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Abstract

Background: We investigated changes in the spatial distribution of schistosomiasis in Mali following a decade of donor-
funded control and a further 12 years without control.

Methodology/Principal Findings: National pre-intervention cross-sectional schistosomiasis surveys were conducted in Mali
in 1984–1989 (in communities) and again in 2004–2006 (in schools). Bayesian geostatistical models were built separately for
each time period and on the datasets combined across time periods. In the former, data from one period were used to
predict prevalence of schistosome infections for the other period, and in the latter, the models were used to determine
whether spatial autocorrelation and covariate effects were consistent across periods. Schistosoma haematobium prevalence
was 25.7% in 1984–1989 and 38.3% in 2004–2006; S. mansoni prevalence was 7.4% in 1984–1989 and 6.7% in 2004–2006
(note the models showed no significant difference in mean prevalence of either infection between time periods). Prevalence
of both infections showed a focal spatial pattern and negative associations with distance from perennial waterbodies, which
was consistent across time periods. Spatial models developed using 1984–1989 data were able to predict the distributions
of both schistosome species in 2004–2006 (area under the receiver operating characteristic curve was typically .0.7) and
vice versa.

Conclusions/Significance: A decade after the apparently successful conclusion of a donor-funded schistosomiasis control
programme from 1982–1992, national prevalence of schistosomiasis had rebounded to pre-intervention levels. Clusters of
schistosome infections occurred in generally the same areas accross time periods, although the precise locations varied. To
achieve long-term control, it is essential to plan for sustainability of ongoing interventions, including stengthening endemic
country health systems.
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Introduction

Mali was one of the first countries in sub-Saharan Africa to

initiate a national schistosomiasis control programme. Control

efforts started regionally in 1978 in Dogon Country (region of

Mopti) after the construction of small dams for growing vegetables,

and became a national programme in 1982. During the first 10

years, the programme was run by the Malian Ministry of Health in

partnership with the World Health Organization and the German

Technical Cooperation (Deutsche Gesellschaft für Technische

Zusammenarbeit, GTZ) [1]. Parasitological surveys followed by

mass treatment of the entire population in target areas were

conducted by a central team from Bamako. Additionally, in

selected areas, identification of infected individuals and case

treatment was implemented. The control programme was

intensively focused on two major endemic areas: Office du Niger

(irrigation area) and in the area around Bandiagara in the Plateau

Dogon (small dams area). Initial evaluation (1–3 years after

intervention) showed reductions in both prevalence of infection

and prevalence of heavy-intensity infections (.50 eggs/10 ml

urine for Schistosoma haematobium and .100 eggs/gram stool for S.

mansoni). For S. haematobium, prevalence of infection was reduced

from 58.9 to 26.8% and that of heavy infections from 18.4 to

3.8%, whereas for S. mansoni, prevalence of infection was only

reduced from 49.0 to 48.1% and that of heavy infections from 10.6

to 8.9% [2]. Estimated impact of the intervention varied by

intervention approach, ecological zone and time to follow up (1–3

years).

GTZ support for the programme ceased in 1992, with the

government taking over financial responsibility. However, lack of
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resources led to control activities being considerably reduced and

the implications of this for infection levels were not assessed in the

immediate post treatment period. From 1998, a new, decentralised

control programme was approved by the Ministry of Health but,

due to lacking continuous financial support from the government,

many planned activities were not implemented. In 2004, a new

initiative to recommence national control activities was established

with support from the Schistosomiasis Control Initiative (SCI;

http://www.schisto.org). Again the main intervention strategy was

mass treatment with praziquantel, with a particular focus on

treating school-age children [3].

The potential of using risk mapping to describe the spatial

patterns of infections is now well-established, and has been

demonstrated for a range of diseases including malaria [4,5],

schistosomiasis [6], Loa loa filariasis [7] and lymphatic filariasis [8].

The combination of geographical information systems (GIS),

remote sensing and geostatistics has led to an increase in the

understanding of the spatial epidemiology of infectious diseases,

the prediction of occurrence, and the targeting of large-scale

control programmes. For example, Bayesian geostatistical model-

ling is being used increasingly to predict spatial patterns of human

schistosomiasis in Africa [9,10,11,12,13].

