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Contamination events in water distribution networks (WDNs) can have a huge impact on water supply
and public health; increasingly, online water quality sensors are deployed for real-time detection of
contamination events. Machine learning has been used to integrate multivariate time series water
quality data at multiple stations for contamination detection; however, accurate extraction of spatial
features in water quality signals remains challenging. This study proposed a contamination detection
method based on generative adversarial networks (GANs). The GAN model was constructed to simul-
taneously consider the spatial correlation between sensor locations and temporal information of water
quality indicators. The model consists of two networksda generator and a discriminatordthe outputs of
which are used to measure the degree of abnormality of water quality data at each time step, referred to
as the anomaly score. Bayesian sequential analysis is used to update the likelihood of event occurrence
based on the anomaly scores. Alarms are then generated from the fusion of single-site and multi-site
models. The proposed method was tested on a WDN for various contamination events with different
characteristics. Results showed high detection performance by the proposed GAN method compared
with the minimum volume ellipsoid benchmark method for various contamination amplitudes. Addi-
tionally, the GAN method achieved high accuracy for various contamination events with different am-
plitudes and numbers of anomalous water quality parameters, and water quality data from different
sensor stations, highlighting its robustness and potential for practical application to real-time contam-
ination events.

© 2022 Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin
Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Water distribution networks (WDNs) represent critical infra-
structure for the safe and reliable delivery of freshwater to resi-
dential and business customers [1,2]. However, especially in
developing countries, one challenge inherent inWDNmanagement
is the occurrence of contamination events due to ageing pipelines,
lack of operational and maintenance management, and poor con-
struction quality [3,4]. When a pollution accident occurs in a WDN,
polluted water can spread quickly throughout the network unless
detected and a timely response initiated. Such incidents not only
half of Chinese Society for Enviro
under the CC BY-NC-ND license (
interrupt the water supply and potentially cause huge economic
losses but also lead to environmental damage and public health
issues [5]. Examples include an incident that occurred in Hubei
(China) in March 2010, where water containing sodium nitrite was
accidently sucked back into the WDN and affected more than 400
people and contamination events reported in Zhejiang (China) in
May and December 2012, where chemical emissions from up-
stream industry caused a persistent odour within the WDN that
affected more than two million residents [5]. Therefore, rapid and
accurate detection of WDN contamination could promote the
instigation of remedial measures that might reduce the economic
losses associated with contamination events [6,7].

Signals of water quality received from sensors can be analysed to
detect contamination events [8,9]. Following the recent develop-
ment of wireless networks and online sensors, multi-parameter
nmental Sciences, Harbin Institute of Technology, Chinese Research Academy of
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water quality data can be obtained at low cost and in near real-time
[10]. However, single parameters are normally used as surrogate
indicators of contamination events [11,12]. Moreover, accurate
detection of anomalies can often be hampered by sensor faults,
signal transmission anomalies, and many other factors leading to
overall low detection accuracy. Several earlier experimental studies
[13e16] investigated the response to various contamination in-
trusions (e.g., pesticides, herbicides, bacteria, and inorganic
chemicals) of multiple water quality parameters that included
conductivity, total organic carbon (TOC), free chlorine, chloride,
oxidation-reduction potential, ammonia, and nitrate. Their pub-
lished results showed that the intrusion of different contaminants
can cause different responses inwater quality indicators and lead to
synchronous changes in multiple parameters. To improve the per-
formance of methods for detecting contamination events, recent
work has focused on using multi-parameter fusion algorithms to
detect anomalous water quality [17,18]. In more recent studies, time
series water quality data represented by six water quality param-
eters (i.e., total chlorine, pH, electrical conductivity (EC), tempera-
ture, TOC, and turbidity) were analysed to provide fused anomaly
alarms for contamination events [19e23]. Such multi-parameter
fusion algorithms usually represent a simple fusion of anomalous
results from individual parameters that fail to fully explore the
correlations between multiple parameters. Moreover, the spatio-
temporal scope of a WDN is large, and existing anomaly detection
methods are mostly performed only for a limited number of
monitoring stations, and they exclude certain factors such as the
water source, operational hydraulic changes, tank levels, and lon-
gitudinal and radial mixing, which can result in very high vari-
ability of water quality parameters [24]. [25] found that anomaly
detection models using sensor data from multiple sites could
reduce false positive/negative rates and overcome some of the
drawbacks of single-site event detection models, such as a lack of
consideration of hydraulic conditions and sensor data correlations
among multiple sites. Therefore, using multivariate water quality
data from multiple sites is paramount for accurately detecting
contamination events.

Contamination event detection methods can be divided broadly
into statistical, hydraulic-model-based, and machine-learning-
based approaches. In a statistical approach, the determination of
contamination event detection is often based on the distribution of
water quality parameter data [7,13,26]. However, owing to the
nonlinear and nonstationary characteristics of water quality, sta-
tistical methods are usually unsuitable for detecting small
abnormal changes in WDNs [21]. Hydraulic-model-based ap-
proaches detect contamination events by comparing observed real-
time data with predicted values using a water quality and hydraulic
network model [27e29]. Hydraulic models require calibration to
properly simulate the behaviour of a WDN. However, appropriate
calibration is difficult to implement in practice, especially for large
WDNs, because of the complexity of network topology and data
limitations. The machine learning approach is considered an
alternative for predicting real-time data of water quality parame-
ters and identifying anomalous contamination events. Various
machine learning algorithms have been applied for contamination
event detection in WDNs, such as artificial neural networks
[10,27,30], support vector machine [31,32], ensemble stacking
models [21], and long short-term memory [33]. These models can
capture the features of water quality time series data based on tests
using a database compiled from the output of a single-site sensor.
However, these models do not take advantage of the spatial rela-
tionship of multi-site sensor data, and they can increase the false
alarm rate when the monitoring station experiences high hydraulic
variation during normal operation. When a contamination event
occurs, it often causes fluctuation in the water quality monitored by
2

sensors at multiple sites, and the response time of the sensors at
the different sites varies. Therefore, exploring the spatiotemporal
distribution pattern of information from multiple sensors at mul-
tiple sites is important to improve prediction accuracy and enhance
the performance of contamination event identification.

