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Abstract: Traditional Chinese medicines (TCMs) have attracted extensive interest throughout the
world due to their long history of health protection and disease control, and the internalization
of TCM preparations or patented drugs has been considered a wind vane in the process of TCM
modernization. However, multi-target effects, caused by multiple components in TCMs, hinder
not only the construction of the quality evaluation system (bioavailability), but also the application
of pharmaceutical technologies, which results in the poor efficacy in clinical practice. This review
describes the methods in the literature as well as in our thoughts about how to identify the marker
components, establish the evaluation system of bioavailability, and improve the bioavailability in
TCM preparations. We expect that the current study will be positive and informative.

Keywords: bio-pharmaceutics of TCMs preparations; active constitutes identification; evaluation
system of bioavailability; pharmaceutical technologies; absorption enhancer

1. Introduction

Traditional Chinese medicines (TCMs), utilized in the prevention and treatment of various
diseases for thousands of years in China, have been gradually accepted and employed in other
countries. TCM preparations or patented drugs, defined by the utilization of herbs, animals, and
minerals, with their respective dosages in accordance with the guidance of Chinese medicine theory and
the rule of “King, Vassal, Assistant and Delivery servant”, have different dosage forms, such as capsules,
tablets, pills, powders, oral liquids, etc. [1]. It was reported that the Chinese export of herbal medicines
and extracts was significantly higher than that of preparations in the recent years. As shown in 2014,
the export of herbal medicines and extracts was worth 2.95 billion dollars, but that of preparations
was little, only 250 million dollars [2], which was mainly due to the unsound quality evaluation
system (bioavailability) and poor efficacy in clinical practice. For example, Shuang-Huang-Lian oral
liquid, a well-known TCM preparation composited of Flos Lonicerae Japonicae, Fructus Forsythiae, and
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Radix Scutellariae, is usually used as the treatment for acute upper respiratory tract infection caused
by bacteria and viruses, but its clinical efficacy was unstable and far lower than that of injection [3].
It was found that multi-target effects, caused by multiple components in TCMs, hindered not only
the construction of the evaluation system of bioavailability, but also the formulation, designation,
and technologies application. How to establish a quantifiable evaluation system of bioavailability
and find suitable pharmaceutical technologies to improve the bioavailability was not only a basic
scientific problem of bio-pharmaceutics for TCM preparations, but it was also the key factor in
modernizing TCMs.

The following essential problems that refer to the evaluation system of bioavailability construction
and pharmaceutical technology applications for TCM preparations exist. Firstly, the network
pharmacological effects and the complex structure-effect and dose-effect relationships in TCMs
contributed to difficulty in identifying the effective components; Secondly, biological active
and pharmacokinetic (absorption, distribution, metabolism, and excretion) diversity of effective
constituents resulted in obstacles for setting up weight coefficients for integrating bioavailability;
Thirdly, pharmaceutical technologies were hardly applied for TCM preparations due to their
complicated physico-chemical properties for both active ingredients and associated constituents.

Therefore, the current problems about how to identify the active components promptly; how to
establish a reasonable mathematics model to calculate the weight coefficient to integrate bioavailability;
and how to improve the integral bioavailability using related pharmaceutical technologies in TCM
preparations need to be further investigated.

2. Identification of Active Compounds in Traditional Chinese Medicines (TCMs)

2.1. Classic Separation and Analysis

The classic separation and analysis model was performed to identify the active components
according to the procedures of extraction, separation, purification, characterization, pharmacological
tests, etc., and it was applied to new Chinese herbal monomer or Chinese herbal extract development.
For example, artemisinin isolated from the plant Artemisia annua, sweet wormwood, and its derivatives
possess the most rapid actions against Plasmodium falciparum malaria [4]. Digoxin was a purified
cardiac glycoside, extracted from Digitalis lanata, and was occasionally used to treat various heart
diseases, namely atrial fibrillation and atrial flutter [5]. Morphine, a pain medication of the opiate
type extracted from papaver somniferum L., can decrease feelings of pain through acting directly on the
central nervous system (CNS) [6]. Paclitaxel, extracted from the Yew tree, is an anti-cancer drug. It
was the first-line treatment for cancers of the breast, colon, lung, etc., and the second-line treatment for
AIDS-related Kaposi’s sarcoma [7]. The chemotherapy agent (vincristine), extracted from Catharanthus
roseus, was utilized as the treatment of leukemias, lymphomas, etc. [8]. The total lactones, a Chinese
herbal extract from the Ginkgo leaf, contained mainly ginkgo lactone A, ginkgo lactone B, ginkgo
lactone C, and ginkgo seed lactone, which were prepared as a medicine for preventing or treating
deafness and tinnitus [9]. The tea polyphenols, included catechins, theaflavins, tannins, and flavonoids,
can prevent coronary heart disease and cancer [10].

