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Abstract: Cancer therapeutics must be delivered to their targets for improving efficacy and reducing
toxicity, though they encounter physiological barriers in the tumor microenvironment. They also
face limitations associated with genetic instability and dynamic changes of surface proteins in cancer
cells. Nanosized exosomes generated from the endosomal compartment, however, transfer their
cargo to the recipient cells and mediate the intercellular communication, which affects malignancy
progression, tumor immunity, and chemoresistance. In this review, we give an overview of exosomes’
biological aspects and therapeutic potential as diagnostic biomarkers and drug delivery vehicles for
oncotherapy. Furthermore, we discuss whether exosomes could contribute to personalized cancer
immunotherapy drug design as efficient nanocommunicators.

Keywords: exosome; cancer; nanocommunicator; diagnostic biomarker; drug delivery vehicle;
personalized cancer immunotherapy

1. Introduction

Oncology drugs constitute the largest therapeutics section approved by the Center for Drug
Evaluation and Research, a division of the United States Food and Drug Administration [1]. Once cancer
metastasizes from the primary tumor to new sites at the time of detection, the survival rate of cancer
patients decreases substantially, posing a threat to overall health [2]. In recent times, an early diagnosis
of cancer via timely screening using liquid biopsy tools such as circulating tumor cells (CTCs) or
circulating tumor DNA (ctDNA) as well as extracellular vesicles (EVs) has received attention, and the
survival rate of cancer patients has increased with the development of treatment strategies [3,4].

Anticancer drug approval trends have changed since cancer chemotherapeutic agents were first
developed in the 1940s. Cancer chemotherapeutics show efficacy as well as side effects as they not
only interfere with the growth or division of cancer cells but also normal cells. Cancer cells even
evade anticancer drugs by mediating a cellular efflux of drugs or by reducing target gene expression.
They not only receive external signals but also transmit signals to form new blood vessels in cancer
tissues. EVs secreted by cancer cells transfer signals for cancer progression and metastasis [5].
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As technical limitations associated with cancer chemotherapy have been recognized, and the
understanding of cancer biology has improved, the paradigm of research and development has
shifted towards targeted therapy using monoclonal antibodies and small molecules that target
the signaling process of cancer cells. Recently, synthetic small molecules such as a FGFR
(fibroblast growth factor receptor) inhibitor (erdafitinib; Janssen Pharmaceutica, Beerse, Belgium),
CSF1R (colony-stimulating factor-1 receptor)/RTK (receptor tyrosine kinase)/FLT3 (FMS-like tyrosine
kinase 3) inhibitor (pexidartinib; Daiichi Sankyo, Tokyo, Japan), and exportin 1 inhibitor (selinexor;
Karyopharm Therapeutics, Newton, MA, USA), and biologics such as an antibody-drug conjugate
(ADC) targeting nectin-4 (enfortumab vedotin; Astellas Pharma, Tokyo, Japan), and ADC targeting
CD79B (polatuzumab vedotin; Genentech/Roche, South San Francisco, CA, USA) have been approved.
Interestingly, entrectinib (Genentech/Roche) simultaneously targets c-ROS oncogene 1 (ROS1),
ALK (anaplastic lymphoma kinase) RTKs, and tropomyosin receptor kinase proteins encoded by
neurotrophic tyrosine receptor kinase (NTRK) genes; it was approved as a biomarker-based treatment
for ROS1-positive and NTRK fusion-positive cancer. In the same vein, engineered EVs that carry
small interfering RNA (siRNA) or short hairpin RNA specifically targeting oncogenic KRAS mutation
showed their therapeutic potential in pancreatic ductal adenocarcinoma mouse models [6].

Despite the remarkable performance of targeted anticancer drugs, limitations have been associated
with the targeting of markers on the cancer cell surface, because cancer cells are genetically unstable,
and surface proteins in cancer cells change dynamically during disease progression [7]. The necessity of
developing new therapeutic approaches has emerged due to the genetic heterogeneity between cancer
cells and drug resistance mechanisms [8]. Since 2010, cancer immunotherapy drugs including CTLA4
(cytotoxic T-lymphocyte-associated protein 4) inhibitors, PD-1 (programmed cell death protein 1)
inhibitors, PD-L1 (programmed cell death ligand 1) inhibitors, and CAR (chimeric antigen receptor)-T
cell therapy have received a lot of attention. As cancer cells proliferate by evading the immune system,
cancer immunotherapy drugs interfere with the evasion mechanism or stimulate immune cells to
attack tumor cells [9].

However, cancer therapeutics encounter barriers against transport to target sites owing to the
elevated levels of solid stress, vascular network formation, interstitial fluid pressure, and density
of extracellular matrix (ECM) in the tumor microenvironment [10]. Nanocarriers can enhance the
permeability and retention of their cargo drugs in solid tumor tissues. Certain cancer therapeutics
need to be delivered to intracellular targets such as the cytosol or nucleus to elicit their proper
action [11]. Interestingly, nanosized EVs called exosomes, transfer their cargo nucleic acids and
proteins to the recipient cells via the cellular uptake of vesicles; this contributes to the intercellular
communication between tumor cells and bone marrow stromal cells. Recurrent mutations or specific
alterations of niches within hematopoietic cells of the bone marrow regulating the production of
blood and immune cells play roles in malignancy progression and chemoresistance [12]. In that
exosomes orchestrate immune cells in the tumor microenvironment through cell-to-cell signaling,
they have been tested for cancer immunotherapy in clinical trials. Dendritic cell (DC)-derived
exosomes (DEXs) showed modest efficacy in patients with metastatic melanoma and non-small cell
lung cancer (NSCLC) [13,14]. Autologous tumor-derived exosomes (TEXs) in combination with the
GM-CSF (granulocyte-macrophage colony-stimulating factor) could induce antitumor T lymphocyte
response in colorectal cancer [15]. TEXs can also provide diagnostic biomarkers, because they circulate
in biological fluids and the exosomal components enclosed in lipid membrane vesicles reflect the
characteristics of the cells of origin in the tumor tissue.