Much of this work to date has used data from a single

geographical area at a single point in time to develop predictions

for similar locations. Preliminary work has investigated the spatial

extent to which risk models can be reliably extrapolated [14] but it

remains unclear the extent to which models based on data from

one area can be extrapolated temporally. This is particularly

important in determining whether control programmes can be

spatially targeted on the basis of historic data, or whether it is

necessary to conduct new surveys (which are expensive and time

consuming) to define the spatial distribution of disease. This issue

is especially relevant in the context of the dramatic up-scaling of

disease control interventions and the need for survey data to target

suites of alternative interventions.

In this paper, we use unique data on schistosome infections,

available from two nationwide surveys conducted in Mali, the first

undertaken during the 1980s prior to the implementation of the

GTZ-supported national control programme and the second

between 2004–2006, 12 years after this programme had ceased and

prior to implementation of the SCI-supported programme. We aim

to determine whether the overall prevalence and spatial distribution

of schistosomiasis in Mali is different in 2004–2006 compared to the

1980s and to determine whether the spatial distribution, including

covariate relationships with environmental variables and parameters

that describe the spatial dependence structure (i.e. clustering), have

changed in Mali over the last two decades.

Materials and Methods

Data
A nationwide survey was carried out between May 1984 and

May 1989 prior to implementation of the GTZ-supported

programme (see Traoré et al. [15] for further details). In brief,

villages were selected using a three-stage sampling approach: two

to three districts were randomly selected in each province, then

three to five arrondissements (sub-districts) were randomly selected

in each district, and five villages were randomly selected in each

arrondissement. In each village, individuals were randomly

selected to provide urine (200 individuals) and stool samples (150

individuals). For each individual, a single urine slide (for diagnosis

of S. haematobium infection by filtration method), and two Kato-

Katz slides prepared from a single faecal sample (for diagnosis of S.

mansoni) were examined microscopically using standard methods.

While egg counts were done, only data on the number tested and

proportion positive (i.e. with one or more eggs) in a given location

were available for the current study. Longitude and latitude co-

ordinates of each village were identified during the current study

from a national village GIS database (http://www.who.int/

health_mapping/tools/healthmapper/en/); of the 323 villages

surveyed we were able to geo-reference 300 villages, from which

data were available on 52,104 individuals.

A more recent nationwide survey was conducted in 194 schools

(including 15,051 school-aged children) between December 2004

and May 2006. Ethical approval for these surveys was obtained

from St. Mary’s Hospital Research Ethics Committee UK and the

National Public Health Research Institute’s (INRSP) scientific

committee in Mali. All data collection activities were carefully

explained to, and oral consent was obtained from traditional

authorities in the village (the village head and the elders), the

schoolmaster, the representative of the pupils’ parents and the

local health authorities. Child participants were given an

explanation of the data collection activities and were free not to

participate if they so chose. Written consent was not obtained and

oral consent was not specifically documented because the survey

was considered by the UK and Malian ethical committees as part

of the monitoring and evaluation of routine health activities

carried out by the Malian Ministry of Health’s national

schistosomiasis control programme.