Currently, most multi-site detection approaches use some semi-
supervised [19] or unsupervised [34] single-site methods to inde-
pendently analyse the time series data from each site, and then
assess the spatial similarity of upstream and downstream water
quality data to detect contamination events. Hydraulic and water
quality simulations are used for multi-site sensor data generation
[35,36] or incorporated into the overall event detection process of
spatially distributed sensors [27]. The time interval during which
contaminated water is received must be known in advance for
spatial analysis measurements taken frommultiple sensor stations.
Although multi-site anomaly detection is a promising approach for
improving detection performance, practical application is limited
by the requirement for an accurate hydraulic and water quality
model.

Recently, generative adversarial networks (GANs) have been
proposed as a new framework for estimating generative models to
learn the latent space distribution of given data [37], which allows
further exploration of the spatiotemporal distribution pattern of
information from multiple sensors at multiple sites for anomaly
detection. Anomaly detection methods based on GANs have
become dominant in image recognition owing to their ability to
simulate the complex high-dimensional distribution of images
[38e41]. Moreover, in recent years, GANs have also been adopted
for time series anomaly detection [42e45]. Deep learning neural
networks, such as convolutional neural networks, can be inserted
into the GAN framework for feature extraction of input data. Pre-
vious research has shown that changes in multiple sets of time
series data tend to be synchronous, while in aWDN, there is a lag in
the time of change in water quality data at multiple stations.
Therefore, a GAN model that can learn the spatiotemporal distri-
bution patterns of data from multi-site sensors should be built to
identify contamination events.

Here, we propose a novel GAN-based multivariate multi-site
contamination event detection method that can effectively cap-
ture spatiotemporal patterns in water quality data. The primary
contributions can be summarised as follows.

A summation image transformation method is proposed to
transform the multiple data streams from the different sites at a
certain time step, which helps incorporate the multivariate water
quality data from the multiple sites for convolution calculation.

A new GAN-based model consisting of a generator and a
discriminator is proposed to analyse the temporal correlation of the
time series data and the correlation between multiple variables
using convolution filters and to calculate the anomaly score at each
time step.

Bayesian sequential analysis is introduced to update the event
probabilities for single and multiple sites separately after classi-
fying anomalies based on anomaly scores, which are fused to
generate alarms for anomaly events.

The performance of the proposed GAN-based contamination
event detection method is evaluated using real WDN data and
compared with that of a multivariate unsupervised method; that is,
a minimum volume ellipsoid (MVE)-based event detection model
[34].

2. Methodology

Based on the assumption that the occurrence of a contamination
event causes water quality to change at multiple sensing sites
across a WDN, an unsupervised method for detecting
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contamination events is developed based on the GAN. The GAN-
based contamination event detection method consists of three
steps: (1) data transformation: the time series data of water quality
parameters from a single site and multiple sites are transformed
into images; (2) outlier identification: normal and abnormal con-
ditions are identified based on the anomaly score calculated by the
GAN; and (3) event classification: the probability of event occur-
rence is updated using Bayesian sequential analysis, and events are
classified by fusing alarms from single-site and multi-site event
classifications. These steps are described in more detail in Fig. 1.
2.1. Data transformation

Spatial event classification requires collecting water quality data
from multiple sensor stations. The placement of water quality
sensor stations is assumed to have been previously determined;
otherwise, an optimal sensor placement method could be used to
address this problem [46,47]. A contaminant might spread within a
network through multiple flow paths, meaning that the time taken
to reach different stations will be different. Therefore, neighbouring
stations within the network are grouped together for event
detection.

The proposed GAN-based method combines the results of local
event classification and spatial event classification. The difference
between local and spatial event classification lies in using data sets.
Local event classification is applied to the data set of each sensor
station, while spatial event classification is applied to the data sets
Fig. 1. Schematic of the proposed GAN-based method for spatial contamination event
detection.

3

of all sensors. Therefore, the selected N sensor stations are divided
into Nþ1 groups; that is, N groups each containing data from an
individual sensor station and an additional group containing all
sensor data. The data transformation processes for both local and
spatial event classification are consistent.

The data of water quality parameters are measured in different
units. For mapping different water quality parameters on the same
scale, the normalization of input parameters is conducted using the
z-score approach:

Xi;jðtÞ¼
xi;jðtÞ � mi;j

si;j
(1)

where Xi;jðtÞ and xi;jðtÞ are the normalized and raw data of water
quality parameter i at sensor station j at time step t, respectively,
and mi;j and si;j are the mean and standard deviation of water
quality parameter i at sensor station j, respectively, obtained from
the training data set.

Summation image transformation is proposed to transform
multivariate time series data into images by superimposing the
signals between variables for each time step. Suppose Nr water
quality parameters are measured for each sensor station. Then, for
each time step, V normalized data (V ¼ Nr� N) of the water quality
parameters can be obtained from the analysed N sensor stations
and transformed into a summation image. When N ¼ 1, the sum-
mation image transformation is used in local event classification. If
X is a column vector of length V that represents the water quality
data, then mt can be the summation image at time step t for event
classification, which can be defined as follows:

mt ¼X � I0 þ I � X0
;m

t2RV�V (2)

where 0 is the transpose and I represents a column vector of size V
with every element equal to 1. To reduce the effect of noise, the
summation image of each moment is averaged over the previous
d time steps.

The transformation encodes the relationship between water
quality parameters and sensor stations into spatial information by
superimposing the signals of each variable. Abnormal trends can be
amplified during contamination using the superposition of water
quality signals between different sensor stations. Moreover, noise is
washed out by the averaging process on the temporal axis, making
the method robust to impulse noise at some points.
2.2. Anomaly identification

2.2.1. GAN model
The GAN model is constructed for generative modelling using

deep learning methods, such as convolutional neural networks,
which are usedwidely in image processing tasks. The standard GAN
model consists of two networks: the generator and the discrimi-
nator. The generator (G) is trained to learn a mapping from several
historical summation images to the current expected summation
image, mt , where k represents the number of previous images
considered before the current time step t. Only normal data are
used in the training process to learn the latent vector space of the
normal distribution. The purpose of the discriminator (D) is to
distinguish the generated image from an actual normal image.
Considering the nonstationary water quality characteristics, the
current water quality situation is determined through comparison
with historical summation images, fmt�k;mt�kþ1; :::;mt�1g, which
are considered to represent the background water quality. There-
fore, the historical series of summation images are used as refer-
ence information against which D can identify the generated and
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actual normal images.
The architecture of the proposed GANmodel shown in Fig. 2 is a