2.2. Spectrum-Effect Relationships

The spectrum-effect relationship, put forward firstly by Li et al., 2002 [11], is an effective method
to search for the material foundation of TCMs [12–14] via the relationships between TCM fingerprint
peaks and specific pharmacodynamic data analyzed by the chemometrics [15], containing hierarchical
cluster analysis (HCA), principal component analysis (PCA), the analytic hierarchy process (AHP),
stepwise regression analysis (SRA), canonical correlation analysis (CCA), grey relational analysis
(GRA), bivariate analysis (BA), multivariate correlation analysis (MCA), etc. (Figure 1). As shown
in Table 1, there were two spectrum models (in vitro chemical fingerprint [16–42] and in vivo serum
fingerprint [43]) analyzed by capillary electrophoresis (CE), infrared spectroscopy (IR) or liquid
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chromatography (LC) tandem ultraviolet spectrometry (UV), evaporating light scattering detector
(ELSD), flow injection chemiluminescence (FICL) and mass spectrometry (MS) [16–45], and two
pharmacodynamic models (in vitro and in vivo) in the spectrum-effect relationship. Among them, the
chemical fingerprint was obtained from sample preparations for different batches [16–29], different
parts [30,31], different combinations [32–34], different ways of processing [35–41], and different
agronomic and environmental parameters [42]. For example, Liu et al., 2014 [19], studied the
fingerprints of 10 batches of Radix Astragali by high performance liquid chromatography (HPLC)-diode
array detector (DAD)-ELSD and their anti-gastric ulcer effects evaluated by growth-promoting efficacy
in GES-1 cells, and found that ononin, astragaloside III, and astragaloside IV in 16 common peaks were
the most correlated with effects by GRA, which provided a theoretical foundation for quality control
of Radix Astragali. Sun et al., 2013 [30], showed different parts of the fingerprint of Aconitum L. plants
(Radix Aconiti Kusnezoffii, Radix Aconiti Lateralis Preparata, and Radix Aconiti Brachypodi, Radix Aconiti,
Radix Aconiti Singularis) using ultra-performance liquid chromatography (UPLC)-photodiode array
detector (PDA) and demonstrated their anti-bacterial (Escherichia coli) activity by micro-calorimetry,
and found that hypaconitine and two unknown components (peaks 1 and 3) might be the most
important ingredients by using CCA. Bao et al., 2014 [32], reported the fingerprints of 20 combinations
in Qizhiweitong granules composed of Radix bupleuri, Rhizoma corydalis, Fructus Aurantii, Rhizoma
cyperi, Radix Paeoniae Alba, and Radix glycyrrhizae preparata using HPLC-DAD and their promoting
effect on the gastro-intestine evaluated by cyclic guanosine monophosphate (cGMP) and nitric oxide
(NO) levels in small intestinal smooth muscle cells, and found that naringin, neohesperidin, hesperidin,
neoponcirin, narirutin, liquiritin apioside, albiflorin analogues, neoeriocitrin, and glycyrrhizin
were the active components analyzed by the GRA and back propagation (BP) neural network.
Zheng et al., 2014 [39], showed the spectrum-effect relationship between the UPLC fingerprint
of crude secondary roots of Aconitumcarmichaelii Debeaux (FuZi) and its three processed products
and their mitochondrial growth (micro-calorimetricmeasurement) analyzed by CCA, and found
that benzoylhypacoitine, benzoylaconitine, and mesaconitine might be the main active ingredients.
Liu et al., 2014 [43], reported the serum fingerprint at different time points after oral administration of
Da-Huang-Fu-Zi-Tang (Rheum officinale Baill., Aconitum carmichaelii Debx., and Asarum sieboldii Miq.) by
ultra high performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass
spectrometry (UHPLC-ESI-Q-TOF-MS) and their effect on pancreatic acinar cells (AR42J) from injury,
and found that rhein isomer methylation, rhein glucoside, hydroxyl-chrysophanol, hypaconine,
talatisamine, chysophanol glucuronide conjugation, and chysophanol glucuronide conjugation might
be the principle constituents analyzed by CCA.
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Table 1. Study on the spectrum-effect relationships for Traditional Chinese medicines (TCMs).

Names TCMs Composition Fingerprint Pharmacology Experimentalmodel Analytical Method Active Components Reference

Cichorium intybus L. - HPLC-DAD-MS Anti uric acid Quails CCA

Aesculin, chlorogenic acid, chicoric
acid, isochlorogenic acid A/B/C
and 13,14-seco-stigma5(6),
14(15)-diene-3α-ol

[16]

Tripterygium glycosides Tripterygium wilfordii HPLC
Anti-inflammatory,

immunosuppressive
activities

mice spleen cells GRA Peak 5, peak 10 [17]

Radix Astragali - HPLC-PDA-ELSD Anti-gastric effect Mice, GES-1 cell GRA Ononin, astragaloside III,
astragaloside IV [19]

Rhizoma Coptidis - UPLC-PDA/
HPLC-DAD

Antibacterial effect/
Anti-MRSA activity/
Anti-inflammatory

Escherichia coli/Broth
microdilution/RAW264.7
mouse macrophage cells

HCA, CCA,
PCA, PLS

Berberine, jateorrhizine, palmatine,
coptisine, epiberine [18,20,28]