Survey protocols (available on request) instructed survey teams

to select 30 boys and 30 girls per school using systematic random

sampling. Schools were selected to maximise geographical

coverage of the study area; all parts of Mali excluding the

northern desert and far eastern regions, where transmission is

known not to occur [16], were included in the survey. This was

done in a GIS (ArcView 9.2, ESRI, Redlands, CA) by overlaying a

1 decimal degree squared grid over the country. The locations of

communities in Mali were obtained from the aforementioned

national village database. Communities were selected using simple

random selection from each grid cell and, if more than one school

was present in a town or village, a school was sampled on arrival

using simple random selection. The selected children were

assembled and asked to provide a urine and stool sample. For

Author Summary

Geostatistical maps are increasingly being used to plan
neglected tropical disease control programmes. We
investigated the spatial distribution of schistosomiasis in
Mali prior to implementation of national donor-funded
mass chemotherapy programmes using data from 1984–
1989 and 2004–2006. The 2004–2006 dataset was collect-
ed after 10 years of schistosomiasis control followed by 12
years of no control. We found that national prevalence of
Schistosoma haematobium and S. mansoni was not
significantly different in 2004–2006 compared to 1984–
1989 and that the spatial distribution of both infections
was similar in both time periods, to the extent that models
built on data from one time period could accurately
predict the spatial distribution of prevalence of infection in
the other time period. This has two main implications: that
historic data can be used, in the first instance, to plan
contemporary control programmes due to the stability of
the spatial distribution of schistosomiasis; and that a
decade of donor-funded mass distribution of praziquantel
has had no discernable impact on the burden of
schistosomiasis in subsequent generations of Malians,
probably due to rapid reinfection.

Schistosomiasis Mapping, Mali, 1984–1989 and 2004–2006
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each child, a single urine slide and two Kato-Katz slides prepared

from a single faecal sample were examined microscopically as

described above. Numbers of eggs of S. haematobium and S. mansoni

in each child’s sample were recorded on paper forms, in addition

to the geographic location of the school (determined using a hand-

held global positioning system). All school and individual data

were transferred to a Microsoft Access database.

For the current study, numbers tested and positive (defined as one

or more eggs for each species of schistosome) were calculated for

each survey location. School or community-level raw prevalence was

then plotted in the GIS. Electronic data for land surface temperature

(LST) and normalised difference vegetation index (NDVI) were

obtained from the National Oceanographic and Atmospheric

Administration’s (NOAA) Advanced Very High Radiometer

(AVHRR; see Hay et al. [17] for details on these datasets) and the

location of large perennial waterbodies was obtained from the Food

and Agriculture Organization of the United Nations (FAO-GIS).

Values for LST, NDVI and distance to the nearest perennial water

body (DPWB) were calculated in the GIS for each survey location.

Spatial risk prediction
Multivariable logistic regression models were developed for

each species of schistosome and each of the two survey periods in a

frequentist statistical software package (Stata version 10.1, Stata

corporation, College Station, TX). Prelimary results were similar

for each species of schistosome and each study period. A quadratic

association between LST and prevalence was assessed and was

found to be significant and DPWB was also significantly and

negatively associated with prevalence. NDVI was not found to be

significantly associated with prevalence in the preliminary

multivariable models and was excluded from further analysis.

Therefore, it was decided to enter LST (in quadratic form) and

DPWB as covariates into the final spatial models. Bayesian

geostatistical models, developed in WinBUGS 1.4 (Medical

Research Council, Cambridge, UK and Imperial College London,

UK), were identically structured for each species of schistosome

and each study period. Statistical notation is presented in Text S1.

Three chains of the models were run consecutively. A burn-in of

1,000 iterations was allowed, followed by 10,000 iterations where

values for the intercept and coefficients were stored. Diagnostic tests

for convergence of the stored variables were undertaken, including

visual examination of history and density plots of the three chains.

Convergence was successfully achieved after 10,000 iterations in

each model and the posterior distributions of model parameters were

combined across the three chains and summarized using descriptive

statistics. Geostatistical prediction across Mali was done in Win-

BUGS using the spatial.unipred command [18].

To compare predictions accross time periods, the 1984–1989

model was used to predict infection prevalence at the 2004–2006

survey locations and vice versa, for both S. haematobium and S.

mansoni. The predicted prevalence was compared to the observed

prevalence, dichotomised at 50, 20, 10 and 0% (to assess predictive

performance relative to different observed prevalence thresholds,

including the World Health Organisation-recommended thresh-

olds for annual and biannual mass chemotherapy of 50% and 10%

respectively). The diagnostic test evaluation statistic, area under

the curve (AUC) of the receiver operating characteristic, was used

for the comparison. An AUC value of .0.7 was taken to indicate

acceptable predictive performance [19].