modification of CycleGAN architecture [39,48], which achieves
compelling results in image-to-image translation. G consists of a
contracting encoder and an expansive decoder, and it uses sym-
metrical long skip connections as a means of feature concatenation
to recover fine-grained details in the prediction process. G uses the
historical summation images fmt�k;mt�kþ1; :::;mt�1g and outputs

the current reconstructed summation image bmt . D consists of a
regular downsampling convolutional network and outputs a vector
Dð �Þ scoring the realness of a given image sequence. The historical
summation images, fmt�k;mt�kþ1; :::;mt�1g, are combined with the

current measured mt (real) or reconstructed bmt (estimated) sum-
mation images as the input for D. For both G and D, a pointwise
convolutional layer is employed on the top of the networks to
capture the temporal information from the sequence of summation
images without changing the size of the images, and then a regular
convolutional layer is used to extract the spatial information of
multivariate water quality parameters. An attention mecha-
nismdthe Convolutional Block Attention Module (CBAM) [49]dis
used in the discriminator network to boost the representation
power of the convolutional neural network by focusing on impor-
tant features and suppressing unnecessary information. After each
convolution operation, the convolution features are fed into CBAM
to highlight the important features using channel and spatial
attention modules and the refined convolution features are output.
CBAM is not used in the generator network because the auto-
encoder and skip connection structures in G assist the generator
in feature learning, and adding CBAM would only complicate the
network.

The improved Wasserstein GAN loss [50,51] is adopted as the
adversarial loss to stabilize the training process:

LD ¼ Ebm�Pg
½Dð bmÞ� � Em�Pr ½DðmÞ� þ lGPE ~m�P

~m

h�kVDð ~mÞk2 � 1
�2i

(3)

~m¼ εmþ ð1� εÞ bm (4)

where Pg represents the probability distribution of the summation
images generated by G; Pr represents the probability distribution of
the real summation images; P ~m represents the probability distri-
bution of the interpolated summation images in equation (4); Dð �Þ
is a feature vector output by D; Ebm�Pg

½Dð bmÞ� is the mathematical
Fig. 2. The architecture of the proposed GAN model.
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expectation when the summation image generated by G is used as
the input for D; Em�Pr ½DðmÞ� is the mathematical expectation when
the real summation image is used as the input for D; E ~m�P

~m

is the

mathematical expectation when the random interpolation sam-

pling ~mt is used as the input for D; VDð ~mÞ is the gradient for the
interpolated summation images in equation (4); ε is randomly
generated uniformly in the interval [0,1]; and lGP is the coefficient
of the gradient penalty item, which is set to 10 following [51].

G is trained to produce images to deceive D by minimizing the
adversarial loss. Additionally, LG is employed as the reconstruction
loss between the generated and real images to help G learn the
normal distribution of the training data. The reconstruction loss is
defined as follows:

LG¼ Ekm� bmk1 (5)

In the GAN model, G and D networks are trained and updated
simultaneously. The ultimate goal of model training is not to
minimize the loss of any single network, but to find a stable state
where the losses of both G and D converge.
2.2.2. GAN-based anomaly score
Only training data collected during normal conditions are used

to train the GAN model. Therefore, a well-trained generator should
ideally generate images that the discriminator can barely distin-
guish from real images when the test data are similar to the normal
data in the training data set. When the test data set deviates from
normal data distribution, the reconstruction loss of the generated
and the real images will increase, and the discriminator will be able
to more easily distinguish generated images from real images.
Therefore, the trained G and D are both employed to detect
anomalies in the test data set using an anomaly score based on
reconstruction loss in G and feature loss in D. The GAN-based
anomaly score j at t is defined as follows:

jðtÞ¼ ls �
��mt � bmt��

1 þð1� lsÞ �
��D�mt�� D

� bmt���
1 (6)

where ls is the weighting parameter regulating the relative
importance of the reconstruction loss and the feature loss to the
anomaly score. Here, the generator and the discriminator are
considered equally important and thus ls is set to 0.5.
2.2.3. Anomaly detection
The GAN-based anomaly score can measure the degree of ab-

normality of water quality data at each time step. The anomaly
scores are close to 0 during the normal state. Ideally, all the
calculated anomaly scores during the training process should be
bounded to a small interval because the training data set is ob-
tained under normal operation conditions. However, because the
original data are not cleaned and the models might not be well
trained, there will be some moments when the calculated anomaly
scores are relatively large. Therefore, setting a threshold to classify
normal conditions and outliers based on the calculated anomaly
scores is important.

Most previous related studies [22,34,36] adopted empirical
predefined values as classification thresholds that included the
majority (e.g., 95% or 99%) of the calculated anomaly scores during
the training process. Additionally, a value of three times the stan-
dard deviation is normally used as the threshold value [13]. How-
ever, these methods are difficult to apply because the number of
outliers in a normal operating data set is random and the anomaly
scores do not present a normal distribution. Considering that the
calculated anomaly scores at the time of abnormality have a sub-
stantial jump compared to the normal time, a sequential



Z. Li, H. Liu, C. Zhang et al. Environmental Science and Ecotechnology 14 (2023) 100231
incremental comparison method is proposed to select the
threshold for anomaly identification. Let G ¼ fjð1Þ;jð2Þ; :::;jðTÞg
be a collection of anomaly scores for the training data set. We
arrange the anomaly scores in this set from smallest to largest to
derive a new collection: Gsort ¼ fj1;j2; :::;jTg (j1 � j2 � ;:::;� jT ).
There is a large increase in the relative increment at the cut-off
point between normal and abnormal times. Therefore, a
threshold is set based on the sequential increment:

Di ¼
ji � ji�1

ji�1
(7)

where Di is the relative increment. An incremental threshold Dthre
is first delineated instead of directly delineating the outlier
threshold. The increments calculated from the anomaly scores in
Gsort are compared with Dthre. Assuming that Dj is the first incre-
ment greater than Dthre, then jj�1 is set as the anomaly score
classification threshold jthre. Outliers are identified when the
calculated anomaly scores exceed the preset threshold jthre.
Because a small anomaly score indicates that the time point cor-
responds to a normal state, incremental comparisons do not need
to be performed from the beginning. In this study, incremental
comparisons were performed starting from the 80th percentile
anomaly score j80% in Gsort (80% of the anomaly scores in the
training data set were lower than j80%).
2.3. Event detection

2.3.1. Event occurrence likelihood calculation
Contamination event detection should be distinguished from

outlier identification. In the normal operation process, temporary
outliers can be generated from the water quality monitoring data
time series owing to technical faults such as external electromag-
netic signal infection and data transmission failure. The likelihood
of event occurrence is reinforced successively with a succession of
outliers. The Bayesian sequential rule [19] is applied to update the
probability of an event P(t) based on the results of outlier classifi-
cation:
PðtÞ¼

