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Abstract: Wine production is one of the most critical agro-industrial sectors worldwide, generating
large amounts of waste with negative environmental impacts, but also with high economic value
and several potential applications. From wine shoots to grape pomace or seeds, all of the wastes are
rich sources of bioactive compounds with beneficial effects for human health, with these compounds
being raw materials for other industries such as the pharmaceutical, cosmetic or food industries.
Furthermore, these compounds present health benefits such as being antioxidants, supporting
the immune system, anti-tumoral, or preventing cardiovascular and neural diseases. The present
work aims to be a critical discussion of the extraction methods used for bioactive compounds from
grapevine waste and their beneficial effects on human health.
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1. Introduction

Viticulture is one of the world’s most recognizable agricultural activities, with a global
grape production of 77.8 million tons per year [1]. Interest in vineyards has grown signifi-
cantly worldwide. In the last 5 years, the European Union (EU) vineyard has presented
a stable balance between deforestation and the planting of new vineyards, while China
attains 3rd place worldwide after Spain and France in vineyard area [2] (Figure 1, according
to statistics provided by the International Organization of Vine and Wine).

Grape production is divided into three main categories: wine grapes (57%), table
grapes (36%) and dried grapes (7%) [2] (Figure 2, according to statistics provided by the
International Organization of Vine and Wine).

Waste products are generated at each stage of the winemaking process [3]. There are
two distinct categories that show the origin of winery wastes: those that result from the
collection of grapes (solid wastes), and those that result from the winemaking process
(liquid wastes) [4]. The first category broadly involves grape stalks (7.5% of total solid
wastes generated by winery), grape pomace (45%), grape seeds (6%) [5,6], stems, as well as
wine yeasts [7]. Pomace represents 20–25% of the initial weight of the grapes, being a solid
residue resulting from the processes of fermentation and pressing of the grapes [8].
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Figure 1. Percentages of vineyard areas of the main vine-growing countries in 2020. 
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Figure 1. Percentages of vineyard areas of the main vine-growing countries in 2020.
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Figure 2. Grape production of the main producers and production per category (%): (a) grape
production by country; (b) table grape production (%); (c) dried grape production (%); (d) wine grape
production (%).

Wine yeast accounts for about 5% of the total weight of grapes, being rich in ethanol,
tartaric acid, phenolic compounds and yeast cells [9]. Grape skins represent 7% of the total
weight of the grapes, usually being removed before the fermentation stage, in order to avoid
excessive astringency of the wine. They are a rich source of phenolic compounds (especially
tannins, flavan-3-ols, hydroxycinnamic acids, monomeric and oligomeric flavonols and
stilbenes) [10] and lignocellulosic compounds (hemicellulose, cellulose and lignin), most of
them with antioxidant properties [7].

Grape seeds are rich in antioxidant compounds such as vitamin E, phenolic com-
pounds, phytosterols, fibers, proteins, carbohydrates and minerals, especially lipids, and
melatonin [11]. In contrast, grape skins and pulp are a rich source of fiber, phenolic acids
(gallic acid, vanilla and caftaric acid), flavonols (quercetin, myricetin and kaempferol),
and anthocyanins [12]. However, the wine industry produces, in a short period of time, a
large amount of waste and by-products, representing about 30% of the initial weight of the
grapes [13,14]. The accumulation of these wastes can cause economic and environmental
issues due to the organic matter, acidic pH, salinity and heavy metal content [15].

In order to obtain the best-quality grapes, different management techniques were
applied to vineyards, which involve cutting, irrigating and fertilizing [16]. Pruning plays
an important role in the quality development of the vine and implicitly in the production
of grapes, being performed in both cold and warm seasons. The pruning practice of
vineyards in winter is the main source of vine residues, consisting of the accumulation
of large amounts of vine shoots and canes [17]. The growing demand for grapes has
automatically led to an impressive increase in both the area and the value of the vineyards.
Thus, the accumulation of organic and inorganic waste causes major problems related to
their economic and ecological management [18]. Among the wastes from the pruning of
vines are also those from leaf trimming and cluster thinning namely stalks, unripe grapes,
vine shoots, and leaves [18]. Crops grown for table grapes produce much more viticultural
waste, because the growth of these crops is based primarily on improved quality and limited
production [19,20]. The accumulation of viticultural waste has a negative impact both on
the environment and human health through water pollution, oxygen consumption in the
soil and groundwater, as well as through the attraction of vectors of disease spread [21].
Globally, there is a growing demand for healthy, natural food ingredients that can replace
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synthetic antioxidants and food preservatives [22]. Several scientific studies confirm the
presence of phytochemicals (antioxidants) in grapevine and its by-products, as well as their
potential applicability as (natural) added value in the food, pharmaceutical and cosmetic
industries due to their nutritional benefits (dietary fiber, phenols, proteins and lipids).
They can also be used as fertilizers for soils or as biomass for energy production [9,23].
Vine leaves constitute important sources of organic acids, lipids and polyphenols, having
applicability in the cosmetic industry [15]