Da Cheng Qi Tang

Rhizoma Rhei, Cortex
Magnoliae officinalis,

Fructus Aurantii
Immaturus

HPLC-DAD Purgative effect Mice HCA
Hesperidin, aloe-emodin, honokiol,
rhein, magnolol, emodin,
sennoside A

[21]

Polygonum cuspidatum - HPLC-DAD-FICL Anti-oxidant effect H2O2 scavenging activities CA
Piceid, resveratrol,
torachrysone-8-O-glucoside,
questin/physcion, peak1, peak 10

[22]

Acalypha australis Linn. -
UPLC/MS,

semi-preparative
HPLC

Antibacterial effect Agar-diffusion method;
Broth microdilution method - Gallic acid, peak 6, peak 9–11 [23]

Zathoxylum nitidum - IR Antitumor effect 7901, Hela cells MLR Nitidine chloride [24]

Morinanepalensis - HPLC-ELSD NO inhibition RAW264.7 cell PLS Peak 2, peak 4–6, peak 10, peak 12,
peak 13 [25]

Rheum species - UPLC-PDA Anti-HIV
activity(Ribonuclease H) enzyme activity BA

Catechin, epicatechin,
aloe-emodinmonoglucoside, Peak
(tR = 21.28 min)

[26]

Rabbiteye blueberry - HPLC-DAD Antioxidant effect DPPH radical scavenging HCA Delphinins,
anthocyanidin-3-glucosides [27]

EtOAC extracts of
Radix Isatidis - HPLC-DAD Antibacterial effect Escherichia coli HCA, MLR, PCA Salicylic acid [29]

Radix Aconiti, Radix
Aconiti Singularis, Radix

Aconiti Kusnezoffii,
Radix Aconiti

Lateralis Preparata,
Radix Aconiti Brachypodi

- UPLC-PDA Antibacterial effect Escherichia coli CCA Hypaconitine, peak 1, peak 3 [30]
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Table 1. Cont.

Names TCMs Composition Fingerprint Pharmacology Experimentalmodel Analytical Method Active Components Reference

Polygonum orientale - UPLC-PDA Anti-oxidative injury H9c2 myocardial cell BA Peak 3–5, peak 11–14, peak 18,
peak 19, peak 21–25 [31]

Qizhiweitong Granules

Radix bupleuri, Rhizoma
Corydalis, Fructus Aurantii,

Rhizoma Cyperi, Radix
Paeoniae Alba, Radix

glycyrrhizae Preparata

HPLC-DAD Promoting
gastrointestinal motility

Small intestine smooth
muscle cells

GRA, BP neural
network

Naringin, neohesperidin,
hesperidin, neoponcirin,
narirutin, liquiritinapioside,
albiflorin analogues,
neoeriocitrin, glycyrrhizin

[32]

ZuoJin Wan
Coptis chinensis

Franch.Evodia rutaecarpa
(Juss.) Benth.

HPLC-DAD Biothermo-logical effect Escherichia coli CCA
Evodiamine, palmatine
hydrochloride, berberine
hydrochloride

[33]

Suanzaoren decoction

Semen Ziziphi Spinosae,
poria, rhizoma Chuanxiong,

rhizome Anemarrhenae,
radix glycyrrhizae

HPLC-PDA Sedative effect Mice Correlation and
regressive analysis

Spinosin, ferulic acid, mangiferin,
glycyrrhizic acid, peak 3, peak 8,
peak 9, peak 16, peak 21, peak 34,
peak 42, peak 46, peak 47

[34]

Platycladi cacumen - HPLC-MS/MS Hemostatic activities New Zealand rabbit CCA Cecarbon [35]

Radix Hedysari - HPLC Anti-hepatic fibrosis Mice GRA, PLS, Adenosine, calycosin [36]

Saffron - HPLC-DAD Antioxidants DPPH MCA Crocins-1, crocins-2, crocins-3 [37]

Flos Sophorae - HPLC-MS/MS Hemostatic activities New Zealand rabbit CCA Huaicarbon A, huaicarbon B [38]

Aconitum carmichaelii
Debeaus - UPLC-ELSD Mitochondria growth

promoting effect Rat CCA Mesaconitine, benzoylaconitine,
benzoylhypacotine [39]

Artificial Calculus bovis - UPLC-ELSD Antibacterial effect Escherichia coli HCA, MLR, PCA Cholic acid, taurocholate sodium,
chenodeoxycholic acid [40]

Belamcanda
chinensis leaf - HPLC-DAD Hypoglycemic effect Rat - Flavonoids (tectoridin, swertisin) [41]

Da-Huang-Fu-Zi-Tang
Rheum officinale Baill.,

Aconitum carmichaelii Debx.,
Asarum sieboldii Miq.