In this review, we aimed to provide a comprehensive overview of the biological aspects and
potential therapeutic applications of exosomes in cancer. Here, we also discuss whether exosomes
could contribute to personalized cancer immunotherapy drug design as efficient nanocommunicators.



Int. J. Mol. Sci. 2020, 21, 7363 3 of 23

2. Biologic Aspects of Exosomes and Cancer

2.1. Exosome Biogenesis

Cells release EVs enclosed in lipid membranes into the extracellular environment. Exosomes,
microvesicles (MVs)/microparticles, and apoptotic bodies form a subgroup of EVs. They have been
defined by their biogenesis, size, or constituent molecules. The process of exosome biogenesis starts
with endocytic membrane transport through which the cell surface proteins can be recycled [16].
The perimeter membrane of endocytic vesicles buds inward during endosome maturation from the
early endosome to the late endosome [17]. Further invagination of the endosomal membrane into
the endosomal compartment forms intraluminal vesicles (ILVs) in the multivesicular body (MVB).
Subsequently, the MVB is either fused with the lysosome for degradation or release its contents in the
form of exosomes by merging with the plasma membrane [18]. This process of exosome formation is
different from that of MV/microparticle formation that takes place via outward budding directly from
the plasma membrane (Figure 1) [18].

The most well-known mechanism for packaging receptors internalized from the cell surface and
other exosomal cargo proteins in the late endosome membrane depend on the endosomal sorting
complex required for transport (ESCRT) machinery [19]. Cytosolic protein complexes composed of
ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT–III, together with accessory proteins, participate in binding
ubiquitinated cargo and sculpting MVB vesicles [20]. The addition of a regulatory ubiquitin protein
to the substrate is a reversible post-translational modification catalyzed by a ubiquitin-activating
enzyme, ubiquitin-conjugating enzyme, and ubiquitin ligase [21]. Even though it is debatable
whether the contents of MVBs are released into the extracellular medium or enter the lysosome under
certain circumstances, the tagging of misfolded or damaged proteins with ubiquitin plays a role
in maintaining intracellular protein levels for cell cycle regulation and is also associated with the
oncogenic processes [22]. For example, mutations in genes encoding components for ubiquitin ligase
activity lead to the development of renal cell carcinoma and breast cancer [23,24].

Alternatively, ESCRT-independent pathways are supported by MVB formation even in the
depletion of key subunits of ESCRTs [25]. Sphingolipids and cholesterol that are enriched in
detergent-resistant membrane domains may be involved in ubiquitin-independent protein sorting [26].
The sphingolipid ceramide also triggers the formation of ILVs in the late endosome that are destined
for secretion as exosomes [27]. Observation of human lymphoblastoid cells via immunoelectron
microscopy demonstrated low cholesterol labeling in the lysosome but high cholesterol labeling in the
MVB and exosomes [28]. Despite the possibility of ubiquitin-independent exosomal cargo sorting,
certain ESCRT components are involved in exosome formation. Apoptosis-linked gene 2-interacting
protein X (ALIX), an ESCRT accessory protein, contributes to the sorting of transferrin receptor into the
late endosome membrane and interacts with syntenin-linking syndecan-mediated signaling [29,30].
Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), an ESCRT-0 protein, is related to
exosomal secretion and antigen-presenting activity in DCs [31].

The pathways of packaging RNAs into exosomes are still unclear. Specific linear sequence
motifs that are shared by exosomal RNAs may function as cis-acting elements that target RNAs
to exosomes [32]. GW-bodies containing protein components of RNA-induced silencing complex
congregate with the endosome and MVB, where microRNA (miRNAs) are enriched. The exosome-like
vesicles secreted by MVBs are rich in GW182, which modulates miRNA loading or gene silencing [33].

2.2. Exosome–Cell Interaction and Biodistribution of Exosomes

After being secreted by the original cell into the extracellular space, exosomes circulate in body
fluids or are distributed into the tissue ECM [34,35]. Owing to their nanosize, they even penetrate
the nasal mucosa and bypass the blood-brain barrier [36]. Labeling and tracking exosomes using
fluorescence or bioluminescence helps us understand exosome–cell interaction and the biodistribution
of exosomes [37].
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Exosomes with lipid bilayer structures can be taken up into the recipient cell via membrane fusion,
clathrin-mediated endocytosis, caveolin-dependent endocytosis, macropinocytosis, or phagocytosis,
leading to the delivery of exosomal contents to the cytosolic space of the recipient cell (Figure 2) [38–41].
Exosomal cargo is then released by the acidification of the endo/lysosome compartment in the recipient
cell [42]. Receptor-ligand interactions between cell surface receptors and exosomal ligands may also
occur based on specific cell types, and mediate antigen presentation, cell signaling, the release of
soluble factor, disease progression, and immune surveillance [43].