Investigation of stationarity of spatial dependence across
time periods

A stationary model is one where the parameters that define the

spatial dependence structure are the same for the two time periods

and a non-stationary model is one where the parameters are

different (note we refer to stationarity across time periods, not

different parts of the study area). Models were developed using the

combined datasets, including with different intercepts for each

time period and: 1) different coefficients, spatial dependence

parameters and random effects (i.e. assuming separate sub-models

for each time period); 2) the same coefficients but different spatial

dependence parameters and random effects (i.e. allowing the sub-

models to have common covariate effects); 3) the same coefficients

and spatial dependence parameters but different random effects

(i.e. allowing common covariate effects and stationary spatial

dependence structures, but separate predicted risk surfaces); and 4)

the same coefficients, spatial dependence parameters and random

effects (i.e. a single model giving an overall predicted risk surface

across the two time periods). Models 1 and 2 were non-stationary

models and models 3 and 4 were stationary models. Statistical

notation is presented in Text S2.

The best-fitting model (of 1–4) was selected using the deviance

information criterion (DIC). An additional comparison of the

spatial distribution of schistosomiasis accross time periods was

done by subtracting predicted prevalence from the best-fitting S.

haematobium and S. mansoni models in 2004–2006 from predicted

prevalence in 1984–1989.

Results

The national prevalence of infection with S. haematobium in

1984–1989 was 25.7% (range, 0.0–93.0%; 95% CI 25.3, 26.0%)

and in 2004–2006 was 38.3% (range, 0.0–99.0%; 95% CI 37.5,

39.1%), whereas for S. mansoni, prevalence in 1984–1989 was 7.4%

(range, 0.0–77.8%; 95% CI 7.1, 7.6%) and in 2004–2006 was

6.7% (range, 0.0–94.9%; 95% CI 6.3, 7.1%; note, CIs are

binomial exact CIs which do not account for the clustered survey

design or spatial autocorrelation – see the section on comparative

models for significance testing of prevalence in 1984–1989 versus

2004–2006). Maps of community (1984–1989) and school (2004–

2006) level prevalence (Figures 1 and 2) show that the data from

1984–1989 had a less uniform geographical distribution than the

data from 2004–2006. High prevalence of infection with S.

haematobium was widespread in Mali in both survey periods,

whereas for S. mansoni, both surveys indicated small clusters of high

infection prevalence in central Mali (Macina and Niono districts in

the Office du Niger irrigation area) and southwestern areas (e.g.

Kati district on the Niger River and Kita and Bafoulabé districts

on the Senegal River), but zero or very low prevalence of infection

throughout the rest of the country.

Period-specific models
The Bayesian geostatistical models for each time period are

presented in Table 1. Note that the odds ratios are on the same

scale for each variable, which were standardised to have a mean of

zero and standard deviation of one. DPWB was significantly and

negatively associated with each outcome, with very similar odds

ratios for all four models. The quadratic term for LST was not

significant in any of the models, where significance is defined by a

95% posterior interval that excludes one (note, outputs of Bayesian

models are distributions termed posterior distributions that

describe the probability associated with each of a range of

plausible values for the variable being estimated). Phi (w), which

indicates the rate of decay of spatial correlation (with a bigger w
indicative of smaller clusters) varied from 1.68 to 9.02 for S.

haematobium and S. mansoni in 2004–2006. S. haematobium clusters

were, therefore, generally larger than S. mansoni clusters. For both

types of infection, the sill was lower in 1984–1989 than in 2004–

Schistosomiasis Mapping, Mali, 1984–1989 and 2004–2006
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2006, indicating a stronger tendency towards spatial clustering in

the latter time period.

Models developed on 1984–1989 and 2004–2006 data were

generally able to discriminate infection prevalence for the other

dataset to an acceptable level (Table 2). For S. haematobium, models

tended to perform better when discriminating at lower prevalence

thresholds (present versus absent, ,10% versus $10%), while for

S. mansoni, models tended to perform better at high prevalence

thresholds (,50% versus $50%). The only comparison that gave

an AUC ,0.7, the acceptability criterion, was for prediction of S.

mansoni presence (prevalence .0%) in 1984–1989.