UHPLC-ESI-Q-
TOF-MS

Anti-acute
pancreatitis effect AR42J cell CCA

Talatisamine, rhein glucoside, rhein
isomer methylation, hypaconine,
hydroxyl-chrysophanol,
emodin glucuronide
conjugation, chysophanol
glucuronide conjugation

[43]

CCA: canonical correlation analysis; GRA: grey relational analysis; HCA: hierarchical cluster analysis; PCA: principal component analysis; PLS: partial least squares; MLR: Multiple
linear regression ; BA: bivariate analysis ; BP: back propagation; MCA: multivariate correlation analysis; CE: capillary electrophoresis; IR: infrared spectroscopy; LC: liquid
chromatography; UV: ultraviolet spectrometry; ELSD: evaporating light scattering detector; FICL: flow injection chemiluminescence; MS: mass spectrometry.
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2.3. Knock-in and Knock-out

Xiao et al., 2009 [45], put first forward that constituents knock-out/knock-in, inspired by functional
genetic methods, are novel patterns of efficient component recognition and quality control for TCMs,
which include marker compounds identified by studying the effect of the constituents knocked out
on efficacies, and the dosage-effect or dosage-toxicity relationships studied by observing the effect
of marker compounds knocked in on efficacies (Figure 2; Table 2). For example, Yan et al., 2014 [46],
and Li, 2013 [47], reported the identification of the major active constituents for bacterial diarrhea
treatment evaluated by the growth of Shigella dysenteriae using microcalorimetry in Rhizoma coptidis
by the knock-out and knock-in method, and found that coptisine and berberine were the important
components with bacteriostatic activities of 54.10% and 39.75%, respectively, by the knock-out method,
and their suitable concentration ranged from 8.08% to 31.92% and from 4.05% to 14.45% of the total,
respectively, by the knock-in method. Jin et al., 2013 [48], showed the identification of bioactive
compounds for osteoporosis treatment evaluated by osteoblasts cell proliferation and differentiation
in Herba Epimedii by the knock-out method, and found that epimedin A, epimedin B, epimedin C,
and icariin were the main active constituents. Yu et al., 2009 [49], studied the assessment of effective
components for anti-tumor activity evaluated by the synergistic effects of cyclophosphamide on
chemotherapy for S180 tumor-bearing mice in Shenmai formulae composited of Radix Ginseng and
Radix Ophiopogonis by the knock-out method, and found that panoxadiol and a type of ginseoside were
the active components.
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Table 2. Study on the knock-in and knock-out target components in TCMs.

Names Knock-in or Knock-out Components Pharmacology Experimental Model Active Components Reference

Rhizoma Coptidis Berberine, palmatine, coptisine, epiberberine,
jateorrhizine, columbamine Growth inhibition of shigelladysenteriae Microcalorimetry Berberine, coptisine [46,47]

Herba Epimedii Epimedin A, epimedin B, epimedin C, icariin Cell proliferation, differentiation Third generation
rat osteoblasts

Epimedin A, epimedin B, epimedin C,
icariin [48]

Calculus bovis
Bilirubin, bilirubin conjugate, glycocholic acid, cholic

acid, chenodeoxycholic acid, hyodeoxycholic acid,
sodium taurocholic acid, deoxycholic acid

Inhibition of hydrogen
peroxide-induced damage SH-SY5Y Bilirubin, bilirubin conjugate,

glycocholic acid, cholic acid [50,51]

Flos Lonicerae Japonicae Isochlorogenic acids, chlorogenic acid, flavones,
iridoid glycosides Anti-virus, anti-bacteria Vero cell, Escherichia coli Isochlorogenic acids [52]

Rhizoma Curcumae Longae Curcumin, demethoxycurcumin,
bisdemethoxycurcumin

Anti-oxidant activity, anti-coagulant effect,
anti-oxidant stress damage DPPH, rabbit, PC12 Curcumin > demethoxycurcumin >

bisdemethoxycurcumin [53,54]

Radix puerariae Puerarin, daidzin, daidzein, compound X Anti-oxidant damage HUVEC Puerarin, compound X [55]

Shenmai formulae Panoxadiol, panaxotriol,
ophiopogonpolysaccharide, ophiopogonin Antitumor effect S180 bearing mice Panoxadiol, panaxotriol,

ophiopogonpolysaccharide [49]

HUVEC: human umbilical vein endothelial cells; DPPH: 2,2-diphenylpicrylhydrazyl; PC12: pheochromocytoma.
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We found above that the knock-in method can be suitable for identifying the effective components
in Chinese herbal extracts and Chinese herbal compounds, but the application for the knock-out
method is limited due to the fact that the target constituents are difficult to remove from Chinese
herbal compounds.