Figure 1. The process of exosome biogenesis. The perimeter membrane of endocytic vesicles buds inward
during endosome maturation from the early endosome to the late endosome. Further invagination
of the endosomal membrane forms intraluminal vesicles (ILVs) in the multivesicular body (MVB).
Subsequently, the MVB is fused with the lysosome or release its contents in the form of exosomes
(top right). This process of exosome biogenesis is different from that of microvesicle (MV) shedding
(bottom). Receptors internalized from the cell surface and other exosomal cargo proteins are packed
in the late endosome either by endosomal sorting complex required for transport (ESCRT)-dependent
or ESCRT-independent pathway. ER: endoplasmic reticulum; ILV: intraluminal vesicle; MVB:
multivesicular body; MV: microvesicle; ESCRT: endosomal sorting complex required for transport; ALIX:
apoptosis-linked gene 2-interacting protein X.
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Figure 2. The illustration of exosome–cell interaction. Exosomes can be taken up into the recipient cell
via direct membrane fusion or endocytosis, leading to the delivery of exosomal contents such as DNAs,
messenger RNAs, long non-coding RNAs, enzymes, and signaling peptides or proteins to the cytosolic
space of the recipient cell. Receptor-ligand interactions between cell surface receptors and exosomal
ligands may also occur.

The diverse functions of exosomes are governed by the delivery of exosomal components,
including lipids, nucleic acids, and proteins such as tetraspanins, adhesion molecules, antigen-presenting
molecules, transmembrane receptors, MVB formation proteins, membrane trafficking proteins,
cytoskeletal proteins, enzymes, signaling proteins, and heat shock proteins (Figure 3) [44]. Finally,
clearance of exosomes from the body might take place via the liver, spleen, and kidneys with the
mononuclear phagocytic system [45].

2.3. The Biological Functions of Exosomes in Cancer

Exosomes function as unique intercellular communicators and debris managers for cellular
homeostasis [46]. Delivery of exosomal cargo mediates cell motility, immune responses, and reprogramming
of the tumor microenvironment. Whether exosomes promote cancer progression and escape from
immunosurveillance depends on the type of the cells of origin and malignancy at the time of exosome
release [47,48]. TEXs have autocrine and paracrine roles in cancer progression [49]. At the site of the primary
lesion, they carry fibronectin and proteinases, including membrane type 1-matrix metalloproteinase (MMP)
and MMP2, and facilitate adhesion and invasiveness of cancer cells [50]. Delivery of miRNAs via TEXs
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transforms fibroblasts into cancer-associated fibroblasts (CAFs) [51–53]. Meanwhile, fibroblast-derived
exosomes have been reported to stimulate directional movements of breast cancer cells, which is dependent
on Wnt-planar cell polarity signaling [54]. Exosomes secreted from CAFs are rich in disintegrin and
metalloproteinase domain-containing protein 10, which can enhance cancer cell motility via Notch receptor
activation and the GTPase RhoA signalling [55]. Adipocyte-derived exosomes have been shown to increase
migration and invasion of melanoma cells via fatty acid oxidation [56].

Figure 3. The illustration of exosomal components. The diverse functions of exosomes are governed by
the delivery of exosomal cargo proteins and nucleic acids to the recipient cells. Exosomal components
include lipids, nucleic acids, tetraspanins, adhesion molecules, antigen-presenting molecules,
transmembrane receptors, MVB formation proteins, membrane trafficking proteins, enzymes,
signaling proteins, etc. mRNA: messenger RNAs; lncRNA: long non-coding RNA; ICAM: intercellular
adhesion molecule; EpCAM: epithelial cell adhesion molecule; MHC: major histocompatibility complex.

Exosomes also regulate angiogenesis and vascular permeability [57]. A mucin-type podoplanin
glycoprotein, which is upregulated in certain types of cancer and incorporated into exosomes,
reprograms exosomal proteins and promotes lymphangiogenesis [58]. Uptake of leukemia-derived
exosomes containing miR-92a by endothelial cells enhanced endothelial tube formation [59].
Exosomes released by metastatic tumor cells led to endothelial hyperpermeability contrary to
the exosomes released by non-metastatic tumor cells [60]. Under hypoxia, miR-23a upregulation in
TEXs leads to the accumulation of hypoxia-inducible factor-1 α, enhancing angiogenesis, and inhibits
tight junction protein ZO-1, increasing vascular permeability [61].

After the intravasation of tumor cells, TEXs traveling through the bloodstream develop
“pre-metastatic niches” by modifying microenvironments in distant target organs and affecting
organ-specific stromal cells [62]. Exosomes from highly metastatic melanomas reprogrammed bone
marrow progenitor cells, resulting in exosome-mediated tyrosine-protein kinase Met signaling [63].
Uptake of exosomes derived from pancreatic ductal adenocarcinomas by Kupffer cells induced
transforming growth factor-β secretion and fibronectin production, which initiated liver pre-metastatic
niche formation [64]. Specific integrin expression patterns on TEXs were shown to correlate with
the localization of TEXs and organotropic metastasis [65]. Targeting the exosomal integrin α6β4 was
associated with lung metastasis, whereas targeting the exosomal integrin αvβ5 was associated with liver
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metastasis. TEXs can also enter sentinel lymph nodes and influence lymph node distribution of cancer
cells, which is driven by synchronized molecular signals that affect tumor metastasis [66]. Meanwhile,
reports indicate that exosomes from non-metastatic cells inhibit metastasis. Exosomes isolated from
non-metastatic patient sera suppressed experimental lung metastasis by increasing the number of
patrolling monocytes in the lungs and inducing macrophage differentiation, leading to immune
surveillance in the pre-metastatic niche [67].

As TEXs contain immunosuppressive ligands as well as immunostimulatory tumor-associated
antigens (TAAs), they can play roles in mediating tumor immunity [68]. Binding immune-inhibitory
ligands of TEXs to T cell receptors and IL-2 receptors leads to tolerogenic signals [69]. TEXs also induce
apoptosis of CD8+ T lymphocytes and differentiation of myeloid precursor cells and regulatory T cells.
They can also inhibit the cytotoxic functions of natural killer (NK) cells via downregulation of NK
group 2D, an NK-activating receptor that recognizes ligands on the surface of malignant cells as well
as TEXs [70]. Meanwhile, DEXs pulsed with tumor peptides activate cytotoxic T lymphocytes [71].
Mast cell-derived exosomes associated with antigens induce maturation of DCs. Antigen presentation
by DCs activates B and T cells [72].

