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Abstract

Exposure-crossover design offers a non-experimental option to control for stable baseline 

confounding through self-matching while examining causal effect of an exposure on an acute 

outcome. This study extends this approach to longitudinal data with repeated measures of 

exposure and outcome using data from a cohort of 340 older medical patients in an intensive care 

unit (ICU). The analytic sample included 92 patients who received ≥1 dose of haloperidol, an 

antipsychotic medication often used for patients with delirium. Exposure-crossover design was 

implemented by sampling the 3-day time segments prior (Induction) and posterior (Subsequent) to 

each treatment episode of receiving haloperidol. In the full cohort, there was a trend of increasing 

delirium severity scores (Mean±SD: 4.4±1.7) over the course of the ICU stay. After exposure-

crossover sampling, the delirium severity score decreased from the Induction (4.9) to the 

Subsequent (4.1) intervals, with the treatment episode falling in-between (4.5). Based on a GEE 

Poisson model accounting for self-matching and within-subject correlation, the unadjusted mean 

delirium severity scores was −0.55 (95% CI: −1.10, −0.01) points lower for the Subsequent than 

the Induction intervals. The association diminished by 32% (−0.38, 95%CI: −0.99, 0.24) after 

adjusting only for ICU confounding, while being slightly increased by 7% (−0.60, 95%CI: −1.15, 

−0.04) when adjusting only for baseline characteristics. These results suggest that longitudinal 

exposure-crossover design is feasible and capable of partially removing stable baseline 

confounding through self-matching. Loss of power due to eliminating treatment-irrelevant person-

time and uncertainty around allocating person-time to comparison intervals remain methodological 

challenges.
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INTRODUCTION

Self-matching offers an attractive study design option alternative to randomization and peer-

matching for observational studies of treatment effect, i.e., control for selection bias and 

confounding due to stable, patient-specific risk factors, such as genetic predisposition, 

personality traits and education attainment [1, 2]. Such stable confounding is inherent to 

observational data and often difficult to address in the analytic stage [1, 2]. The self-

matching principle was first applied in epidemiological literature through case-crossover 

design [1], which was devised to examine the transient exposure effects on an acute outcome 

through comparing a designated “case” period and one or more “control” periods. A variant 

of case-crossover approach, called “exposure-crossover”, was proposed [3], which shares 

several key features as its precursor, such as using each subject as their own control and 

comparing the outcome risks during an assumed effect period and a control period, yet 

anchors the analyses on the time of exposure instead of the outcome (or case) [3].

Since its introduction, at least two population-based studies have used the exposure-

crossover approach to address the risk of an adverse outcome in an administrative database 

[4, 5]. The two studies defined a 1-year post-exposure period (or subsequent interval) to 

detect effects of fibromyalgia diagnosis on motor vehicle crashes or a medication injection 

on thromboembolism risk, in reference to a broader 3-year control period (or baseline 
interval), and found a significant detrimental association. However, whether this novel 

approach can be applied to longitudinal studies with repeated measures of exposure and 

outcome, especially in the quasi-experimental context, has not been explored in the 

literature.

This study attempts to extend the exposure-crossover approach to longitudinal data with 

multiple episodes of medication treatment over time. We illustrate our approach using a 

cohort of elderly patients receiving intensive care who have multiple comorbidities and are 

simultaneously receiving several medications (or polypharmacy). The scientific question 

behind this exercise is whether the administration of haloperidol, an antipsychotic 

medication commonly used to treat delirious patients, reduces the severity of delirium, an 

acute confusional state. Previous studies including sparse clinical trials have been 

insufficient and sometimes conflicting regarding the effectiveness of haloperidol in treating 

delirium, calling for novel observational studies to fill in the knowledge gap [6, 7].