Furthermore, vineyards waste together with pomace may also be used as: antimicro-
bial and antioxidant agents; natural additives, improving the nutritional quality of food;
fillers in food packaging formulas [24]; or as a hardening agent [25]. The recovery levels
of bioactive compounds are closely linked to the vinification procedures as well as to the
grape variety considered [26].

The present work aims to be a critical discussion of the extraction methods of bioactive
compounds from grapevine waste and their beneficial effects on human health.

The methodology used in the present review involved the interrogation of available
databases (Web of Science, Scopus, SpringerLink, and Google Scholar) for studies involving
grapevine wastes (composition, separation, application in different industries) using as
primary search keywords “grapevine”, “wastes”, “composition”, respectively the targeted
industries. Following the primary search, the results were filtered by reading the abstracts
of the articles, in order to remove false positive results. In the next step, all selected articles
considered eligible were retrieved and independently assessed, considering their content,
publication year and relevance for the present review. From the final selection we excluded
reviews, protocols, theoretical papers, editorials, letters to the Editor, and book reviews.
The selected articles were evaluated by the authors and relevant information was collected
in order to be used in the review article.

2. Extraction Methods of Bioactive Compounds from Grapevine Waste

Over the years, many extraction methods have been approached in order to recover
bioactive compounds with beneficial properties from grapevine wastes. The most abundant
polyphenols present in grapevine varieties, according to reviewed literature data, are
presented in Figure 3, while some representative results are provided in Table 1.

As can be observed from Table 1, the concentration of active compounds from grapevine
wastes strongly depends on several factors, including, but not limited to, the used variety,
harvesting time, and extraction method applied. Furthermore, applying a post-harvest
treatment in the form of wilting can considerably increase the contents of anthocyanins,
proanthocyanidins and stilbenes in the grape composition [33]. Rätsep et al. [27] have con-
ducted a study evaluating the polyphenolic content of grapevines and canes in accordance
with the pruning time and dormancy phase of the grapevine. Furthermore, they have
shown that the bioactive molecule content of wastes from Hasansky Sladky (hybrid ob-
tained from Vitis amurensis L. and Vitis labrusca L.), Zilga (a combination of Vitis amurensis L.
and Vitis labrusca L.) and Rondo (Vitis amurensis L., used for red wine) can be influenced by
hybrid type and the vegetation phase. The microwave extraction method was chosen for
this experiment. A solution of 60% ethanol–water (v/v) was added to the dried and ground
vegetable material. The microwave power used was 100 W for 5 min. In all three cases,
unlike the endo-dormancy phase in which the amounts of flavonols increase and those of
stilbens decrease, in the eco-dormancy phase increased levels of both flavonols (mainly
quercetin-3-glucuronide, quercetin-3-glucoside, quercetin-3-galactoside, and quercetin) and
stilbenes (trans-resveratrol and ε-viniferin) were observed.
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Table 1. Bioactive compounds isolated from grapevine wastes 1.

Waste Type Grape Variety Collecting Period Extraction Method Extraction Parameters Bioactive Compounds Obtained Ref.

Shoots

Hasansky Sladky (H)

July Microwave-assisted extraction
Solvent: 60% EtOH-H2O solution (v/v) (100
mL); 2 g vegetal dried and ground powder

material; MwP = 100 W, t = 5 min;

Flavonols: quercetin-3-glucoside + quercetin-3-galactoside
(456.8 ± 51.2 mg/kg d.w.), quercetin-3-glucuronide

(4782.8 ± 711.5 mg/kg d.w.), quercetin (98.1 ± 8.9 mg/kg d.w.)