Exosomes have also been reported to mediate cancer chemoresistance by cargo transfer [73].
Exosomes derived from drug-resistant breast cancer cells modulated the cell cycle and drug-induced
apoptosis, which might be dependent on selective miRNA patterns [73]. Restoration of miR-151a
via exosomes derived from temozolomide (TMZ)-resistant glioblastoma multiforme enhances
chemosensitivity to TMZ, whereas miR-151a loss drives TMZ resistance [74]. In cisplatin-resistant
tumor cells, acidic pH in the extracellular microenvironment reduces cisplatin uptake into tumor cells
and increases cisplatin levels eliminated via TEXs [75]. Exosomes isolated from fibroblast-derived
conditioned medium prime cancer stem cells and promote chemoresistance in colorectal cancer [76].
Transfer of exosomal RNA from stromal to breast cancer cells activates signal transducer and activator
of transcription 1 and NOTCH3 signaling, which regulate the expansion of chemoresistant cancer
cells [77].

3. Potential Therapeutic Applications of Exosomes in Cancer

3.1. Exosomes as Diagnostic Biomarkers for Cancer

3.1.1. Identification Techniques of Exosomes in Liquid Biopsy

As exosomes have the potential to be used as prognostic biomarkers, isolation and identification of
exosomes and their contents are also critical issues. For exosome isolation/purification, various methods
have been evaluated. The most common method is differential centrifugation at 300× g for 10 min,
2000× g for 10 min, and 10,000× g for 30 min, followed by ultracentrifugation at 100,000× g for
2 h. For higher purity of exosomes, gradient centrifugation using sucrose can also be used [78].
An immuno-isolation method using antibody-coated magnetic beads can also be used to obtain higher
purity and recovery rates. Rapid surface protein characterization using flow cytometry provides
additional benefits with this method [79]. However, only specific types of exosomes can be isolated
using this method, which can be considered as one of the limitations of this method. Currently,
exosome extraction kits such as the ExoSpinTM Exosome purification Kit (Cell Guidance Systems LLC;
St. Louis, MO, USA) and Total Exosome Isolation KitTM (Life Technologies; Waltham, MA, USA) are also
available. Typically, these kits use polymers such as polyethylene glycol with centrifugation to induce
exosome sedimentation [80]. Microfluidic technology enables rapid and precise isolation/purification
of exosomes with a very small volume of samples using a micro-electromechanical system [81].
Turbidimetry-enabled particle purification liquid chromatography based on the size exclusion principle
also has been proven superior in purification of EVs in biofluids [82]. Using biosensors is another
technique to determine exosomes with higher sensitivity and automated analysis [83]. For identification
of exosome contents, general methods such as polymerase chain reaction (PCR), next-generation
sequencing (NGS), and proteomics can be used.
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3.1.2. Applications of Exosomes as Diagnostic Biomarkers for Cancer

Liquid biopsy tools such as CTCs, ctDNA, and exosomes have advantages in non-invasive
diagnosis and prognosis over traditional tissue biopsy strategies. Prognostic potential of CTCs has
been already tested for monitoring epithelium-originating tumors in clinical trials [84]. However,
CTCs shed from the primary tumor are found as only a few CTCs per mL of blood among millions
of erythrocytes or leukocytes, and CTC enrichment techniques are needed for their detection [85].
Fragmented DNA shed from tumor cells may reflect the genetic signature of tumors [86]. Analysis of
ctDNA in blood is challenging because there is a small fraction of ctDNA among cell-free DNAs from
leukocytes in the blood sample [87]. In addition, the heterogeneity of tumor cells makes determining
tumor-specific mutation in the ctDNA sample difficult.

Compared to the limited amounts of CTCs or ctDNA in the bloodstream, exosomes can be detected
not only in blood but also in urine, cerebrospinal fluid, or lymphatic exudate [88,89]. Exosomes can be
actively involved in cellular communication by delivering various signaling molecules. They serve as
effective carriers, as the lipid bilayer can protect the contents and directly deliver them to the target cells.
Exosome contents include nucleic acids, enzymes, and various signaling proteins. The contents can
vary depending on the cells of origin. Therefore, the identification of exosomal contents can provide
important clues regarding the cells of origin, which makes them ideal biomarkers for the diagnosis of
diseases such as cancer, infection, metabolic, and neurodegenerative disorders [90,91].

As exosomes and their contents released from cancer cells display unique properties, many attempts
have been made to use TEXs as cancer diagnostic biomarkers (Table 1) [92]. TEXs play important
roles in facilitating tumor growth and are involved in every step of cancer development, including
angiogenesis, proliferation, metastasis, and fostering the tumor microenvironment by delivering
relevant genes, growth factors, and cell signaling molecules [93–95]. For example, exosomes isolated
from urine samples can be used to diagnose prostate cancer, bladder cancer, and glioblastoma. Typically,
exosomal proteins related to epidermal growth factor receptor (EGFR) pathways (resistin, α-subunit
of Gs protein, retinoic acid-induced protein 3, EGFR variant III, etc.) are present at diagnostic levels
and hence, can be used as reliable biomarkers [96–98]. Prostate-specific antigen, survivin, and prostate
cancer antigen 3 in exosomal contents can be also used for detecting prostate cancer [97,99,100].
Nucleic acids present in cancer exosomes, including miRNA, messenger RNA (mRNA), and long
non-coding RNA (lncRNA), can also be used as diagnostic markers. For example, unique nucleic
acids from exosomes have been identified in patients with glioblastoma [98]. Specific lncRNA,
LINC00152, was also identified in gastric cancer-derived exosomes, which makes it a useful diagnostic
biomarker [101]. miRNAs such as miR-21, -141, -200a, etc. can be detected in ovarian cancer patients,
and miR-17-3p, -21, etc. were identified in lung cancer patients [102,103]. The genetic mutation in cancer
patients is detectable by using exosome samples instead of CTCs or ctDNA. Exosomal RNA/DNA
demonstrated the diagnostic value for KRAS mutation in pancreatic cancer and EGFR mutation
in NSCLC [104–106]. BRAF mutation in EVs from lymphatic exudate of melanoma patients was
reported to be useful for the prognosis [107]. Therefore, identification of unique exosomal contents
corresponding to various types of cancers can help develop reliable diagnostic biomarkers (Figure 4).