8>>><
>>>:

TPR� Pðt � 1Þ
TPR� Pðt � 1Þ þ FPR� ð1� Pðt � 1ÞÞ; if anomaly score is an outlier at time t

ð1� TPRÞ � Pðt � 1Þ
ð1� TPRÞ � Pðt � 1Þ þ ð1� FPRÞ � ð1� Pðt � 1ÞÞ;otherwise

(8)
where TPR is the true positive rate, calculated as the ratio of the
number of time steps correctly classified as anomalies to the total
number of time steps during which the WDN is under contami-
nation. Here, TPR is set to 0.5, assuming no prior information about
contamination events is available. FPR is the false positive rate,
which is calculated as the ratio of the number of time steps
incorrectly classified as anomalies to the total number of time steps
during which the WDN is under normal conditions; thus, it is
equivalent to the ratio of anomaly scores exceeding the threshold to
the size of the training data set. PðtÞ is the event probability at time
t. Initially, the prior probability of a contamination event Pð0Þ is set
to a small value (e.g., Pð0Þ ¼ 10�5) because contamination events
are rare. An event alarm is launched when the calculated proba-
bility exceeds a specific threshold Pthre. A high threshold can
improve the reliability of the event alarm and reduce the number of
5

false positives. Here, the threshold probability is set to Pthre ¼ 0:8.
The routine operational hydraulic changes of a WDN can result

in short-term high variability in water quality parameters [23,27].
To distinguish normal background variability from contamination
events, the calculated probability is smoothed using a simple
exponential smoothing model [52] that considers the effect from
the previous time step:

PðtÞ¼aPðtÞ þ ð1�aÞPðt�1Þ (9)

where a the smoothing parameter determines the importance
given to the most recently updated event probability. The robust-
ness of the event detection model will be improved because im-
pulse noise, such as fluctuation in water quality parameters
associated with routine operations or sensor faults, is washed away
via the smoothing process. A low value of a means that more time
will be needed to react to a change in event probability and that
more anomalies will be needed to update the event probability to
the alarm threshold. Here, the smoothing parameter is set to
a ¼ 0:6 following [21].
2.3.2. Multi-alarm fusion
The GAN-based contamination event detection model is applied

separately to a set of single-site and multi-site measurements. The
single-site model can focus more on the patterns of multi-
parameter variation over time at each station, while the multi-
site model can extract the spatiotemporal patterns of water qual-
ity parameters from multiple sites. At each time step, both the
single-site and the multi-site contamination event detection
models can provide univariate event probabilities. To fully exploit
the water quality relationship between and within sensor stations,
the event probabilities calculated by both the single-site and the
multi-site models are fused to provide a combined event proba-
bility that reflects the likelihood of a contamination event based on
multivariate water quality parameters from all analysed sites.
Usually, different weights must be allocated to the single-site and
multi-site models to reflect their relative influence on the syn-
chronized decision. Here, the single-site and multi-site models are
unsupervised models that do not have contamination information
in advance; therefore, uniform weights are used to reflect the lack
of prior information. The final alarm is launched when any of the
calculated event probabilities from the single-site and multi-site
models exceed the preset threshold.
2.4. Baseline method for comparison

The MVE classification model proposed by Ref. [34] is used as a
baseline model for comparison purposes. It is a multivariate un-
supervised method that incorporates the MVE classifier for outlier
identification and subsequently performs sequence analysis uti-
lizing the MVE binary output for event classification. The MVE-
based detection model has been applied to both single-site
[34,53] and multi-site models [35,36] because it has high accu-
racy and detection capability, and because model construction and
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training do not require information on contamination events.
For each sensor station, the MVE classifier enables simultaneous

analysis of water quality parameters. It is constructed by finding the
minimal ellipsoid that includes 99% of the time series data in the
training data set of water quality parameters. The ellipsoid
dimension corresponds to the number of monitored water quality
parameters. The classier only exploits data obtained under normal
operating conditions for constructing the ellipsoid. The ellipsoid is
found using the Khachiyan algorithm [54] by iteratively con-
structing a sequence of decreasing ellipsoids until a minimum
bound is satisfied. After the ellipsoid parameters are found, new
measurements can be classified as normal (abnormal) if situated
inside (outside) the ellipsoid.

Event classification is based on sequence analysis because a
succession of outliers represents stronger evidence of event
occurrence. The sequence analysis calculates the occurrence
probability of a contamination event using the proportion and
continuity of outliers in a sliding window. The analysis sequence
length is 25 min of measurements, and the calculation formula and
the parameters are described comprehensively in Ref. [34]. When
the calculated probability exceeds a predetermined event
threshold, an alarm will be triggered. Here, the event threshold is
set to 0.8, which is higher than the value (0.6) in Ref. [34] because a
higher event threshold can reduce the number of false alarms.

The MVE-based contamination event detection method is
applied independently to the measured data set of each sensor
station. The final alarm is triggered when the calculated probability
for any sensor station exceeds the predetermined threshold.

2.5. Performance evaluation

Four indicators are employed to evaluate the performance of the
detection methods: (1) number of false alarms, (2) event detection
rate, (3) F1 score, and (4) average detection time.

The number of false alarms represents the number of alarms
triggered during normal conditions; fewer false alarms mean the
model is more reliable.

The event detection rate is calculated as follows:

Event detection rate¼
Pp

i¼1wi

p
(10)

where p is the number of contamination events and wi represents
detection (denoted by 1) or lack of detection (denoted by 0) of the
ith contamination event. The event detection rate is calculated
based on the event level instead of the time step level (for one
detected contamination event, alerts are only counted once even
though multiple time steps are alarmed).

The F1 score can be interpreted as the harmonic mean of pre-
cision and recall, which can be calculated as follows:

F1¼2� precision� recall
precisionþ recall

(11)

precision¼ TP
TP þ FP

(12)

recall¼ TP
TP þ FN

(13)

where TP represents true positives (the number of observations
classified as anomalies that are actual contamination events), FN
represents false negatives (the number of observations classified as
normal events that are contamination events), FP represents false
positives (the number of observations classified as anomalies that
6

are normal events), precision is the ratio of the number of time steps
correctly classified as under contamination to the total number of
time steps classified under contamination, and recall is the ratio of
the number of time steps correctly classified as under contamina-
tion to the total number of time steps during which the WDN is
under contamination. This score ranges from 0 to 1, with 1 being
the best achievable score.