Comparative models
The deviance information criterion for models 1–4, for S.

haematobium and S. mansoni, are presented in Table 3. For S.

haematobium, the model with the lowest DIC (indicating the model

with the best compromise between model fit and parsimony) was

model 2 (Table 4), with common covariate effects but a non-

stationary spatial dependence structure across time periods. For S.

mansoni, the model with the lowest DIC was model 3 (Table 5),

with common covariate effects and a stationary spatial dependence

structure across time periods. As for the period-specific models,

prevalence of both infections was negatively associated with

increasing DPWB and was not significantly associated with LST.

In the non-stationary model for S. haematobium (Table 4), the sill

was lower for 1984–1989 than for 2004–2006, again indicating

greater clustering in the latter time period, and the rates of decay

of spatial correlation, phi, were similar for the two time periods.

The overlapping 95% posterior interval limits for the 1984–1989

and 2004–2006 intercepts in both the S. haematobium and S. mansoni

Figure 1. Raw prevalence of Schistosoma haematobium infection (A) in 1984–1989, in 300 villages and (B) in 2004–2006, in 194
schools, Mali, West Africa.
doi:10.1371/journal.pntd.0000431.g001

Schistosomiasis Mapping, Mali, 1984–1989 and 2004–2006
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models suggest that overall (mean) prevalence was not significantly

different across time periods for either species of schistosome.

Spatial predictions (showing the mean of the posterior distribu-

tions for predicted prevalence) based on the best model for each type

of schistosome infection are presented in Figures 3 and 4. In 2004–

2006, S. haematobium occurred in large clusters in a mid-latitudinal

band from western to central Mali and low predicted prevalence was

apparent in both southern and northern latitudinal bands

(Figure 3B). In 1984–1989 (Figure 3A), the pattern was similar but

more fragmented. The prediction maps for S. mansoni (Figure 4) were

remarkably similar to each other, with infection limited to small

high-prevalence clusters in central and southwestern regions,

althought the clusters occurred in slightly different locations.

Comparative maps show predicted prevalence in 1984–1989

subtracted from predicted prevalence in 2004–2006, using the

best-fitting models (Figure 5). Most areas of both maps had an

estimated difference of ,10% in predicted prevalence between the

two periods. However, there were some areas on both maps that

had an estimated difference of .20% in predicted prevalence; for

S. haematobium, higher predicted prevalence in 2004–2006 mainly

occurred in central and western regions and lower predicted

prevalence was mainly along the Niger river and in southwestern

regions; for S. mansoni, differences coincided with the locations of

the small high-prevalence foci in central and southwestern regions

because the precise location of these clusters varied somewhat

between the study periods.

Figure 2. Raw prevalence of Schistosoma mansoni infection (A) in 1984–1989, in 300 villages and (B) in 2004–2006, in 194 schools,
Mali, West Africa.
doi:10.1371/journal.pntd.0000431.g002

Schistosomiasis Mapping, Mali, 1984–1989 and 2004–2006
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Discussion

Despite differences in survey design and study population

between the time periods, this study demonstrated remarkable

similarities in the spatial distribution of prevalence of infection

with S. haematobium and S. mansoni in Mali between 1984–1989 and

2004–2006. While clusters of infection occurred in generally the

same area of the country, the precise location did vary slightly

between the two time periods. Nonetheless, our analysis of

predictive performance of models across time periods suggests it

may be possible, in the first instance, to use historical data to

predict contemporary distributions at national scales (assuming a

stable climate and an absence of new, large water resource

development projects, both of which should be investigated). It is

perhaps not surprising that the statistical associations between

prevalence and DPWB did not vary between the study periods as

the essential biology of schistosome infections is unlikely to have

changed, but it is interesting that the spatial dependence structure

was different (i.e. non-stationary) for S. haematobium between the

time periods. Possible reasons for non-stationary spatial variation

of S. haematobium can be broadly categorised into those related to

the different sampling strategies used, and those related to

changing epidemiology between the two study periods.