3.2. Exosomes as Drug Delivery Vehicles for Oncotherapy

Exosomes are attractive nanovehicles for targeting cancer (Figure 4). As exosomes originate
from endogenous cells, they possess low immunogenicity and thus induce low toxicity and side
effects [108]. Exosomes are stable under physiological conditions. Owing to the presence of a lipid
bilayer, they can protect the contents from the immune system and various enzymes. Furthermore,
they demonstrate a homing capability by cell/tissue tropism with a longer circulation period, and can
also cross the blood-brain barrier [109]. Unlike liposomes or other synthetic drug delivery nanoparticles,
exosomes have characteristic membrane proteins and lipids that promote efficient targeting of exosomes
to the recipient cell [110]. Exosomes can also enhance the delivery of contents as they can be directly
fused or internalized into target cells. CD47, an integrin-associated protein upregulated in mesenchymal
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stem cells (MSCs), interacts with signal-regulatory protein, which helps inhibition of phagocytosis [111].
Thus, exosomes derived from fibroblast-like MSCs show the enhanced retention in the circulation in
mice [6]. As the average size of exosomes ranges from 30 to 200 nm, passive targeting of exosomes to
tumor tissue with enhanced permeability and retention effect can also be expected. With these benefits,
a number of clinical and preclinical trials have been conducted to utilize exosomes as delivery vehicles.

Table 1. Applications of exosomes as diagnostic biomarkers for cancer.

Exosome Contents Associated Molecule Target Disease Reference

Proteins
Resistin,
α-subunit of Gs protein,
retinoic acid-induced protein 3

Prostate, bladder cancer [96,97]

Epidermal growth factor receptor
(EGFR) variant III Glioblastoma [98]

Prostate-specific antigen, survivin,
prostate cancer antigen 3 Prostate cancer [97,99,100]

RNAs lncRNA, LINC00152 Gastric cancer [101]
miR-21, miR-141, miR-200a Ovarian cancer [102]

miR-17-3p, miR-21 Non-small cell lung cancer
(NSCLC) [103]

DNAs Mutant KRAS Pancreatic cancer [104]
EGFR T790M mutation NSCLC [105]
Mutant KRAS, TP53 Pancreatic cancer [106]
BRAFV600E mutation Melanoma [107]

EGFR: epidermal growth factor receptor; NSCLC: non-small cell lung cancer.

Figure 4. Potential therapeutic applications of exosomes in cancer. As exosomal components reflect the
characteristics of the cells of origin, many attempts have been made to use tumor-derived exosomes
(TEXs) as cancer diagnostic biomarkers. For identification of exosome contents, general methods
such as polymerase chain reaction (PCR), next-generation sequencing (NGS), and proteomics can be
used. Exosomes also have therapeutic potential as nanovehicles for drug delivery and personalized
cancer immunotherapy. TEX: tumor-derived exosome; PCR: polymerase chain reaction; NGS:
next-generation sequencing.
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3.2.1. Methods for Loading Drugs into Exosomes

A number of studies have demonstrated that drug-loaded exosomes show better outcomes
in inhibiting cancers, but the methods for loading drugs into exosomes also need to be explored
further because they are closely related to the stability and loading efficiency of the drugs. To date,
there are three types of drug loading methods for exosomes: exogenous loading, endogenous
loading, and liposome fusion loading [108]. Exogenous loading refers to the method that directly
entraps the drugs inside an isolated exosome with simple incubation, sonication, electroporation,
repeated freeze/thaw, and extrusion [112]. Simple incubation can be easily used, but the average
loading efficiency of paclitaxel into EVs was below 10%. Sonication can elevate the average loading
efficiency up to 28.29%, but affecting the loading amount of hydrophobic drugs by altering the
membrane of the exosome is an issue [113]. Typically, the exogenous loading method is advantageous
in maintaining the aqueous stability of drug-loaded exosomes over one month at 4 ◦C and 37 ◦C, but it is
limited by relatively low loading efficiency. Endogenous loading refers to a method that entraps desired
molecules in exosomes by modifying the cells of origin before the isolation of exosomes. For instance,
treating host cells with chemical drugs, such as paclitaxel, can induce the release of exosomes
loaded with paclitaxel [114]. For protein or gene delivery, host cells can be transfected with desired
genes, which facilitates the release of exosomes with desired proteins or genes [115]. Although the
endogenous loading method demonstrates a relatively high loading efficiency, it is difficult to quantify
the amount of content inside the exosome and maintain high purity. Exosomes used in membrane
protein engineering approaches protect their cargo proteins, but can be degraded by proteinase [116].
The liposome fusion method uses the hybridization of drug-loaded liposomes and exosomes by the
freeze/melting process. This fusion method exhibits higher loading efficiency, especially for loading
large plasmids, including CRISPR-Cas9 expressing vectors [117]. However, it is unclear whether
this hybridized liposome-exosome can maintain the unique properties of exosomes [118]. Hence,
further comprehensive evaluation of parameters such as targetability, half-life, and side effects for
hybridized liposome-exosome is required.