The average detection time is the average time taken by the
detection model to successfully detect contamination events, and
contamination events that are not detected are not considered. For
each detected contamination event, the detection time is defined as
the elapsed time from the start of the contamination event to the
time when the contamination is first identified.

3. Case study

The presented GAN-based contamination event detection
method was applied to a skeletonized real-world WDN case study
in China: the Yantian network (YTN) (Fig. 3). The YTN has twowater
sources (S1 and S2): 952 demand nodes and 1175 pipes. Overall, 33
water quality sensor stations were deployed in the YTN. The
average demand for the gravity-fed S1 water supply is
36,000 m3 d�1. The total head of S1 ranges from 59.02 to 61.62 m,
and the net outflow ranges from 238 to 660 L s�1. S2 has two
outlets, and it supplies water under the action of both gravity and
pressure. The total average demand is 42,000m3 d�1. The total head
of the pressure-based outlet of S2 ranges from 76.99 to 89.03 m,
and the net outflow ranges from 27 to 245 L s�1. The total head of
the gravity-based outlet of S2 ranges from 54.03 to 55.44m, and the
net outflow ranges from 104 to 539 L s�1. The YTN has a 24-h de-
mand pattern, with a demand interval of 5-min.

3.1. Water quality simulation

The performance of a contamination event detection method
should ideally be evaluated based on real contamination events.
However, owing to the lack of records of contamination events in
WDNs, simulated data are normally used for model training and
performance assessment. In this case study, the water quality data
set of the two water sources (S1 and S2) included six water quality
parameters with a 5-min time step. The monitored water quality
parameters were total chlorine, pH, EC, TOC, temperature, and
turbidity. The EPANET model [55] was used for hydraulic simula-
tion, and amulti-species extension [56] was applied to simulate the
complex water quality reaction and to generate a spatial water
quality database for all the nodes of the network. The EPANET input
file contained network topology, initial heads, demand patterns,



Table 1
Hyper-parameters of the GAN models used in the case study.

Hyper-parameter Value

Activation function ReLU (rectified linear unit)
Learning rate 0.0001
The size of minibatches 128
Epochs 150
Optimizer Adam
Filter size 3 � 3
Channels in G 32, 32, 64, 128, 256, 256, 256, 128, 64, 32, 1
Channels in D 10, 10, 20, 40, 80, 80
Normalization Instance normalization
Stride 2
Momentum 0.5
Attention module in D CBAM
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pump and valve curves, and operational rules. The main inputs of
the multi-species extension comprised a set of equilibrium and
ordinary differential equations for the mass parameters and the
effects of the carbonate system and free chlorine on pH. Chlorine
was represented by first-order decay with a rate constant K of 1
(d�1), while pH was represented by a series of equilibrium equa-
tions related to chlorine and carbonate [27,57]. Other water quality
parameters (except chlorine and pH) were considered conservative
constituents. The principal equations of the water quality model
describing the reaction kinetics can be expressed as follows:

d½Chlorine�
dt

¼ �K � ½Chlorine� (14)

d½alkalinity�
dt

¼ �K � ½alkalinity� (15)

½alkalinity� ¼ ½OH��þ ½HCO3
��þ2� ½CO3

�� � ½Hþ� (16)

where alkalinity (mg L�1 as CaCO3) was set to a constant value (e.g.,
260 mg L�1 as CaCO3) at S1 and S2.

The contamination events were generated artificially by adding
random disturbances to the normal data set, as performed in most
other related studies [19,21,22]. The disturbances were generated
randomly by considering amplitude, duration, direction (e.g., in-
crease or decrease in value of water quality parameters), and the
number of influenced water quality parameters. The peak value of
the disturbance was calculated by multiplying the amplitude and
the standard deviations of the water quality parameters during
routine operation (in this case study, TOC: 0.93 ppb, pH: 0.20, EC:
49.52 mS cm�1, temperature: 1.15 �C, total chlorine: 0.15 mg L�1,
and turbidity: 0.84 NTU). The influenced water quality parameters
were randomly selected from six water quality parameters for each
contamination event. The random event generation process was
performed near S1 to ensure that most sensor stations could
receive contaminated water. Each generated contamination event
lasted 10 h with at least one water quality parameter affected and
with a random sample of deviations from normal patterns for each
water quality parameter ranging between 1.0 and 3.0 as the event
amplitude. The direction of deviation for each affected water
quality parameter was selected randomly for each event. The
generation of contamination events is described by Ref. [21]. The
interval between each contamination event was 3e4 d to eliminate
the effects of previous contamination events. Owing to dilution
processes, the amplitude of contamination events near the source
might be depressed when passed to the downstream nodes. To test
the performance of the GAN-based contamination event detection
model under different combinations of sensor stations, two
different groups of sensor stations at different distances from the
contamination source were selected as event detection system
(EDS) stations. The first group of EDS stations close to the
contamination source included sensors 1, 2, and 3 (Sensor Group 1),
while the second group of EDS stations far from the contamination
source included sensors 7, 10, and 14 (Sensor Group 2).

The network is simulated (both hydraulics andwater quality) for
80 d, with 5-min time steps. The first 14 d are simulated to obtain
the stable initial values of the constituents throughout the network.
The remaining 66 d of data are divided into a training data set (67%)
and a test data set (33%).
Fig. 4. Distribution and sequential increment of the GAN-based anomaly scores using
single-site (a, c) and multi-site measurements (b, d).
3.2. GAN model application

The multivariate time series water quality data were trans-
formed into summation images using the superposition of water
7

quality signals with time duration d ¼ 5, and a historical time
window with a size of k ¼ 30 was adopted by the GAN model to
predict and identify the current water quality situation. Image
padding (padding value was set to 0) was adopted to maintain
images of the same size (32 � 32 parameters) for training the GAN
model. Both single-site and multi-site measurements were fed into
the same GAN architecture. The hyper-parameters of the GAN
models used in the case study comprised optimal parameters
identified from a series of trials (Table 1). The running time for
training the GAN model was approximately 25 min. Evaluating a
new observation and triggering event alarms was instantaneous,
and the process was completely automatic. All experiments were
performed using Google Colab Pro (Google), which is a cloud ser-
vice available for deep learning research.
4. Results and discussion