Regarding the sampling strategies, the data were based on

different sample locations, collected for different purposes and

from different populations. The data from 1984–1989 were

collected from the general population including adults, whilst the

2004–2006 data were from school-aged children. Age-stratified

prevalence and intensity of S. haematobium infections in Mali have

been reported [15] but individual or location-specific, age-

stratified prevalence data were not available in the current study,

which can be seen as its major limitation. However, previous

analyses (including an analysis of the same 1984–1989 dataset used

in this report) have shown that, while prevalence in school-aged

children is generally higher than in the adult population, there is a

consistent relationship between the prevalence in the two

populations such that prevalence in one can be used to predict

prevalence in the other [15,20]. The overall prevalence of S.

haematobium in 1984–1989, 25.7%, corresponds to an age-adjusted

prevalence of approximately 36% in children aged 7–14 years

[15], which is very similar to the prevalence in school-aged

children (38.3%) in 2004–2006.

The 1984–1989 surveys had a less uniform geographical

distribution than the 2004–2006 surveys, which is not surprising

given that the 1984–1989 surveys were not explicitly designed with

subsequent spatial analysis in mind, whereas uniform geographical

coverage was an aim of the survey design for the 2004–2006 study

to facilitate spatial analysis. Investigation of the impact of different

sampling strategies on observed spatial correlation is an area of

future research.

Factors potentially related to changing epidemiology include

desertification, urban growth and rural-urban migration [21,22],

Table 1. Bayesian geostatistical models of Schistosoma haematobium and S. mansoni infection prevalence in 1984–1989 and
2004–2006 in Mali, West Africa.

Variable S. haematobium S. mansoni

1984–1989 2004–2006 1984–1989 2004–2006

OR: DPWB 0.50 (0.32,0.71) 0.50 (0.25,0.91) 0.59 (0.34, 0.94) 0.49 (0.20,0.95)

OR: LST 1.41 (1.02,1.85) 0.62 (0.33,1.02) 0.48 (0.28, 0.84) 0.40 (0.19,0.71)

OR: LST2 0.96 (0.79,1.14) 1.06 (0.81,1.36) 0.88 (0.66, 1.13) 1.02 (0.69,1.48)

Intercept 21.73 (22.15,21.35) 21.42 (22.33,0.23) 25.40 (26.29, 24.60) 26.13 (27.18,25.25)

Phi (w) 5.38 (3.69,7.60) 1.68 (0.96,2.60) 6.09 (2.94, 12.04) 9.02 (2.01,54.25)

Sill 3.20 (2.43,4.26) 8.24 (5.44,12.79) 6.67 (4.55, 9.98) 9.42 (5.66,15.79)

DPWB = distance to perennial water body; LST = land surface temperature; OR = odds ratio; phi = rate of decay of spatial correlation; sill = variance of the spatial random
effect. Ninety-five percent posterior intervals are shown in brackets.
doi:10.1371/journal.pntd.0000431.t001

Table 2. Discriminatory performance of Bayesian geostatistical models based on 1984–1989 data for predicting prevalence in
2004–2006 and vice versa, for Schistosoma haematobium and S. mansoni in Mali, West Africa.

Observed
prevalence
threshold S. haematobium S. mansoni

Using 1984–1989 data to
predict 2004–2006 status

Using 2004–2006 data to
predict 1984–1989 status

Using 1984–1989 data to
predict 2004–2006 status

Using 2004–2006 data to
predict 1984–1989 status

$50% 0.70 (0.62, 0.78) 0.73 (0.66, 0.79) 0.81 (0.71, 0.92) 0.93 (0.84, 1.00)

$20% 0.73 (0.65, 0.80) 0.72 (0.66, 0.78) 0.78 (0.64, 0.91) 0.86 (0.78, 0.95)

$10% 0.78 (0.71, 0.84) 0.74 (0.68, 0.80) 0.82 (0.72, 0.91) 0.79 (0.70, 0.87)

.0% 0.82 (0.73, 0.91) 0.82 (0.70, 0.95) 0.70 (0.62, 0.78) 0.67 (0.60, 0.73)

The evaluation statistic is area under the receiver operating characteristic curve and it is estimated relative to different observed prevalence thresholds. Ninety-five
percent confidence intervals are shown in brackets.
doi:10.1371/journal.pntd.0000431.t002

Schistosomiasis Mapping, Mali, 1984–1989 and 2004–2006
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changing demographic and socioeconomic characteristics of the

population, long-term impacts of interventions on transmission

and implementation of water resource development projects such

as irrigation schemes, large dams and reservoirs [23,24,25]. These

factors can influence not only stationarity of spatial variation but

any differences observed in the location of spatial disease clusters.