3.2.2. Delivering Chemical Drugs via Exosomes for Oncotherapy

As many of chemical drugs can act after being internalized into cancer cells, they need to diffuse
through the cell membrane to exert cytotoxicity, which is one of the factors reducing the efficacy of
drugs [108]. In this aspect, exosomes can be potential candidates for delivering chemical drugs directly
into the target cells. Many trials have been conducted to deliver chemical drugs such as paclitaxel,
doxorubicin, cisplatin, and curcumin by packaging into exosomes for the treatment of various cancers
(Table 2). For instance, paclitaxel-loaded exosomes isolated from MSCs, macrophages, and prostate
cancer cells enhanced antitumor efficacy against pancreatic, breast, prostate, and Lewis lung carcinomas
both in in vitro and in vivo studies [113,114,119,120]. Similarly, doxorubicin-loaded exosomes were also
examined either by using the mechanical extrusion method to obtain higher drug loading efficiency [121]
or surface engineering of exosomes to enhance targetability [122] for the treatment of colon and breast
cancers, respectively. Treatment with cisplatin-loaded exosomes could prolong the survival rate of
mice with ovarian cancer compared to the free cisplatin-treated group [123]. Pancreatic cancer-derived
exosomes containing curcumin also effectively induced apoptosis in pancreatic cancer cells [124].
These studies show that by using exosomes as delivery vehicles, chemical drugs can be delivered
more efficiently to target cells, which results in better outcomes.
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Table 2. Exosomes as drug delivery vehicles for oncotherapy in preclinical studies.

Therapeutic Molecules Exosome Origin Targeted Disease Reference

Chemical drugs
Paclitaxel Macrophage Lewis lung carcinoma [113]

MSC Pancreatic, breast cancer [114,119]
Prostate cancer cell Prostate cancer [120]

Droxorubicin U937 RAW264.7 Colon cancer [121]
DCs expressing iRGD Breast cancer [122]

Cisplatin Hepatocarcinoma cell Hepatocarcinoma [123]
Curcumin Pancreatic cancer cell Pancreatic cancer [124]
Proteins
TRIM3 Gastric cancer cell Gastric cancer [125]
CD-UPRT fusion protein HEK293T Schwannoma [126]
TRAIL K562 Lymphoma [127]
MHC class I/peptide
complex DC Breast cancer [128]

HSP70 Myeloma cell Myeloma [129]
EGFR nanobodies Myeloid leukemia cell Epidermal carcinoma [130]
SIRPα Embryonic kidney cell Colon cancer [131]
miRNA
miR-145-5p MSC Pancreatic cancer [115]
Let-7a HEK293T expressing GE11 Breast cancer with EGFR [132]
miR-146b MSC Glioma [133]
miR-122 MSC Hepatocellular carcinoma [134]
miR-335-5p Stellate cell Hepatocellular carcinoma [135]
miR-379 MSC Breast cancer [136]
miR-25-3p inhibitor Colorectal cancer cell Colorectal cancer [137]
siRNA
PLK-1 siRNA HEK293T + MSC Bladder cancer [138]
GRP78 siRNA MSC Hepatocellular carcinoma [139]
HSP27 siRNA Neuroblastoma cell Neuroblastoma [140]
mRNA
Cas9 mRNA Red blood cell Breast cancer [141]

PTEN mRNA Mouse embryonic fibroblast
serum Glioma [142]

ECRG4 mRNA Neuroblastoma cell Tongue carcinoma [143]

MSC: mesenchymal stem cell; DC: dendritic cell; TRIM: tripartite motif-containing protein; CD:
cytosine deaminase; UPRT: uracil phosphoribosyltransferase; TRAIL: TNF-related apoptosis-inducing ligand;
MHC: major histocompatibility complex; HSP: heat shock protein; EGFR: epidermal growth factor receptor; SIRP:
signal-regulatory protein; PLK: polo-like kinase; Cas: CRISPR associated protein; PTEN: phosphatase and tensin
homolog; ECRG: esophageal cancer related gene.

3.2.3. Delivering Therapeutic Proteins via Exosomes for Oncotherapy

As the efficacy of many proteins is limited due to several barriers such as short half-life, low delivery
rate, and induction of resistance, the use of appropriate delivery vehicles is one of the best ways to
achieve successful protein drug therapies. As exosomes can protect the contents from various enzymes
and the immune system, they can act as effective delivery vehicles for proteins. Proteins can be loaded
either inside or on the surface of the exosome, based on the mechanism of action of the drugs. However,
as therapeutic proteins are macromolecules, it is difficult to directly incorporate them into exosomes.
Therefore, genetic modification of the cells of origin leading to the expression of therapeutic proteins
in exosomes is usually preferred to prepare protein-loaded exosomes. Several preclinical studies
regarding protein-loaded exosomes are summarized in Table 2. For example, the delivery of tripartite
motif-containing protein 3 (TRIM3) using gastric cancer-derived exosomes successfully suppressed
the proliferation, migration, and metastasis of gastric cancer [125]. Similarly, apoptosis-inducing
proteins such as suicide-inducing fusion protein or TNF-related apoptosis-inducing ligand (TRAIL)
were loaded into exosomes, and this method could elicit substantially reduced tumor growth in in vivo
tumor models [126,127]. Some signaling-related proteins can be expressed on the surface of exosomes
to improve tumor immunity, such as the major histocompatibility (MHC) class I/peptide complex [128].
In other studies, immunogenic proteins such as HSP70 were loaded onto exosomes, which resulted in
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enhanced antitumor T cell activity [129]. Some studies have shown that EGFR nanobodies anchored
on exosomes via glycosylphosphatidylinositol (GPI) could bind to EGFR-expressing tumor cells with
higher affinity [130].