4.1. GAN-based contamination event detection model

Contamination events are detected by performing an event
probability update after identifying a series of anomalies. Anoma-
lies can be identified from GAN-based anomaly scores by thresh-
olding the score level. Fig. 4 shows the distribution and sequential
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increment of GAN-based anomaly scores using single-site and
multi-site measurements of the normal training data set. In Fig. 4a
and b, the distribution patterns of both single-site and multi-site
distributions can be seen to be similar, with most of the anomaly
scores concentrated in few areas. However, because the ranges of
the calculated anomaly scores are substantially different, setting
threshold values directly for both single-site and multi-site GAN
models is difficult. A sequential incremental comparison was
applied to obtain the anomaly score thresholds for both single-site
and multi-site GAN models. As shown in Fig. 4c and d, most of the
increments in the middle of the sorted anomaly scores are small. A
large increase in the relative increment can be seen at both ends of
the percentage of the anomaly scores. The closer the anomaly score
is to 0, the more likely the test time point corresponds to a normal
state. Therefore, only the larger part of the anomaly scores is
considered when determining the incremental threshold. Owing to
the different distributions of the anomaly score increments,
different incremental thresholds were set for the single-site
(Dthre ¼ 2%) and multi-site (Dthre ¼ 6%) GAN models. The thresh-
olds of the anomaly scores can be determined based on the incre-
mental thresholds for the single-site and multi-site GAN models.
The original water quality data contain some anomalies due to
sensor failure and other factors. Therefore, very few exceptionally
high abnormal values are in the calculated anomaly scores. High
incremental thresholds that increase the threshold for obtaining
anomalies would reduce the chances of false negative alarms but
cause the models not to report minor contamination events. Low
incremental thresholds enable the detection of smaller contami-
nation events but increase the chances of false negative alarms.
Thus, when the monitoring stations do not experience high hy-
draulic variability during operation and when the accuracy of the
water quality sensors is high, smaller incremental thresholds can
improve model performance by increasing the chances of minor
anomaly detection. When the monitoring stations experience high
hydraulic variability during operation or when errors associated
with thewater quality sensors are large, setting higher thresholds is
better to avoid reporting more false negatives.

The single-site model trains an individual GAN model for each
sensor station, and an alert is issued when an alert is triggered at
any of the stations, whereas the multi-site model trains a GAN
model for multiple sensor stations. The proposed GAN-based
model for event detection integrates the results of both single-
site and multi-site models. Fig. 5 shows event alarms of the
single-site, multi-site, and combined models for the training and
testing data sets with contamination events. The models were first
Fig. 5. Event alarms of single-site, multi-site, and combined models for training (a)
and testing (b) data sets with contamination events.
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trained using the training data set with normal conditions, and
then tested with the training and testing data sets containing the
generated contamination events. Note that the random contami-
nation events were added to both the training and the testing data
sets with amplitude of between 1.0 and 1.5, with each event
randomly affecting 3e6 water quality parameters. The monitored
data of Sensor Group 1 were used to train and test the GAN-based
model. The combined model can be seen to detect more contami-
nation events than any of the single-site and multi-site models for
both the training and the testing data sets. For the same contami-
nation event, the alarm duration of the multi-site model is usually
longer than that of the single-site model. The single-site model is
more concerned with temporal changes in multiple water quality
parameters at a single site, whereas the multi-site model detects
spatial and temporal changes in water quality parameters at mul-
tiple sites. Nevertheless, the multi-site model cannot fully replace
the single-site model because there are instances when the multi-
site model missed an event or triggered a false alarm when the
single-site model provided an alarm correctly (highlighted in the
red box in Fig. 5). However, the combined model could exploit the
strengths of both single-site and multi-site models.

The characteristics of the single-site and multi-site models can
be further elucidated by comparing the variation in anomaly scores
during a contamination event. Fig. 6 shows the time series of the
normalizedwater quality parameters monitored by Sensor Group 1,
together with the GAN-based anomaly scores of both the single-site
and the multi-site models for the event highlighted in Fig. 5. An
increased anomaly score of similar size is generated by both the
single-site and the multi-site models toward the end of the
contamination event; however, only the single-site model triggers
a true alert owing to the different thresholds. Substantial change is
evident in the water quality parameters after approximately 1000
time steps, even without a contamination event. This reflects that
some operational hydraulic changes during normal conditions can
result in high variability in water quality parameters similar to
contamination events. The single-site model generates small
increased anomaly scores at the beginning and end of the process,
but no alarm is triggered, whereas the multi-site model triggers a
false alarm. The single-site model is more likely to detect abrupt
changes in water quality, whereas the multi-site model can
continuously amplify an abnormal signal during the ongoing pro-
cess of water quality changes by superimposing the water quality
change characteristics of multiple sites at different moments. To
reduce false alarms, relevant routine operations could be checked
before an alarm is triggered.

Four experiments with different amplitudes of contamination
events ranging from 1.0 to 3.0 (i.e., 1.0e1.5, 1.5e2.0, 2.0e2.5, and
2.5e3.0) were conducted to compare event detection performance
between the single-site, multi-site, and combined models. The
random events were added to both the training and the testing data
sets, with each event randomly affecting 3e6 water quality pa-
rameters. Details of the detection performance of the single-site,
multi-site, and combined models for events of different ampli-
tude based on the data of Sensor Group 1 are listed in Table 2. For
contamination events with small amplitude (<2.0), the single-site
model has poor detection performance, and the multi-site model
can detect more contamination events. As the contamination event
amplitude increases, the single-site model's performance improves
markedly. The single-site model detects most contamination
events and generates fewer false alarms for contamination events
with high amplitude (>2.5). The detection performance of the
multi-site model changes little with increasing amplitude of the
contamination events, but themulti-site has a higher F1 score and a
shorter detection time than the single-site model. The combined
model has a higher event detection rate, higher F1 score, and



Fig. 6. The time series of the normalized water quality parameters monitored by Sensor Group 1 and the GAN-based anomaly scores of both single-site and multi-site models for
the event are highlighted in Fig. 5.

Table 2
Detection performance of single-site, multi-site, and combined models for events of different amplitude based on the data of Sensor Group 1.