2.4. Pharmacokinetics (PK)-Pharmacodynamics (PD)

Pharmacokinetics (PK)-pharmacodynamics (PD), put forward first by Sheiner et al., 2009 [56],
are extensively applied for effective constituent identification in the field of TCMs, which mainly
includes the correlation analysis between PK (the blood-drug concentration method) and PD (the
pharmacology-effect method) (Figure 3 and Table 3). For example, Liu et al., 2014 [43], reported the PK
profiles of multiple components after oral administration of Da-Huang-Fu-Zi-Tang and the PD profiles
evaluated by the effect of the serum at different time points on pancreatic acinar cells (AR42J) from
injury, and found that rhein isomer methylation, rhein glucoside, hydroxyl-chrysophanol, hypaconine,
talatisamine, chysophanol glucuronide conjugation, and chysophanol glucuronide conjugation might
be the principle constituents analyzed by CCA. Peng, 2014 [57], studied the PK of baicalin, geniposide,
cholalic acid, hyodeoxycholic acid, chlorogenic acid, and neochlorogenic acid in a Qingkailing injection
composed of Cholalicacid, Conchamargaritifera, Hyodeoxycholic acid, Gardeniae Fructus, Cornububali, Radix
isatidis, Baicalin, and Flos Lonicerae Japonicae using UPLC-ESI-MS/MS and studied the PD by evaluating
temperature changes in rats, and found that baicalin and geniposide were the main effective ingredients
by using Winnonlin software analysis. Wang et al., 2014 [58], showed that Tanshinone IIA was the main
ingredient for anti-oxidant activity in a Yin-Teng-Gu-Bi-Kang prescription composed of Radix Salviae
Miltiorrhiae, Angelicae Sinensis Radix, Paeoniae Radix Alb, and Celastrusorbiculatus Thunb. analyzed by
the PK (Tanshinone IIA concentration in plasma)-PD (malondialdehyde (MDA) level in serum) model.
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Table 3. Study on the pharmacokinetics (PK)-pharmacodynamics (PD) relationships in TCMs.

Names TCMs Composition PK Ingredients PD Analytical
Method Active Components Reference

Da-Huang-Fu-Zi-Tang Rheum officinale Baill., Aconitum
carmichaelii Debx., Asarum sieboldii Miq. Talatisamine emodin isomer Anti-acute pancreatitis

effect in AR42J cell

CCA
AUE-lgAUC

E-logC
Winnonlin

Talatisamin chysophanol
glucuronide conjugation [43]

Qingkailing injection

Cholalic acid, Concha margaritifera,
Hyodeoxycholic acid, Gardeniae Fructus,
Cornu bubali, Radix isatidis, Baicalin, Flos
Lonicerae Japonicae

Baicalin, geniposide, cholalic acid,
hyodeoxycholic acid, chlorogenic acid,
neochlorogenic acid

Temperature changes in rat Baicalin, geniposide [57]

Yin-Teng-Gu-Bi-Kang
Precription

Radix Salviae Miltiorrhiae, Angelicae
Sinensis Radix, Paeoniae Radix Alb,
Celastrus orbiculatus Thunb.

Tanshinone IIA MDA in rat’s serum Tanshinone IIA [58]

Shengmai injection Red ginseng, ophiopogon japonicas
(Thunb.) Ker-Gawl, schisandra chinensis Ginsenoside (Rg1, Rb1) NO in rat’s serum Ginsenoside (Rg1, Rb1) [59]

Rhizoma Curculiginis — Orcinol glucoside SOD, GSH, GSH-PX
in plasma Orcinol glucoside [60]

Schisandra chinensis
alcoholic extract —

Schisandrin, gomisin D, gomisin O,
tigloylgomisin H, angeloylgomisin Q,
gomisin G, gomisin B, angeloylgomisin P,
schisantherin A, gomisin E, schisantherin D,
deoxyschizandrin, gomisin R, γ-schisandrin,
angeloylisogomisin O, angeloylgomisin O,
6-O-benzoyl gomisin O,
7-8-dihydroxy-schizandrin, PeaktR (42.0 min)

ALT in rat’s serum

Schisandrin,
schisantherin A,
deoxyschizandrin,
γ-schisandrin,
7-8-dihydroxy-schizandrin,
PeaktR (42.0 min)

[61]

Radix et Rhizoma Rhei — Aloe Emodin, rhein, emodin, chrysophanol

Amylase, endotoxin,
TNF-α, diamineoxidase in
beagle dog’s serum;
Temperature changes and
NO in rat in vivo

Rhein [62]

Tea polyphenols — Epigallocatechingallate, epicatechingallate,
epigallocatechin, epicatechin MDA in rat’s liver

Epigallocatechi-n gallate,
epicatechingallate,
epigallocatechi-n,
epicatechin

[63]

SOD: superoxide dismutase; GSH: glutathione; GSH-PX: glutathione peroxidase; ALT: alanine transaminase; MDA: malondialdehyde; AUE: area under efficacy; AUC: area under
concentration. E: efficacy; C: concentration.
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3. Evaluation System of Bioavailability Establishment for TCMs