3.2.4. Delivering RNA Drugs via Exosomes for Oncotherapy

Similar to therapeutic proteins, delivery vehicles are an essential component of successful gene
therapy. Exosomes can protect genes from various enzymes, such as DNases and RNases, and can also
directly deliver genes inside the cells, which enhances their therapeutic efficacy. Different types of RNAs
such as mRNA, miRNA, and siRNA are promising candidates for the treatment of cancers. Studies on
exosome RNA delivery are summarized in Table 2. miRNAs are non-coding RNAs involved in the
regulation of gene expression. Pathophysiological conditions such as cancer are usually characterized
by abnormal expression of certain types of miRNAs, which suggests that targeting miRNAs could
be an effective way to treat cancer [144]. Treatment with exosomes overexpressing miR-122 showed
substantially elevated chemosensitivity in hepatocellular carcinoma [134]. As the downregulation of
miR-335-5p in both hepatocellular carcinoma and stellate cells acts as a pro-tumorigenic factor,
delivery of miR-335-5p-overexpressing exosome exhibited substantial tumor shrinkage in an
in vivo tumor model [135]. Similarly, treatment with miR-379-overexpressing exosomes significantly
suppressed tumor growth in a T47D breast tumor model [136]. In addition, miR-145-5p overexpression
inhibited the proliferation of pancreatic ductal adenocarcinoma and induced tumor cell apoptosis in
an in vivo model [115]. In addition, specific miRNA inhibitors could act as potential drug candidates.
For example, miR-25-3p is known to play an important role in facilitating colorectal cancer metastasis
and promoting angiogenesis by targeting KLF (Kruppel-like factor)-2 and KLF-4, which implies that
miR-25-3p can be a promising target for treating colorectal cancer. One study showed that treatment with
exosomes loaded with miR-25-3p inhibitor considerably attenuated the tumor metastasis of colorectal
cancer by balancing the level of miR-25-3p [137]. Silencing target genes using siRNA is another way to
inhibit tumor growth. As overexpression of polo-like kinase (PLK)-1 is associated with the development
of bladder cancer, one study showed that treatment with PLK-1 siRNA containing exosomes inhibited
bladder cancer growth [138]. Similarly, as GRP78 overexpression is implicated in the growth and
metastasis of hepatocellular carcinoma, treatment with GRP78 siRNA expressing exosomes resulted
in an efficacious antitumor response in a sorafenib-resistant hepatocellular carcinoma model [139].
HSP27, a member of the heat-shock protein family, is known to promote neuron maturation and can be
involved in the development of neuroblastoma. Treatment with Hsp27 siRNA-tagged exosome showed
a significant reduction in tumor growth of the neuroblastoma cell line SH-SY5Y [140]. mRNA can be
another candidate for anticancer therapy using exosome vehicles. Transferring CRISPR-associated
protein (Cas) 9 mRNA-expressing exosomes from red blood cells induced miRNA inhibition and
Cas9 genome editing effects in a breast cancer model [141]. Phosphatase and tensin homolog (PTEN)
and esophageal cancer-related gene (ECRG) 4 are classified as tumor suppressors and are generally
mutated in cancer cells. Therefore, treatment with exosomes expressing PTEN or ECRG4 mRNA could
inhibit the growth of glioma cells [145] and tongue squamous cell carcinoma cells, respectively [143].
These studies show that depending on the target, different types of RNA therapeutics can be chosen,
and the therapeutic efficacy of these drugs can be substantially enhanced by using exosomes as
delivery vehicles.

3.3. Exosomes into Personalized Cancer Immunotherapy Drug Design (Single or in Combination)

Exosomes can be used as cell-free vaccines owing to the fact that exosomes derived from
various donor cells, such as immune cells and cancer cells, are involved in fostering antitumor
immunity [146]. DEXs can perform important immunostimulatory functions, as DCs that act as sentinel
antigen-presenting cells play a crucial role in orchestrating cancer-specific adaptive immunity [147].
The surface of DEXs is characterized by various functional molecules for priming T cells such as MHC
class I/II and costimulatory molecules including CD40, CD80, and CD86 [148]. This can foster antitumor
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immunity by inducing the activation of both innate and adaptive immunity. In several preclinical tests,
treating DEXs could elicit antitumor effects and prolong the survival rate of tumor-bearing mice by
expanding the repertoire of tumor-specific cytotoxic T cells as well as activating naïve T cells [149].
DEXs are also known to induce NK cell-mediated cytotoxicity to inhibit tumor growth [150]. In order
to potentiate the efficacy of DEX as a therapeutic cancer vaccine, choosing an appropriate TAA and a
relevant adjuvant is essential. To date, both for human and preclinical studies, only MHC class I/II
binding peptides such as Epstein-Barr virus, melanoma-associated antigen, and melanoma antigen
recognized by T cells-1 have been used for DEX vaccine [13,14,151]. However, the use of peptide-based
DEX vaccine was not very effective in inducing antitumor effects due to modest activation of antitumor
immune responses [152]. Several studies have reported that a more intense adaptive immune response
can be induced with a DEX vaccine loaded with protein antigen [152,153]. This effect might be
attributable to the presence of a broad range of epitopes with protein antigens, which might be more
effective in activating various repertoires of tumor-specific cytotoxic T cells. These studies demonstrate
the ability of personalized DEX vaccines based on patient tumor lysates. Therefore, a more potent
DEX vaccine that can evoke strong antigen-specific responses can be manufactured with the loading
of an allogenic protein antigen. Based on other studies, B cells are required to boost antitumor
immunity, suggesting that epitopes, which activate B cells, are also needed for a successful DEX
vaccine [152,153]. These results also provide a rationale for utilizing personalized protein antigens as
cargo in DEX vaccines. General adjuvants such as interferon-γ and toll-like receptor agonists, including
polyinosinic:polycytidylic acid and CpG oligodeoxynucleotides can be used to potentiate the efficacy
of DEX vaccine. It is also known that the use of these adjuvants can result in the maturation of DCs
and ultimately produce more immunogenic DEXs [154]. DEXs derived from mature DCs are known to
express more costimulatory surface molecules including CD40, CD80, CD86, and intercellular adhesion
molecule -1 and MHC class I/II [149]. Even though the DEX vaccine seems to show promising outcomes,
several challenges remain until it can be widely used in clinics, as the research on this therapy is still at
an early stage. For example, it is not clear whether the mass production of personalized DEX vaccine
possessing a homogenous quality is available. At present, there are no clear guidelines regarding
the production of exosome-based therapeutics. Proper storage, maintenance of stability, and route of
administration for exosomes are also the issues to be considered [155].