Data Amplitude Models False alarm Event detection rate F1 score Average detection time (min)

Training 1.0e1.5 Single-site 6 0.36 0.13 57.4
Multi-site 6 0.71 0.50 52.3
Combined 10 0.79 0.50 51.6

1.5e2.0 Single-site 4 0.57 0.21 46.5
Multi-site 5 0.86 0.59 47.2
Combined 7 0.93 0.61 45.5

2.0e2.5 Single-site 3 0.86 0.30 46.8
Multi-site 5 1.00 0.68 43.3
Combined 6 1.00 0.69 40.5

2.5e3.0 Single-site 3 0.93 0.44 43.2
Multi-site 4 1.00 0.73 39.0
Combined 5 1.00 0.74 36.1

Testing 1.0e1.5 Single-site 1 0.29 0.02 63
Multi-site 2 0.71 0.42 55.6
Combined 2 0.86 0.42 53.8

1.5e2.0 Single-site 1 0.57 0.11 65.3
Multi-site 3 0.86 0.53 47.3
Combined 3 0.86 0.53 47.3

2.0e2.5 Single-site 1 0.71 0.19 51.4
Multi-site 3 0.86 0.56 41.7
Combined 3 0.86 0.56 40

2.5e3.0 Single-site 1 0.86 0.39 47.3
Multi-site 3 0.71 0.59 38
Combined 3 0.86 0.59 40
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shorter average detection time than those of either the single-site
or the multi-site models for all contamination event amplitudes
using both the training and the testing data sets; that is, the com-
bined model improves detection accuracy, increases the number of
detected events, and shortens the detection time. However, the
combined model generates more false alarms than either the
single-site model or the multi-site model in most situations
because all the false alarms of the single-site and multi-site models
are combined. The combined model has improved event detection
performance when both single and multi-site models have fewer
false alarms. When these models generate varying levels of false
alarms, different weights could be allocated to reflect their relative
influence on the synchronized decision based on detection accu-
racy. Moreover, as shown in Fig. 5, some false alarms could be
reduced by verifying whether there are any normal operational
hydraulic changes.
4.2. Comparison of the GAN-based model with the MVE-based
model

The performance of the combined GAN-based contamination
event detection model was compared with that of the MVE-based
model in identical multiple experiments. Fig. 7 depicts the
receiver operating characteristic (ROC) curve of both the combined
GAN-based and the MVE-based models using Sensor Groups 1 and
2 during the testing experiments for contamination events with
four different amplitudes (1.0e1.5, 1.5e2.0, 2.0e2.5, and 2.5e3.0).
The ROC curve depicts the performance trade-off between the true
positive rate and the false positive rate for different event proba-
bility thresholds. The ROC curve is constructed at the time step level
instead of at the event level (i.e., the alarm is compared with the
real situation and classified as a true positive or a false positive for
every time step). The results demonstrate that the GAN-based
model outperforms the MVE-based model for all contamination
event experiments with different amplitudes. The ROC curve area
Fig. 7. Receiver operating characteristic (ROC) curves of both the combined GAN-based and
experiments for contamination events with different amplitudes: aed, ROC curves using S
2.5e3.0 (d); eeh, ROC curves using Sensor Group 2 for events with amplitudes of 1.0e1.5
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calculated using Sensor Group 1 (near the contamination source) is
larger than that calculated using Sensor Group 2 (far from the
contamination source) for both the GAN-based and the MVE-based
models for contamination events with the same amplitudes. The
performance of both the GAN-based and the MVE-based models is
improved with an increase in the contamination amplitude. Event
amplitude might be depressed owing to dilution processes, thereby
affecting the performance of the event detection models.

Comparative results of the GAN-based and MVE-based models
using Sensor Groups 1 and 2 are listed in Table 3. When the sensors
(Sensor Group 1) are closer to the contamination source, the
detection performance of the GAN-based model is better than that
of theMVE-basedmodel for events with lower amplitude (<2.0). As
the amplitude of contamination increases, the detection perfor-
mance of the MVE-based model markedly improves. When the
contamination amplitude exceeds a certain value (>2.5), the
detection performance of the MVE-based model exceeds that of the
GAN-based model. When the sensors (Sensor Group 2) are far from
the contamination source, the detection performance of the GAN-
based model is better than that of the MVE-based model for all
event experiments, and theMVE-basedmodel generates more false
alarms. Although the distance from the contamination source re-
duces the accuracy of the model, the GAN-based model yields
better performance in all conditions, indicating that the GAN-based
model is more robust than theMVE-basedmodel. Notably, owing to
dilution processes and hydraulic variability during routine opera-
tion, not only will the amplitude of contamination events generated
at upstream nodes be reduced, but also the trend of water quality
change might also be altered, which might cause the MVE-based
model to exhibit poorer performance when the sensors are far
from the contamination source. Despite the advantages of the GAN-
based model demonstrated in this case study, the MVE-based
model still shows reasonable performance in some cases, such as
when the sensor stations do not encounter high hydraulic vari-
ability during operation and when only contamination events with
the MVE-based models using data from different groups of sensors during the testing
ensor Group 1 for events with amplitudes of 1.0e1.5 (a), 1.5e2.0 (b), 2.0e2.5 (c), and
(e), 1.5e2.0 (f), 2.0e2.5 (g), and 2.5e3.0 (h).



Table 3
Comparative results of GAN-based and MVE-based models using Sensor Groups 1 and 2. Higher performance indicator values are marked in with *.

Sensors Amplitude Models False alarm Event detection rate F1 score Average detection time (min)

Group 1 1.0e1.5 GAN 2* 0.86* 0.42* 53.8*
MVE 2* 0.57 0.36 54.5

1.5e2.0 GAN 3 0.86* 0.53* 47.3
MVE 2* 0.71 0.41 47.0*

2.0e2.5 GAN 3 0.86* 0.56* 40.0*
MVE 2* 0.86* 0.54 44.2

2.5e3.0 GAN 3 0.86 0.59 40.0
MVE 2* 1.00* 0.66* 37.3*

Group 2 1.0e1.5 GAN 1* 1.00* 0.34* 84.9
MVE 15 0.43 0.22 74.0*

1.5e2.0 GAN 2* 0.86* 0.41* 71.7*
MVE 16 0.71 0.31 78.8

2.0e2.5 GAN 3* 1.00* 0.44* 69.0*
MVE 15 0.86 0.38 73.7

2.5e3.0 GAN 2* 1.00* 0.45* 67.6*
MVE 16 0.86 0.42 67.8

Fig. 8. Distribution of four evaluation indicators for different amplitudes and the number of influenced water quality parameters during the testing experiments: a, c, e, g, Group 1;
b, d, f, h, Group 2.