The construction of the evaluation system of bioavailability is one of the most important scientific
issues in the modernization of TCMs. Hao et al., 2009 [64], first reported that an area under
curve (AUC)-weighting method could obtain the integral PK properties based on the same type
of components in TCMs (Figure 4). The weighting coefficient for each constituent was calculated using
Equations (1) and (2). The integral concentrations (CT) at each time point were then calculated by
Equation (3), where w represented the weighting coefficient, AUC1–AUCn represented bioavailability
in vivo and C1–Cn represented the plasma concentration of each constituent studied. The evaluation
system establishment could comprehensively estimate the correlation between integral PK and PD,
especially for the TCMs with a narrow therapeutic window, to ensure safety in practical applications.
As seen in Table 4, Dong et al., 2014 [65], showed the integral PK profiles of Rhodojaponin I, II,
and III, the active components in Rhododendri Mollis Flos, and found that the correlation with the
potential markers of myocardial injury ((creatine kinase-measurement blood) (CK-MB) and lactate
dehydrogenase (LDH)) was fairly strong, which can be conductive to fully understanding the
relationship between the PK behaviors and the compound’s efficacy. Guo et al., 2014 [66], and
Li et al., 2008 [67], successfully developed the integral PK profiles in the plasma and brain of
ginsenosides Rg1, Rb1, Re, Rd, and panax notoginsenoside R1, the main active components in
Panax notoginseng (Burk.) F.H.Chen (Sanqi). Pan et al., 2014 [68], and Zhu et al., 2012 [69], showed
the integrated PK of baicalin, baicalein, geniposide, palmatine, and berberine, the main effective
ingredients in Huang-Lian-Jie-Du-Tang in middle cerebral artery occlusion (MCAO) rats, and found
that the correlation with the anti-ischemia index (Interleukin 6 (IL-6), tumor necrosis factor (TNF-α),
superoxide dismutase (SOD), glutamic acid (Glu), and MDA) in the serum was good, which would
provide comprehension better understanding of cerebrovascular disease as Huang-Lian-Jie-Du-Tang
is used in clinical practice. Xie et al., 2010 [70], reported the holistic PK of Schisandrin, schisantherin
A, deoxyschisandrin, and γ-schisandrin, the four main lignin components in Schisandra, and found
that the integral AUC and CYP3A activities correlated well with hepatic injury biomarkers (ALT and
aspartate aminotransferase (AST)) in serum. However, the integral PK calculated by an AUC-weighting
method was established on the basis of the fact that the bioavailability of the integral components
was positively correlated with their efficacy. For example, the AUC value of compound A was higher
than that of compound B, but their efficacy was opposite. It means that the effect of the bioavailability
fluctuation of compound B on the integral AUC was far less than that of compound A, but that its
effect on the pharmacology was far stronger than that of compound A, which resulted in the integral
PK parameters being negatively or not correlated with pharmacology. Therefore, an AUC-weighting
method might not be well suited for studying the integral PK of all TCMs. It was presumed that
efficacy as a weight coefficient might be more reasonable if the efficacy we chose could represent the
pharmacological effects of TCMs.

n
ÿ

1

AUC “ AUC1 ` AUC2 ` AUC3 ` . . . . . . ` AUCn (1)

Wj “
AUCi

n
ř

1
AUC

(2)

CT “ W1 ˆ C1 ` W2 ˆ C2 ` W3 ˆ C3 ` . . . . . . ` Wn ˆ Cn (3)
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Table 4. Study on the integrated pharmacokinetics in TCMs.

Names TCMs Composition Integrated Ingredients Integrated
Method Pharmacology Correlation

Analysis Reference

Rhododendri Mollis Flos - Rhodojaponin (I, II, III)

Weighting factor
based on AUC

Myocardial damage
(LDH, CK-MB) - [65]

Panax Notoginseng Saponins1 - Panax Notoginsenoside R1, Ginsenosides Rg1,
Rb1, Re, Rd - - [66,67]

Huanglian-Zhizi couplet medicine Rhizoma Coptidis,
Fructus Gardeniae Gardenia acid, geniposide Antioxidant efficacy (SOD) E-C [68]

Huang-Lian-Jie-Du-Tang
Rhizomacoptidis, Radix

scutellariae, Cortex phellodendri,
Fructusgardeniae

Berberine, palmatine, baicalin,
baicalein, geniposide Anti-ischemia - [69]

Schisandra lignans - Schisandrin, schisantherin A,
deoxyschisandrin, γ-schisandrin

Serum alanine aminotransferase
(ALT), aspartate

aminotransferase (AST)
E-C [70]

Jiao-Tai-Wan Rhizomacoptidis powder, Cortex
cinnamomi powder

Berberine, palmatine, coptisine,
epiberberine, jatrorrhizine - - [71]

Huang-Lian-Jie-Du-Tang
Rhizomacoptidis, Radix

scutellariae, Cortex phellodendri,
Fructusgardeniae

Groenlandicine, berberine, palmatine,
epiberberine, jatrorrhizine, columbamine - - [72]

Total coumarins in Radix
Angelicae dahuricae - Bergapten, imperatorin. . . isoimperatorin - - [73]

Tea polyphenols - Epigallcocatechingallate, Epicatechingallate,
Epigallocatechin, Epicatechin

Anti-lipid peroxidation in vitro of
mouse liver homogenate E-logC [74]

Gegen-Qinlian Decoction

Radix Puerariae,
Radixscutellariae,
Coptidisrhizome,

Radixglycyrrhizae

Puerarin, Daidzein, Baicalin, Baicalein,
Wogonoside, Wogonin, Glycyrrhizin,

Liquiritin, Berberine, Jateorhizine, Palmatine
- - [75]

LDH: lactate dehydrogenase; CK-MB: creatine kinase-measurement blood; E-C: effect-concentration.
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4. Pharmaceutical Technology Applications to Improve the Bioavailability of Active
Components in TCMs