METHODS

Prototype of Exposure-Crossover Design

In the seminal paper by Redelmeier [3], the exposure-crossover design involves 3 major 

steps of data reorganization. First, establish a time zero based on the time of exposure for 

each subject. Second, follow each subject for outcome experience both backward (pre-

Han et al. Page 2

Int J Stat Med Res. Author manuscript; available in PMC 2016 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



treatment) and forward (post-treatment) from the defined time zero. Third, collapse the 

entire timeline of the study period into 3 sequential intervals, called the baseline, induction 
and subsequent intervals, respectively. In the analyses, the “causal” effect of the exposure is 

estimated by comparing the subsequent (serving to detect and quantify post-exposure 

outcomes) and the baseline (serving to detect and quantify long-term temporal trends prior 

to the exposure) intervals, while excluding the induction interval (reflecting nuisance related 

to reverse causality, confounding by indication, or other biases) [3]. To ensure a fair and 

efficient comparison, each interval was divided into time segments with uniform duration, 

typically by calendar year or 13 segments of 28-days [3].

Adapt Exposure-Crossover Design to Repeated Measure Data

To examine the “causal” effect of repeated haloperidol treatments among older ICU patients 

with multi-morbidities and polypharmacy regimen, we adapted the exposure-crossover 

design in the following aspects:

1. Define Treatment Episodes of Consecutive Haloperidol Doses as Time Zero

In previous studies of exposure-crossover design, exposure was typically assumed 

to occur at a single time point [3–5] and embedded into the induction interval as a 

nuisance. In our sample, however, patients may receive haloperidol treatment over 

several consecutive days. To make an optimal use of such repeated exposure data 

while retaining its essential feature of self-matching, we first identified all the time 

periods of 1 or more days in which a patient was given a haloperidol dose every day 

as a treatment episode. The first and last day of these treatment episodes, 
respectively, were then used as a time zero to define the induction (pre-treatment) 

and subsequent (post-treatment) intervals. However, the outcome assessments on 

delirium severity during the treatment episodes may intervene with serial 

administrations of haloperidol doses and the (residual) effects of the medication 

and the delirium pathology are difficult to disentangle from each other. To avoid 

causal ambiguity, we considered the treatment episodes nuisance parameter and 

only evaluated the delirium severity in these time periods in descriptive and 

sensitivity analyses.

2. Construct Comparison Intervals Based on Biologically Plausible Exposure 
Window

After identifying all haloperidol treatment episodes, the next step was to sample 

time segments to construct comparison intervals, i.e., the baseline, induction and 

subsequent intervals, relative to the defined time zero. To appropriately assign 

person-time segments to each interval while avoiding “pragmatics” and arbitraracy 

[3], we first need to define a biologically plausible exposure window for detecting 

the “causal” effect of haloperidol treatment on the delirium symptoms. Based on 

the fact that delirium symptoms typically arise in hours to days following exposure 

to some causal risk factors and that the half-life for haloperidol ranges from 14 to 

24 hours [8], we considered the 3 days immediately following a haloperidol dose be 

the most plausible exposure window. Accordingly, we assigned a maximum 3 days 

and a minimum 1-day after each treatment episode to the subsequent intervals. We 
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then tried to allocate an equal number of maximum 3 days preceding each 

treatment episode to the induction intervals as the comparison period. When 

number of person-days between 2 adjacent treatment episodes is <6, we assign the 

days to subsequent interval first, under the minimum 1-day exposure window 

assumption. If available person-days for allocation is>6, the extra days after 

assigning the 3-days to each of the 2 intervals were excluded.

3. Omit Defining a Baseline Interval as a Comparison Period

While the prototypical exposure-crossover design requires defining a baseline 
interval to capture the ongoing outcome risk unrelated to exposure as a comparison 

period [3–5], we chose not to do so for both theoretical (retaining the self-matching 

principle) and practical (lack of data prior to ICU admission) reasons. First and 

foremost, the scientific question prompting this self-matching design is whether the 

change in delirium severity is caused by haloperidol treatment, or by other 

“triggering” causes or temporal confounding proximal to the time of treatment 

[1,2,9]. Therefore, the most relevant time periods to detect such a change would be 

the time periods immediately preceding (or induction to) and following (or 

subsequent to) the exposure, rather than a distant period farther before the 

exposure. In addition, older patients entering the ICU are known to have an 

increased risk of delirium. Such ongoing risk may result from cumulative effects of 

genetic predisposition, long-term exposure to environmental factors, as well as the 

natural aging process, and is not expected to change dramatically over a short 

period prior to ICU admission (and thus, presumably are “stable”) [1–3]. Finally, 

the salient point of the exposure-crossover design is its built-in self-matching 

capacity, whereby the stable baseline confounding, measured and unmeasured, is 

supposedly automatically removed. It would be redundant or counterintuitive to 

reiterate an explicit baseline period as a comparison or reference period. Therefore, 

instead of defining a baseline interval, we considered adjusting several patient 

characteristics at ICU admission in the analyses as proxy to stable baseline 

confounding.