Fig. 9. Event alarms of the proposed GAN-based model using Sensor Group 2 during
one testing process (contamination characteristics: amplitude is 2.0e2.5 and the
number of influenced water quality parameters is 5).
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high amplitude need to be identified because low-amplitude
events might not have much impact in some circumstances.

4.3. Effects of contamination characteristics on detection
performance

Whether the detection performance of the GAN-based model is
affected by contamination events with different characteristics is
important to determine. The box plots presented in Fig. 8 show the
distribution of four evaluation indicators for different amplitudes,
together with the number of influenced water quality parameters
using Sensor Groups 1 and 2 during the testing experiments (ten
experiments were conducted for each set of event amplitude and
number of influenced water quality parameters).

Results show that the detection performance of the GAN-based
model is improved for contamination events with increasing
amplitude. Greater distance between the sensor stations and the
11
contamination source increases the false alarms and detection time
and reduces the F1 score; however, the event detection rate does
not change substantially. This is because the labelling of contami-
nation events in this study only considers the time to add
contamination from the source, and it takes more time for con-
taminants to be transmitted to more distant sensors. In the time
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between contamination addition and transmission to the sensors,
the sensors do not receive contaminated water, but they are
marked as real events. Additionally, the sensors still receive
contaminated water for a certain time after the injection of the
contamination has stopped, but these time points are marked as
normal. These factors also result in a lower F1 score and a longer
detection time. The GAN-based model generates more false alarms
using Sensor Group 2 for contamination events with higher
amplitude. Fig. 9 shows the event alarms of the proposed GAN-
based model using Sensor Group 2 during one testing process.
There are a few cases where multiple interval alarms are triggered
after a contamination event. Owing to complex hydraulic varia-
tions, the sensors might receive contaminated water at multiple
intervals for the same contamination event. The alarms for intervals
of contaminated water caused by the cessation of contamination
injection are considered false alarms, and the GAN-based model is
more likely to generate such false alarms for contamination events
with higher amplitude. Considering the time of contaminant
transport in the WDN, the alarms within 24 h of the start of
contamination injection are considered true alarms. Fig. 10 shows
the distribution of false alarms for events of different amplitude
and numbers of influenced water quality parameters using Sensor
Group 2 during the testing experiments, considering different
event duration flags. The number of false alarms can be seen to be
substantially reduced after the transportation time is considered in
triggering event alarms, which means that contaminants could
affect the network for a long time after injection. In practice,
despite the identification of contaminants, water must be dis-
charged in the affected area for a long time to ensurewater security.

As shown in Fig. 8, the number of influenced water quality pa-
rameters has little effect on the detection performance of the
model. Contamination events with a higher number of influenced
water quality parameters do not necessarily lead to an increase in
detection performance. The detection performance of the GAN-
based model is better for contamination events with 2e3 water
quality parameters affected than contamination events with six
water quality parameters affected. This is because, in the training
data set, some operational hydraulic changes might cause simul-
taneous changes in most water quality parameters. Some
contamination events (with most water quality parameters
affected) that have similar change patterns as the normal state
under routine operation are classified as normal by the GAN-based
model.
Fig. 10. Distribution of false alarms for events with different amplitude and different
numbers of influenced water quality parameters using Sensor Group 2 during the
testing experiments, with consideration of different event duration flags: a, alarms
during the time of contamination injection (in this study, each contamination event
lasted 10 h) are regarded as true alarms; b, alarms within 24 h of the start of
contamination injection are regarded as true alarms.
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5. Conclusions

A GAN-based contamination event detection method was
developed in this study for the detection of contamination events
in a WDN. The proposed GAN-based model detects contamination
events by simultaneously analysing multiple water quality
parameter data from multiple sensor stations. First, the measured
water quality data are transformed into superimposed images
fusing different water quality parameters from multiple stations.
Then, the GAN-based model is constructed to measure the degree
of abnormality at each time step by calculating anomaly scores
based on two networks, G and D. Bayesian sequential analysis is
used to update the contamination event probability after identi-
fying the anomalies using the anomaly score threshold. Finally, the
final alarm is generated by combining the early warning results of
single-site and multi-site models.

The effectiveness of the GAN-based model was tested in a case
study of a real WDN, and contamination data generated by water
quality simulations based on the chemical reaction kinetics and
network hydraulics were used to evaluate detection performance.
The main conclusions derived are summarised below.

(1) The proposed GAN-based model, which is trained using only
data obtained under normal conditions, improves the
detection rate and time compared with those of the indi-
vidual single-site and multi-site models and the MVE-based
benchmark model.

(2) The proposed GAN-based model is robust to contamination
events with different amplitude and monitored at different
sensor stations. For two sensor groups located at different
distances from the contamination source, the GAN-based
model can achieve a high event detection rate and reduce
the number of false alarms, whereas the MVE-based model
has lower detection performance for the sensor group
located furthest from the contamination source. Additionally,
the detection rate of the GAN-basedmodel is high for various
contamination events with different amplitude and different
numbers of water quality parameters affected during the
events, highlighting its robustness for contamination event
detection.

(3) The event detection rate is improved by fusing the alarms of
the individual single-site and multi-site models. This is
probably because the GAN-based model combines the ad-
vantages of both single-site and multi-site models and can
detect both abrupt changes and ongoing changes in water
quality.

Although the detection performance of the proposed GAN-
based model was tested with contamination events of different
amplitude and different sensor data sources, more experiments
should be conducted to test and generalize the GAN-based model.
This study was based on the assumption that contamination occurs
upstream of the sensor combination to ensure that all sensors in a
sensor group received contaminated water. The performance of the
GAN-based model in detecting contamination events should be
tested for different combinations of sensor stations in the future,
and the effect of the anomaly detection model could be considered
in the optimal arrangement of sensors. Theoretically, for a
contamination source close to a sensor station, the anomaly score
calculated by the GAN model will be high. In future research, the
anomaly scores calculated by the GAN model could be used to
further analyse the possibility of locating contamination sources. In
practical application, if there are few sensor stations within a WDN
and the distance between adjacent stations is large, the similarity
between water quality data of different stations will be small and
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unsuitable for application in a multi-site model. In this situation,
only a single-site model should be considered. In this study, mul-
tiple sets of contamination events affecting different water quality
parameters were considered for performance testing, and future
work could investigate the impact of the model on each water
quality parameter metric. The current study used data from the
previous 2.5 h to identify the normal mode. In future studies, the
effects of input water quality data over different lengths of time are
recommended to be examined.
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