The earlier, GTZ-supported control programme focussed on

specific, perceived high-risk areas of the country, with treatment

coverage highest in Bandiagara, Office du Niger, Baguinéda and

Sélingué. It might be suggested that spatial variation in changes in

prevalence (Figure 5) could relate to uneven geographical coverage

of the intervention, but the main intervention areas do not

correspond consistently to those where prevalence was lower in

2004–06 than 1984–89.

In addition to the limitation of different survey designs between

periods, we were not able to compare spatial variation in intensity

of infection between time periods because location-specific mean

egg counts were not available from the 1984–1989 surveys. Maps

of intensity would be useful for determining any changes in

transmission across the periods. Examination of a single urine slide

or single stool sample as a diagnostic approach results in sub-

optimal sensitivity and this will also have affected the accuracy of

our maps. We also did not incorporate anisotropy (where the

spatial correlation structure varies by direction) or non-stationary

spatial variation between different parts of the country, within

each time period; these are future potential refinements of the

models. We should also point out that the model predictions are

distributions and here we have only presented the posterior mean.

Examination of the full posterior distribution of predicted

prevalence enables assessment of uncertainties arising from

sampling and measurement error (including in the model

covariates). We have recently described how an understading of

these uncertainties can assist decion making in schistosomiasis

control programme planning [9].

Our results show that, while there were differences in the raw

data, the overall prevalence of neither S. haematobium nor S. mansoni

was significantly different between the time periods, despite ten

years of donor-funded schistosomiasis control throughout the

1980s and early 1990s. The most likely explanation is that, in the

absence of ongoing exposure reduction measures, re-infection with

schistosomes following chemotherapy inevitably occurred. In

endemic settings this is often apparent within 24 months

[26,27]. Rates of infection and re-infection are generally similar

among different age groups, although older people typically

reacquire schistosome infection at slower rates than younger

people [28]. Problems of re-infection were acknowledged by the

managers of the 1980s control programme and this was reflected

in the goal to reduce morbidity associated with infection in the

treated communities (which was successfully demonstrated in some

areas [29]) rather than transmission. The result was a predictable

failure of the national programme to have a lasting impact on the

burden of schistosomiasis in subsequent generations of Malians.

One of the most important conclusions arising from the current

work is that it is essential to develop a sustainability strategy to

ensure ongoing benefits from the current national control

programme. Recognising this fact, SCI has developed a

sustainability plan which is outlined in Fenwick et al. [30]. Briefly,

sustainability is based on initially using annual mass chemotherapy

in areas with prevalence $50%, or biannual mass chemotherapy

where prevalence is $10% and ,50%, to rapidly reduce

prevalence and intensity of infection. Then, when prevalence

reaches ,10% (after up to four rounds of treatment, depending on

levels of transmission), the Malian government plans to make

treatments available in health facilities, carry out regular surveys

and target treatment in schools if the prevalence rises above 10%.

Sustainability also depends on developing the Malian health

system and integrating schistosomiasis control with routine health

Table 3. Deviance Information Criterion values for Bayesian
geostatistical models of Schistosoma haematobium and S.
mansoni infection prevalence in 2004–2006 and 1984–1989 in
Mali, West Africa.

Model S. haematobium S. mansoni

1) Different coefficients and spatial structure 2952.4 1352.2

2) Same coefficients, different spatial structure 2947.5 1351.9

3) Same coefficients and spatial structure 2949.9 1346.5

4) Data grouped, with single overall prediction 2950.1 1347.6

doi:10.1371/journal.pntd.0000431.t003

Table 4. Bayesian geostatistical model of Schistosoma
haematobium infection prevalence in 2004–2006 and 1984–
1989 in Mali, West Africa.