As we all know, the low oral bioavailability of TCMs will contribute to their poor clinical
therapeutic effects. However, formulation designation and pharmaceutical technology applications
are severely disrupted by the complex physico-chemical properties for both active ingredients
and their associated constituents in TCMs. As reported in the PubMed Database (2006–current),
the pharmaceutical methods applied to TCMs classified II (high permeability and low solubility)
in the Biopharmaceutics Classification System (BCS) [76] included mainly micronization [77,78],
nano-suspensions [79–90], solid dispersion [91–108], phospholipid complex [92,109–120],
β-cyclodextrin complex [121–131], microemulsion [132–145], self-microemulsion [146–148], and
polymeric micelles [149,150], etc. The pharmaceutical methods applied to TCMs classified III (low
permeability and high solubility) [76] included mainly microemulsion [132–145], liposome [151–172],
lipid nanoparticles [173–190], bioadhesive polymer [191], absorption enhancers [192–206], etc.
According to the statistics, the proportions of the pharmaceutical technologies applied to Chinese
herbal monomers, Chinese herbal extracts, and Chinese herbal compounds, respectively, were 74.24%,
18.94%, and 6.82% (Figure 5); the percentage of Chinese herbal compounds using absorption enhancers
was 77.78% compared with those using other methods (Figure 5), which indicated that the absorption
enhancers should be considered the preferred pharmaceutical technology in Chinese herbal compound
preparations, such as the preparations recorded in Chinese Pharmacopeia (Volume I) [207] as the active
constituents recognized as belonging to those classified III in the BCS [76].
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5. Study on the Evaluation System of Bioavailability Establishment and Related Pharmaceutical
Technologies—Flos Lonicerae Japonicae—Fructus Forsythiae Herb Couples as an Example

We have previously studied the evaluation system of bioavailability establishment and related
pharmaceutical technology applications based on the Flos Lonicerae Japonicae-Fructus Forsythiae (FLJ-FF)
herb couple as a model drug (Figure 6).

Firstly, the qualitative and quantitative methods in vitro and in vivo for the multi-constituents
in the FLJ-FF herb couple were established. We found 35 components in vitro using
UHPLC-LTQ-Orbitrap-MS, including seven phenolic acids, five phenylethanoid glycosides,
seven flavones, two isoflavones, nine lignans, two saponins, and three iridoids, and 26
ingredients (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, 3,5-dicaffeoylquinic
acid, 3,4-dicaffeoylquinic acid, caffeic acid, quinic acid, isoforsythoside, forsythoside A,
forsythoside B, rutin, luteolin, astragalin, hyperoside, isoquercitrin, quercetin, luteoloside,
genistin, genistein, arctiin, phillyrin, pinoresinol-β-D-glucoside, arctigenin, dipsacoside B,
macranthoidin B, and loganin) were quantified simultaneously by UPLC-ESI-MS/MS [208].
Meanwhile,32 components in vivo (29 prototype compounds and three metabolites) were
identified by UHPLC-LTQ-Orbitrap-MS with MetWorks software, which included seven
phenolic acids, five phenylethanoid glycosides, seven flavones, two isoflavones, seven lignans,
one iridoid, and three metabolites (pinoresinol-O-glucuronide, epipinoresinol-O-glucuronide,
and phillygenin-O-glucuronide), and 23 ingredients (neochlorogenic acid, chlorogenic acid,
cryptochlorogenic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, caffeic acid, quinic acid,
isoforsythoside, forsythoside A, forsythoside B,rutin, luteolin, astragalin, hyperoside, isoquercitrin,
quercetin, luteoloside, genistin, genistein, phillyrin, pinoresinol-β-D-glucoside, and arctigenin) were
quantified simultaneously by UPLC-ESI-MS/MS [209].
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applications for the Flos Lonicerae Japonicae-Fructus Forsythiae (FLJ-FF) herb couple (Ò: improvement).

Secondly, both drug-drug interaction (DDI) (spectrum-effect relationship) [208] and ΣPK-PD
(PK-PD model) [210] were simultaneously performed to identify the chemical markers in the FLJ-FF
herb couple, and they were verified by the “knock-in” method (data not shown). The result
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showed that caffeic acid derivatives(neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid,
3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, isoforsythoside, forsythoside A, forsythoside B)
can be considered as marker compounds in the FLJ-FF herb couple.

