cells, in which
the x-axis represents the parental A2780 cell line and the y-axis represents the cisplatin-treated A2780 progeny sublines. Rows 1, 2, and 3
represent the A2780 sublines following 1, 3, and 5 cell divisions coincident to treatment with the DNA crosslinking agent cisplatin. Columns
1, 2, 3, 4, and 5 represent binary-gamma-gamma (BGG) model, binary-normal-gamma-gamma (BNGG) model, binary-normal-normal-
gamma-gamma (BNNGG) model, binary-log-normal-normal (BLNN) model, and binary-log-normal-normal-normal (BLNNN) model,
respectively. Red, blue, and green represent the differentially methylated CpG islands (Zi � 0.8), not determined differentially methylated or
not (0.2 < Zi < 0.8) and not differentially methylated CpG islands (Zi � 0.2).

Table 4: Number of significantly enriched TFBSs in time-depend-
ent methylation patterns.

Empirical Bayes
model

Stochastic
hypo-methylation

Stochastic
hyper-

methylation

Random
differential

methylation

BGG 0 0 4

BNGG 0 0 0

BNNGG 0 0 0

BLNN 71 51 19

BLNNN 36 58 0

among stochastically hypomethylated, stochastically hyper-
methylated, and randomly differentially methylated loci,
as compared to the predicted TFBS frequencies calculated
from the GC content-matched background sequences (see
Section 2 for more details). Of the five models, BLNN yielded
71 TFBSs enriched in the stochastically hypomethylated loci,
51 enriched TFBSs in the stochastically hypermethylated

loci, and 19 enriched TFBSs in the randomly differentially
methylated loci, as compared to the background sequences
(Table 4). BLNNN had very similar TFBS enrichment analy-
ses in the stochastic hypomethylation and hypermethylation
categories, with 36 and 58 enriched TFBSs, respectively.
However, BLNNN had 0 enriched TFBS in the randomly
differentially methylated loci, while the gamma models
had essentially no enriched TFBSs in all three methyla-
tion categories (although BGG categorized four enriched
TFBSs among randomly differentially methylated loci).
These results indicate that TFBS enrichment analysis is
highly sensitive to the empirical Bayes model distribution
assumption and that stochastically differentially methylated
loci selected by log-normal models are more sensitive for
TFBS enrichment, as compared to the gamma models.

3.3. Biological Justification for the Suitability of BLNNN
Model. The log-normal models presented minimum nega-
tive log-likelihoods, showing consistently increasing num-
bers of differential methylated and reasonable numbers
of time-dependent differentially methylated loci. All these
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Figure 3: Numbers of CpG islands, as identified by empirical Bayes
models, segregating into our three previously defined methylation
heritability categories [30].

features suggest rigorous statistical performance on differen-
tial methylation analysis. Moreover, we recently found that
hypermethylated gene promoters had enriched transcription
factor-binding sites (TFBSs) in ovarian cancer drug-resistant
cells [29] and that DNA methylation fidelity is strongly
influenced by the presence of cis-regulatory elements [30],
thus allowing differential methylation identification to have
considerable biological significance. Basically, the rule of
TFBS enrichment in regulating DNA methylation is that
TFBSs should be enriched at promoter sequences where
DNA methylation (stochastic hypo- or hyper-methylation)
plays a critical role in regulating gene expression in both
normal and cancer cells, with little or no enrichment at
sequences where DNA methylation (random or nonmono-
tone) has minimal biological function [30]. By utilizing
the same experiment sets and same methods to calculate
TFBS enrichments (Table 4) as in our previous study [30],
we found no TFBS enrichment in stochastic hypo- or
hypermethylation by gamma models, which indicates the
inaccurate identification on differential methylation. On the
contrary, log-normal models provide biological meaningful
results. Again, this suggests a better applicability of log-
normal distribution assumption on differential methylation
analysis.

As we discussed previously, BLNN performed worse on
low signal probes than BLNNN, which resulted in more
differential methylated loci. Subsequently, BLNN gener-
ated more stochastically hypomethylated loci, stochastically
hypermethylated loci, and random differential methylated

loci. TFBS enrichment showed similar patterns on stochastic
hypo- or hypermethylation between both models, while
dramatically different on random methylation, which gives
us a chance to compare these two models biologically. By
enrichment of 0 versus 19, BLNNN selected purely the
nonmonotone methylation loci into the random methylation
pattern, suggesting a better performance than BLNN.