A schematic illustration of this longitudinal version of exposure-crossover design is 

presented in Figure 1.

Data Source and Analytic Sample

To illustrate our approach, we used the Evaluation of Psychoactive Medications in the 

Intensive Care Unit (EPIC) which consists of 304 consecutive patients 60 years or older 

admitted to the medical intensive care units (ICU) of the Yale-New Haven Hospital, 

Connecticut, between September 5, 2002 and September 30, 2004 [7, 10]. Patients were 

assessed for delirium with the Confusion Assessment Method for the ICU (CAM-ICU) by a 

trained research nurse on a daily basis [11]. The dose, route and time of administration of all 

medications were tracked through 3 nursing shifts (day, evening and night). Other data 

collected included baseline demographics (e.g., age, sex, race), clinical characteristics (e.g., 

admitting diagnosis, dementia, and laboratory tests) and ICU interventions (e.g., mechanical 

ventilation), as described previously [7, 10]. During the ICU stay (mean duration ±SD: 
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7.2±7.9 days), 234 patients developed delirium, of whom 93 received at least one dose of 

haloperidol, the most common pharmacological treatment for delirium in clinical practice [6, 

7]. After excluding one patient who received only a single dose at last day in ICU, we 

included 92 haloperidol users in the analytic sample.

Statistical Analyses

Study Variables—To derive a quantitative measure of delirium severity as study outcome, 

each of the 4 diagnostic features of the CAM-ICU, i.e., 1) acute onset or symptom 

fluctuation; 2) inattention; 3) disorganized thinking; and 4) altered level of consciousness, 

was assigned a score of 0 (absent), 1 (mild) or 2 (severe/marked), following a validated 

CAM-S algorism using the same 4 features [12]. The summary delirium severity score 

ranges from 0 to 7, with 7 indicating most severe symptoms.

The haloperidol treatment each patient received during ICU stay was measured as 

cumulative daily does in milligrams, and grouped into one or more discrete treatment 
episode, as defined above.

Several patient characteristics were used to capture stable baseline confounding, including 

age (in year), Acute Physiology and Chronic Health Evaluation (APACHE II) score, 

admission diagnoses (4 categories), dementia (yes vs no) and antipsychotic use at admission 

(yes vs no). ICU confounding was represented by a categorical variable denoting the time 

spent on mechanical ventilation during ICU stay (0, 1–80%, ≥80%) and cumulative 

anticholinergic daily drug burden as a time-varying continuous variable. The later was a 

standardized daily drug dose across 12 anticholinergic medications, a class of common 

geriatric medications known to cause delirium [13, 14].

Graphical Representation and Descriptive Analyses

We used line and bar-char plots to explore the distribution of delirium severity over the 

course of ICU stay in the original data and after applying exposure-crossover sampling [3]. 

We used mean and standard deviation for continuous variables, and frequency and 

percentages for categorical variables to summarize the population characteristics and 

exposure crossover design features.

Generalized Estimating Equation Modeling—We used a generalized estimating 

equation Poisson model [15] to examine the “causal” effects of haloperidol treatment by 

comparing the average delirium severity scores for the subsequent and the induction 
intervals while ignoring the treatment episodes to avoid potential reverse causality. We 

estimated the mean difference on the delirium severity scores between the two intervals 

through identity link function, with robust variance estimator for 95% confidence interval 

calculation. Self-matching was accounted for by treating each pair of comparison intervals 

(i.e., induction and subsequent) as a cluster. As patients could contribute multiple exposure-

crossover intervals (and treatment episodes) to the analyses, we used an unstructured 

covariance to account for each persons’ unique correlation pattern. We systematically 

adjusted for the baseline characteristics at ICU admission and precipitating confounding 

during ICU stay, and jointly, and used the percent change in the parameter estimates from 
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the unadjusted model to each adjusted model to quantify the capacity of the exposure-

crossover design in achieving self-matching.