Variable
Posterior mean (95% posterior
interval)

OR: DPWB 0.51 (0.39, 0.67)

OR: LST 1.33 (1.02, 1.77)

OR: LST2 0.95 (0.74, 1.12)

Intercept: 1984–1989 21.72 (22.11, 21.34)

Intercept: 2004–2006 21.37 (22.17, 20.71)

Phi (w): 1984–1989 5.60 (3.59, 8.24)

Phi (w): 2004–2006 6.82 (1.77, 45.75)

Sill: 1984–1989 3.17 (2.42, 4.27)

Sill: 2004–2006 6.35 (4.26, 9.70)

DPWB = distance to perennial water body; LST = land surface temperature;
OR = odds ratio; phi = rate of decay of spatial correlation; sill = variance of the
spatial random effect. Ninety-five percent posterior intervals are shown in
brackets.
doi:10.1371/journal.pntd.0000431.t004

Table 5. Bayesian geostatistical model of S. mansoni infection
prevalence in 2004–2006 and 1984–1989 in Mali, West Africa.

Variable
Posterior mean (95% posterior
interval)

OR: DPWB 0.57 (0.35, 0.82)

OR: LST 0.45 (0.31, 0.65)

OR: LST2 0.92 (0.71, 1.15)

Intercept: 1984–1989 25.39 (25.99, 24.71)

Intercept: 2004–2006 25.84 (26.59, 25.18)

Phi (w) 6.47 (3.28, 16.57)

Sill 7.15 (5.17, 9.86)

DPWB = distance to perennial water body; LST = land surface temperature;
OR = odds ratio; phi = rate of decay of spatial correlation; sill = variance of the
spatial random effect. Ninety-five percent posterior intervals are shown in
brackets.
doi:10.1371/journal.pntd.0000431.t005
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Figure 3. Predicted prevalence of Schistosoma haematobium (A) in 1984–1989 and (B) in 2004–2006, Mali, West Africa. Predictions are
based on a non-stationary Bayesian geostatistical model.
doi:10.1371/journal.pntd.0000431.g003
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Figure 4. Predicted prevalence of Schistosoma mansoni (A) in 1984–1989 and (B) in 2004–2006, Mali, West Africa. Predictions are based
on a stationary Bayesian geostatistical model.
doi:10.1371/journal.pntd.0000431.g004
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Figure 5. Difference in predicted prevalence of infection with (A) Schistosoma haematobium and (B) S. mansoni in 1984–1989 and
2004–2006, Mali, West Africa. Predictions for S. haematobium are based on a non-stationary Bayesian geostatistical model and for S. mansoni on a
stationary Bayesian geostatistical model, and calculations involved subtracting 1984–1989 predicted values from 2004–2006 predicted values.
doi:10.1371/journal.pntd.0000431.g005
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care delivery [31]. Improved water sanitation and health

education could be promoted for sustainable control [32], snail

control could be revisited and schistosomiasis vaccines might also

have a future role [33].

The maps presented here can be used to target what are likely to

be more limited national resources in the longer term to the

highest-risk areas, where they will have the greatest impact on

infection, morbidity, and (hopefully) transmission. The current

move towards integration of control of neglected tropical diseases

means that the government may have the opportunity to

implement a cost effective control programme encompassing

schistosomiasis, soil transmitted helminth infections, lymphatic

filariasis, river blindness and trachoma. It is clear that a

commitment from the Malian government and international

donors for substantial resources is required long into the future, or

alternative strategies need to be found, if control of schistosomiasis

transmission in Mali is to be achieved.
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2. Brinkmann UK, Werler C, Traoré M, Doumbia S, Diarra A (1988) Experiences
with mass chemotherapy in the control of schistosomiasis in Mali. Trop Med

Parasitol 39: 167–174.
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Santé 13: 49–53.
26. N’Goran EK, Utzinger J, N’Guessan AN, Müller I, Zamblé K, et al. (2001)
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