Thirdly, the integral PK for caffeic acid derivatives based on an AUC-weighting approach was
established, but the bioavailability of chlorogenic acids was negatively correlated with their efficacy.
For example, the AUC of chlorogenic acid in the FLJ-FF herb couple was much higher than that of
forsythoside A, but the IC50 was lower than that of forsythoside A (data not shown). It meant that the
effect of the bioavailability fluctuation of phenylethanoid glycosides on the integral AUC calculated
by an AUC-weighting approach was far less than that of the chlorogenic acids, but the effect on the
pharmacology was far more than that of the chlorogenic acids, which resulted in the antiviral activity,
not the integral AUC, being improved significantly as forsythoside A knocked in the FLJ-FF herb
couple (data not shown). However, the integral AUC calculated by IC50 as follows (W represents the
weighting coefficient and the C1–Cn represents the plasma concentration of the components studied)
was increased gradually as the antiviral activity was improved by the FLJ-FF herb couple knocked-in
forsythoside A, showing a strong positive correlation, and the integral PK parameters using IC50 as
the weight coefficient index could fully take eight caffeic acid derivatives’ PK parameters into account
(data not shown). The results above indicated that IC50 as a weight coefficient was more reasonable
than AUC.
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Finally, the antiviral activity of commercially available FLJ-FF herb couple preparations
(Shuang-Huang-Lian oral liquid, Yin-Qiao-Jie-Du tablet, Fufang-Qin-Lan oral liquid, and
Qing-Re-Jie-Du oral liquid) was regulated based on the integrated AUC calculated by IC50. The
antiviral effect was decreased significantly as the four preparations knocked out the FLJ-FF herb
couple, but increased significantly as the FLJ-FF herb couple was knocked in (data not shown). Besides,
the integral absorption of caffeic acid derivatives in the four preparations was improved significantly
both in vitro and in vivo by the chito-oligosaccharide (COS) (data not shown), which was consistent
with the fact that the absorption of caffeic acid derivatives in monomers, the FLJ-FF herb couple, or
its preparations was mainly restricted by tight junctions (TJs) [211–214], and COS was an absorption
enhancer based on tight junctions with high effectiveness and low mucosal toxicity [215]. In addition,
the treatment with FLJ-FF herb couple preparations with COS can restrain the MDCK cell damage
upon influenza virus propagation better than that of the control [216], but the treatment with the
preparations with the COS-knocked-out FLJ-FF herb couple showed non-significance compared to that
of control (data not shown). The results above illustrated not only the antiviral activity improvement
due to the COS in FLJ-FF herb couple preparations resulting from the improvement of the integrated
AUC of caffeic acid derivatives, but also showed the reasonability of the weight coefficient calculated by
IC50, not AUC. Absorption-enhancer COS has been successfully applied for the second development
of FLJ-FF herb couple preparations.

6. Conclusions and Future Perspective

TCM preparations, extensively recorded in Chinese Pharmacopoeia, have long history with
applications for protecting health and controlling disease [207]. The present quality assessment
of TCM preparations mainly focused on single chemical constituents, not biological indicators, as
markers, and novel pharmaceutical excipients were hardly applied for TCM preparations due to
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their complicated physico-chemical properties, which resulted in poor effects in clinical practice.
Here, we attempted to propose a plan (Figure 7) to deal with the obstacles in order to carry out
the bio-pharmaceutical explorations of TCM preparations better. Firstly, both the spectrum-effect
relationship and PK-PD model can be simultaneously performed to identify the chemical markers
and to be verified by the “knock-in” method; Secondly, the weight coefficient calculated by AUC or
the efficacy should be compared to decide which one is more suitable for the integral PK; Thirdly, an
absorption enhancer might be considered the preferred pharmaceutical technology in Chinese herbal
compound preparations, such as the preparations recorded in Chinese Pharmacopeia (Volume I) as the
active constituents recognized as belonging to those classified III in the BCS [207].
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In recent years, LC-MS was rapidly accepted by the analytical community, and it was gradually
applied for qualitative and quantitative analysis [217–220], PK study [221,222], metabolite in vivo
identification [223,224], metabolomics [225,226], quality control [227,228], and pharmacological
studies [229,230] in TCMs. The novel methods, such as aggregation morphology [231] and magnetic
molecularly imprinted polymer [232], were also helpful in understanding the mechanism of TCMs and
discovering drugs based on TCMs. Besides, systems biology (genomics, proteomics, metabolomics,
and bioinformatics), a new subject in the field of life sciences, provided a comprehensive resource
for the modernization and advancement of TCMs as well as general drug discovery efforts, which
proposed a system-to-system research methodology to study the interaction between TCMs and
the human body and their applications in drug research and development [233]. In addition, some
promising excipients can also accelerate the development of TCM preparations. For example, Kollidon
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CL, manufactured by BASF, the largest chemical producer in the world, can produce the highest
disintegration speed (18 min), which is 50% faster than croscarmellose sodium (CMC-Na: 27 min) and
almost three times faster than sodium starch glycolate (CMS-Na: 50 min), and which can be applied for
surmounting the obstacles of poor solubility and long disintegration times in oral solid dosage forms
of TCM preparations such as tablets or capsules when the active constituents recognized belonged
to those classified II in the BCS. Chitosan derivatives, such as N-trimethyl chitosan chloride [234]
and chito-oligosaccharide [215], synthesized with remarkable solubility at neutral pH in an aqueous
environment, were not only non-toxic, biocompatible, and biodegradable, but also performed as
intestinal absorption enhancers by reversible opening of the tight junctions, which can be applied for
improving the permeability of active constituents as the active constituents recognized belonged to
those classified III in the BCS. We expect that the current study will be positive and informative.
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