We performed sensitivity analyses on the fully adjusted GEE model. First, we refit the 

model by including the treatment episodes as an explicit (nuisance) parameter, to test 

potential pragmatics and person-time selection bias [1, 2, 16]. Second, we restricted the 

analyses to a maximal 1-day duration for both induction and subsequent intervals, to 

examine the impact of unequal length assignment to the intervals. Third, we restricted the 

analyses to the first induction and the last subsequent intervals, to remove potential reverse 

causality bias due to residual effects of most recent haloperidol dose or delirium symptoms 

over successive intervals. Finally, we refit the model by ignoring the self-matching 

mechanism, to verify the notion of potential underestimation bias [1].

All statistical analyses were performed using SAS software version 9.4 (SAS Institute, Cary 

NC 2010), with a two-sided α = 0.05 for statistical significance.

RESULTS

The characteristics of the 92 older patients included in the study sample are summarized in 

Table 1, which are largely comparable to the full cohort except for increased baseline 

cognitive impairment (IQCODE>3.3), less admissions for gastrointestinal hemorrhage and 

more time mechanically ventilated.

The 92 patients contributed a total of 825 person-days to the exposure-crossover sample. Of 

these, 398 person-days received ≥1 haloperidol dose at 6.6±10.8 mg per day and constituted 

130 treatment episodes, with an average contribution of 1.4±0.9 episodes per person (range: 

1–6). The delirium severity score on 251 person-days was 4.4±1.7 (range: 0–7).

During the ICU stay, the observed delirium severity scores among the full cohort appeared to 

increase gradually from admission to day 28, as shown in Figure 2.

After trimming the person-time data unrelated to the exposure-crossover design, the 

monotonic trend of delirium severity over time in disappeared, as shown in Figure 3.

Figure 4 presents the average delirium severity scores for the 3-day before (induction 

interval) and 3-day after (subsequent interval) the haloperidol treatment episode, aggregated 

across person-days in the exposure-crossover sample. The mean delirium severity scores 

were highest during the induction interval (4.9, 95% CI: 4.4, 5.4) and lowest during the 

subsequent interval (4.1, 95% CI: 3.8, 4.5), with the treatment episodes coming in-between 

(4.5, 95% CI: 4.1, 4.8).

As summarized in Table 2, there was a modest reduction in the delirium severity score from 

the induction to the subsequent intervals, with an unadjusted mean difference of -0.55 (95% 

CI: −1.10, −0.01) points. The association changed by 7% after adjusting for baseline 

characteristics (−0.60, 95% CI: −1.15, −0.04); yet diminished by 32% after adjusting for 

ICU covariates (−0.38, 95% CI: −0.99, 0.24). Adjusting for both baseline and ICU 

covariates did not alter the point estimate (−0.38, 95% CI: −1.01, 0.25).
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Sensitivity analyses derived consistent results, with a statistically insignificant reduction of 

delirium severity score following the treatment episode (Table 3). In addition, the two 

extreme scenarios provided some support for the necessity of ensuring temporal 

unambiguity (model 3) [1, 2] and of accounting for self-matching in the analyses (model 4) 

[1]. The great variation of the point estimates may reflect the dramatically reduced sample 

size or potential over-parameterization due to estimating unstructured covariance matrices.

DISCUSSIONS

Using sample data from a cohort of older medical patients with multi-morbidities and 

polypharmacy, we illustrated how the exposure-crossover design can be extended to 

longitudinal data with repeated measures of both exposure and outcome in the quasi- 

experimental context. The methodological renovations of this longitudinal exposure-

crossover approach included: 1) defining exposure-crossover intervals under biologically 

plausible assumptions for exposure window (avoiding statistical artifacts, serendipity and 

spurious association); 2) shifting focus from subsequent-baseline comparison to subsequent-
induction comparison (to address the “causal” effect of medication treatment on an acute 

disease); 3) isolating treatment episodes from both the induction and subsequent intervals as 

a nuisance parameter (mitigating causal ambiguity); and 4) addressing proximal 

confounding via multivariable adjustment while controlling stable baseline risk through self-

matching. Through this longitudinal exposure-crossover exploration, we observed a potential 

modest benefit of haloperidol treatment on reducing delirium severity before adjusting for 

ICU confounding, which is consistent with some clinical trials that demonstrated a benefit of 

low dose haloperidol treatment (<4.5 mg per day) on reducing delirium severity among post-

surgery patients, but not the delirium incidence [6].