Besides, CAR exosomes derived from effector CAR-T cells showed cytotoxic effects on cancer
cells [156]. Intravenous injection of CAR exosomes into a mouse xenograft model exerted potent
tumor growth inhibition. A combination of exosomal therapy with other immunotherapies such as
immune-checkpoint blockers, cytokines, adoptive T cell transfer, and cancer vaccines might be a good
way to elicit synergistic anticancer effects. For the combined utilization of CAR exosomes and CAR-T
cells, further clinical/preclinical studies are required, and the clinically applicable scheme should
be proposed.

4. Conclusions and Future Perspectives

Recently, cancer therapeutics has made great strides, and various clinical trials for targeted cancer
therapy or immunotherapy have been conducted singly or in combination. However, there remains
an unmet need, because only a few types of cancer patients are restrictedly responsive to current
immune checkpoint blockers. In order to elevate response rate for personalized immunotherapy,
prognostic biomarkers need to be established. As mentioned above, exosomal components can be used
as diagnostic biomarkers in liquid biopsy, nanovehicles for delivery of anticancer drugs, and mediators
between cells affecting tumor immunity. Detection of marker proteins or nucleic acids in circulating
exosomes shows potential for predicting patients’ clinical response [157]. “TEXs-on-chip” techniques
using patient-derived tumor spheroids obtained from liquid biopsy will be applicable in the near future.

In that vaccinating autologous exosomes obtained from patients can avoid allograft reaction
and carry tumor antigens, patient-derived exosomes have received attention as good candidates for
personalized immunotherapy. Using bone marrow aspirate from patients, MSCs are isolated and



Int. J. Mol. Sci. 2020, 21, 7363 14 of 23

expanded ex vivo, and then large scale of MSCs engineered with anticancer genes can be transplanted
to patients for personalized treatment [158]. As exosomes released from MSCs acquire tropism toward
tumor locations and the corresponding receptors with the original MSC, they would mediate anticancer
activity [159]. Engineering techniques for enhancing therapeutic efficacy of these cell-free vaccines are
needed for the development of innovative personalized immunotherapy.
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ADC Antibody-drug conjugate
ALIX Apoptosis-linked gene 2-interacting protein X
ALK Anaplastic lymphoma kinase
CAF Cancer-associated fibroblasts
CAR Chimeric antigen receptor
Cas CRISPR-associated protein
CD Cytosine deaminase
CSF1R Colony-stimulating factor-1 receptor
CTC Circulating-tumor cell
ctDNA Circulating tumor DNA
CTLA4 Cytotoxic T-lymphocyte-associated protein 4
DC Dendritic cell
DEX Dendritic cell-derived exosome
ECM Extracellular matrix
ECRG Esophageal cancer-related gene
EGFR Epidermal growth factor receptor
EpCAM Epithelial cell adhesion molecule
ER Endoplasmic reticulum
ESCRT Endosomal sorting complex required for transport
EV Extracellular vesicle
FGFR Fibroblast growth factor receptor
FLT3 FMS-like tyrosine kinase 3
GM-CSF Granulocyte-macrophage colony-stimulating factor
GPI Glycosylphosphatidylinositol
HRS Hepatocyte growth factor-regulated tyrosine kinase substrate
HSP Heat shock protein
ICAM Intercellular adhesion molecule
ILV Intraluminal vesicle
KLF Kruppel-like factor
lncRNA Long non-coding RNA
MHC Major histocompatibility complex
miRNA MicroRNA
MMP Matrix metalloproteinase
mRNA Messenger RNA
MSC Mesenchymal stem cell
MV Microvesicle
MVB Multivesicular body
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NGS Next-generation sequencing
NK Natural killer
NSCLC Non-small cell lung cancer
NTRK Neurotrophic tyrosine receptor kinase
PCR Polymerase chain reaction
PD-1 Programmed cell death protein 1
PD-L1 Programmed cell death ligand 1
PLK Polo-like kinase
PTEN Phosphatase and tensin homolog
ROS1 C-ros oncogene 1
RTK Receptor tyrosine kinase
siRNA Small interfering RNA
SIRP Signal-regulatory protein
TAA Tumor-associated antigen
TEX Tumor-derived exosome
TMZ Temozolomide
TRAIL TNF-related apoptosis-inducing ligand
TRIM Tripartite motif-containing protein
UPRT Uracil phosphoribosyltransferase
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