3.4. The Reproducibility of Log-Normal Model on Simula-
tion Studies. To illustrate the applicability of log-normal
distribution assumption and BLNNN model in differential
methylation analysis, which is not just limited in the
real microarray experiments presented in this paper, we
further performed simulation studies on BLNNN model.
The parameter estimates (μ,ϕ, τ, σ ′) by BLNNN of the
real microarray experiments were used for data simulation,
and 10% (p) of the probes were chosen as differentially
methylated. In detail, 10000 probes were simulated with
mean of μ and standard deviation of ϕ. Then, each probe
took 3 replicates under control or treatment conditions
with between-replicate variation, τ, and pixel level variation,
σ ′, which were added to generate the log-transformed
methylation signal, y′. In total, 1000 iterations of data sets
were simulated and inferred by BLNNN. The true positive
rate and false positive rate for differentially methylated loci
were averaged as 92% and 1.8%, respectively, which strongly
suggests the reproducibility of differential methylation anal-
ysis by BLNNN model.

4. Conclusions

We believe this is the first comparison of empirical Bayes
models for analyzing differential methylation microarray
data, demonstrating that log-normal distribution is statis-
tically superior to gamma distributions. We also showed
that probe level background noise can markedly confound
the identification of differentially methylated loci and
particularly, affect BLNN detection of loci having small
methylation signals, as compared to BLNNN. In a similar
study, Kendziorski et al. also compared log-normal and
gamma models on differential gene expression microarray,
reporting comparable performance between the two models
in both data analysis and simulations [35]. One possible
interpretation is that Affymetrix gene expression data fits
well to either model. However, our current data, using a
two-color array system, appears better suited for log-normal
distribution, based on our data analysis comparisons.

In this paper, we compared all five empirical Bayes
models for revealing enrichment of TFBS motifs into three
distinct methylation heritability categories. While both log-
normal models provided similar numbers of enriched TFBSs
in stochastically hypermethylated and hypomethylated loci,
all gamma models yielded only limited or no TFBSs. In the
field of epigenetics, it has been hypothesized that there exist
methylation-prone and methylation-resistant sequences in
cancerous [23, 24] and in normal tissues [25–28], and we
have now demonstrated that many of these sequences are
potential TFBSs [29, 30]. This concept has been validated
using laboratory-based techniques such as transcription
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Figure 4: Overlaps of stochastically hypo- and hypermethylated CpG islands identified by empirical Bayes models.

factor-based ChIP-chip and ChIP-seq data [42, 43]. All these
publications support log-normal models to provide more
accurate information necessary for the study of epigenetic
modifications in development, homeostasis, and disease.
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[39] A. E. Kel, E. Gößling, I. Reuter, E. Cheremushkin, O. V. Kel-
Margoulis, and E. Wingender, “MATCH: a tool for searching
transcription factor binding sites in DNA sequences,” Nucleic
Acids Research, vol. 31, no. 13, pp. 3576–3579, 2003.

[40] K. Strassburger and F. Bretz, “Compatible simultaneous
lower confidence bounds for the Holm procedure and other
Bonferroni-based closed tests,” Statistics in Medicine, vol. 27,
no. 24, pp. 4914–4927, 2008.

[41] M. Li, C. Balch, J. S. Montgomery et al., “Integrated analysis
of DNA methylation and gene expression reveals specific
signaling pathways associated with platinum resistance in
ovarian cancer,” BMC Medical Genomics, vol. 2, article 34,
2009.

[42] D. M. Murphy, P. G. Buckley, K. Bryan et al., “Global MYCN
transcription factor binding analysis in neuroblastoma reveals
association with distinct E-box motifs and regions of DNA
hypermethylation,” PLoS ONE, vol. 4, no. 12, Article ID e8154,
2009.

[43] C. Gebhard, C. Benner, M. Ehrich et al., “General transcrip-
tion factor binding at CpG islands in normal cells correlates
with resistance to de novo DNA methylation in cancer cells,”
Cancer Research, vol. 70, no. 4, pp. 1398–1407, 2010.


	Introduction
	Materials and Methods
	DNA Methylation Assessment
	DNA Methylation Microarray Normalization
	Empirical Bayes Models
	Binary-Gamma-Gamma Model (BGG)
	Binary-Normal-Gamma-Gamma Model (BNGG)
	Binary - Normal - Normal - Gamma - Gamma Model (BNNGG)
	Binary-Log-Normal-Normal Model (BLNN)
	Binary-Log-Normal-Normal-Normal Model (BLNNN)

	Transcription Factor-Binding Site Enrichment Analysis

	Results and Discussion
	Comparing the Performance of Five Empirical Bayes Models in Differential Methylation Data Analysis
	Model Specifications
	Differential Methylation Analysis

	Transcription Factor Enrichment Analysis of Stochastic Differential Methylation Probes
	Time Dependent Differential Methylation Patterns
	Transcription Factor-Binding Site (TFBS) Enrichment Analysis

	Biological Justification for the Suitability of BLNNN Model
	The Reproducibility of Log-Normal Model on Simulation Studies

	Conclusions
	Abbreviations 
	Conflict of Interests
	Acknowledgments 
	References