However, to appropriately accomplish the above goals is not trivial and requires deep critical 

thinking of the underlying causal mechanism and labor-intensive data-collection effort. 

Although utilizing repeated measure data increases the statistical efficiency or estimation 

precision, when many patients have missing data due to mortality or dropout, comparisons 

made across person-time segments may compromise the self-matching capacity in control 

for stable baseline risk. Therefore, potential survivor bias is likely and should be addressed 

with complete follow-up data allowing equal length for the two comparison intervals [1–3]. 

In addition, it remains to be clarified whether the diminishing haloperidol effects in this 

study reflected the overwhelming confounding unique to ICU setting (e.g., mechanical 

ventilation), or the reduced power due to excluding treatment-irrelevant person-time data.

Unlike other studies in the field that often focused on disease incidence, we modeled 

delirium severity as a quantitative outcome. Other than finer granulation on the scale, we 

were concerned of potential “treatment”-selection bias [1,16,17], because all patients in this 

sample were diagnosed with delirium. Modeling the incidence or recurrence of a diseases 

that potentially indicated the treatment at the first place may be subject to increased risk of 

“reverse causality”. Indeed, a recent report from this EPIC cohort observed a significant 

association between repeated haloperidol doses and the next-day delirium incidence using 

marginal structural model [7].
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CONCLUSIONS

To conclude, we have demonstrated steps of implementing exposure-crossover design to 

longitudinal data with repeated measures of both exposure and outcome in a sample of older 

medical ICU patients. The preliminary evidence suggested that this longitudinal extension is 

feasible and reasonably attains to the essential feature of self-matching, as evidenced by the 

trivial change in the alleged haloperidol treatment effects after adjusting for stable baseline 

confounding alone, material change when ignoring self-matching in the analyses, and 

relative invariance when including the treatment episodes as an explicit parameter or 

restricting to the first induction and the last subsequent intervals only. Future longitudinal 

exposure-crossover studies should consider using larger sample sizes, allowing wash-out 

period between successive treatment episodes and addressing informative missing data due 

to mortality and dropouts using alternative statistical models [1–3, 9, 16, 17].
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Figure 1. 
A case scenario illustrating exposure-crossover sampling from a patient with 33 person-days 

of ICU stay.

Han et al. Page 10

Int J Stat Med Res. Author manuscript; available in PMC 2016 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Delirium severity score as measured with the CAM-ICU during ICU stay truncated at 28 

days after admission.
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Figure 3. 
Exposure-crossover sample: Delirium severity score as measured with the CAM-ICU during 

ICU stay truncated at 28 days after admission.
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Figure 4. 
Exposure-crossover sample: Delirium severity score as measured with the CAM-ICU 

aggregated over the induction and subsequent intervals across person-time.
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Table 1

Characteristics of Study Sample

Characteristics Full Cohort (N=304) Analytic Sample (N=92)

Baseline characteristics

 Age (yr), mean±sd 74.7±8.5 74.3±7.7

 Male gender, n (%) 143 (47.0) 41 (44.6)

 IQCODE>3.3,* n (%) 94 (31.2) 37 (40.2)

 APACHE II Score,† mean±sd 23.4±6.4 24.5±6.1

 On antipsychotics, n (%) 20 (6.6) 7 (7.6)

Admitting diagnosis, n (%)

 Respiratory diseases 153 (50.3) 54 (58.7)

 Gastrointestinal hemorrhage 52 (17.1) 8 (8.7)

 Sepsis 50 (16.5) 14 (15.2)

 Other diagnoses‡ 45 (16.1) 16 (17.4)

ICU characteristics

 Time under mechanical ventilation, n (%)

 Never intubated 144 (47.4) 39 (42.4)

 Intubated <80% time 85 (28.0) 31 (33.7)

 Intubated ≥80% time 75 (24.7) 22 (23.9)

 Cumulative anticholinergic drug burden per day during ICU,§ mean±sd 1.1±2.0 1.3±2.1

Abbreviations: sd, standard deviation; CAM, The Confusion Assessment Method; IQCODE, Informant Questionnaire on Cognitive Decline in the 
Elderly; APACHE, Acute Physiology and Chronic Health Evaluation; ADL, activities of daily living.

*
Indicative of dementia.

†
Acute Physiology and Chronic Health Evaluation II Score,

‡
Include neurological diseases, diabetes, metabolic abnormalities, acute renal failure and cardiac causes.

§
Represents cumulative dose standardized on WHO Defined Daily Dose for adults across 12 common anticholinergic medications received each 

day, including amitriptyline, atropine, dicyclomine, diphenhydramine, imipramine, benzodiazepine (lorazepam), meclizine, olanzapine, paroxetine, 
promethazine, and narcotics (fentanyl and morphine).
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Table 2

Predicted Mean Difference of Delirium Severity Scores between the subsequent and induction Intervals in 

Exposure-Crossover Sample (N=92)

Model no./Covariates* Mean Difference§ (95% 
CI)

Δ (%)¶ Comments

1 Unadjusted −0.55 (−1.10, −0.01) (reference) Theoretically free of stable, baseline confounding 
due to self- matching

2 Adjusted for baseline 

confounding only†
−0.60 (−1.15, −0.04) 7.2 Theoretically redundant or over-adjusted after self-

matching

3 Adjusted for ICU confounding 

only‡
−0.38 (−0.99, 0.24) 32.4 Theoretically unbiased from both baseline (via self-

matching) and time-varying, proximal confounding 
(via regression adjustment)

4 Adjusted for both baseline and 

ICU confounding†‡
−0.38 (−1.01, 0.25) 31.9 Unbiased yet less efficient due to potential over-

adjustment of baseline confounding

*
Estimated using a generalized estimating equation model of the CAM-ICU-based delirium severity scores as a Poisson outcome, accounting for 

self-matching as a cluster and each persons’ unique correlation pattern as unstructured.

†
Included age in years, APACHE II score (continuous), admission diagnoses (4 categories), dementia (yes vs no) and antipsychotic use prior to 

ICU admission (yes vs no).

‡
Included the time spent in mechanical ventilation during ICU stay (0, 1–80%, ≥80%) and a time-varying covariate, cumulative anticholinergic 

drug burden received each day.

§
Represents predicted delirium severity score difference between the subsequent and induction Intervals using the GEE model.

¶
Represents percent change in the effect estimates (Mean Difference) between each adjusted models versus the unadjusted (reference) model.
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Table 3

Sensitivity Analyses: Adjusted Mean Difference of Delirium Severity Scores between the Subsequent and 

Induction Intervals Using Alternative Approach (N=92)

Model no./Alternative Approach* Mean Difference† 
(95% CI)

Comments

1 Including haloperidol treatment episodes 
as an explicit parameter

−0.44 (−1.07, 0.19) Avoid pragmatics and arbitrary exclusion of person-
time data; may complicate interpretation due to 

potential reverse-causality

2 Assuming 1-day exposure window‡ −0.26 (−1.08, 0.55) Address unequal lengths of comparison intervals (i.e., 
subsequent vs induction); may compromise model 

efficiency

3 Restricting to the last subsequent and first 
induction intervals from each patient

−0.51 (−1.24, 0.22) Remove potential residual time-varying confounding 
and reverse-causality between successive exposure-

crossover intervals at sacrifice of sample size

4 Without accounting for self-matching −0.16 (−0.68, 0.37) Reduce model complexity by ignoring treatment 
sequencing; may underestimate treatment effect

*
All models were estimated using a generalized estimating equation Poisson model of the CAM-ICU-based delirium severity scores, accounting 

for self-matching and each persons’ unique correlation pattern, except otherwise indicated.

†
Represents predicted delirium severity score difference between the subsequent and induction Intervals from each GEE model, adjusted for 5 

baseline (age, APACHE II score, admission diagnoses, dementia and antipsychotic use prior to ICU admission) and 2 ICU (percent time spent in 
mechanical ventilation during ICU stay and cumulative anticholinergic burden received each day) covariates.

‡
Retained only the induction and subsequent intervals with 1-day duration in the analyses.
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