[27]
Zilga (H)

Flavonols: quercetin-3-glucoside + quercetin-3-galactoside
(807.9 ± 46.1 mg/kg d.w.), quercetin-3-glucuronide

(4809.4 ± 283.9 mg/kg d.w.), quercetin (420.4 ± 8.0); rutin
(193.8 ± 6.6 mg/kg d.w.)

Rondo (H)

Flavonols: quercetin-3-glucoside + quercetin-3-galactoside
(1201.4 ± 80.1 mg/kg d.w.), quercetin-3-glucuronide

(7353.4 ± 579.7 mg/kg d.w.), quercetin (192 ± 13.3 mg/kg d.w.);
kaempferol (116.4 ± 5.4 mg/kg d.w.), rutin

(517.3 ± 44.0 mg/kg d.w.)

Canes

Hasansky Sladky (H)

October (EdD)/March (EcD) Microwave-assisted extraction
Solvent: 60% EtOH-H2O solution (v/v)
(100 mL); 2 g vegetal dried and ground

powder material; MwP = 100 W, t = 5 min;

EdD/EcD: flavanols: (+)-catechin
(31.3 ± 1.7/213.7 ± 21.5 mg/kg d.w.); (-)-epicatechin

(2.7 ± 0.2/37.2 ± 1.8 mg/kg d.w.); procianidin B
(1.3 ± 0.3/32.4 ± 3.2 mg/kg d.w.); Stilbenes: ε-viniferin

(765.6 ± 87.4/1042.8 ± 24.2 mg/kg d.w.); resveratrol
(32.4 ± 7.9/186.9 ± 3.4 mg/kg d.w.) [27]

Zilga (H)

EdD/EcD: flavanols: (+)-catechin
(36.0 ± 5.3/224.5 ± 35.3 mg/kg d.w.); (-)-epicatechin

(6.1 ± 1.4/61.8 ± 7.2 mg/kg d.w.); procianidin B
(3.2 ± 1.4/49.2 ± 8.6 mg/kg d.w.); Stilbenes: ε-viniferin

(595.5 ± 69.6/931.6 ± 72.8 mg/kg d.w.); resveratrol
(21.4 ± 2.9/44.0 ± 2.4 mg/kg d.w.)

Touriga Nacional

November Subcritical-water extraction
Solvent: H2O (400 mL); 40 g of milled
vine-canes; T1 = 125 ◦C/T2 = 250 ◦C;

t = 50 min;

T1/T2: Phenolic acids: gallic acid
(60.1 ± 3.0/891 ± 45 mg/100 g d.w.), protocatechuic acid

(33.8 ± 1.7/14.5 ± 0.7 mg/100 g d.w.), 4-hydroxyphenilacetic acid
(16.8 ± 0.8/62.6 ± 3.1 mg/100 g d.w.), 4-hydroxybenzoic acid

(9.2 ± 0.5/22.6 ± 1.1 mg/100 g d.w.), vanillic acid
(15.0 ± 0.7/15.6 ± 0.8 mg/100 g d.w.); flavanols: (+)-catechin

(102 ± 5/181 ± 9 mg/100 g d.w.); stilbenes: resveratrol
(8.0 ± 0.4/15.8 ± 0.8 mg/100 g d.w.) [28]

Tinta Roriz

T1/T2: Gallic acid (74.2 ± 3.7/1066 ± 53 mg/100 g d.w.),
protocatechuic acid (33.4 ± 1.7/21.2 ± 1.1 mg/100 g d.w.),

4-hydroxyphenilacetic acid
(49.2 ± 2.5/134 ± 7 mg/100 g d.w.), 4-hydroxybenzoic acid

(8.4 ± 0.4/44.9 ± 2.2 mg/100 g d.w.), Vanillic acid
(13.5 ± 0.7/31.6 ± 1.6 mg/100 g d.w.); Flavanols: (+)-catechin

(245 ± 12/216 ± 11 mg/100 g d.w.); Stilbenes: resveratrol
(10.5 ± 0.5 13.1 ± 0.7 mg/100 g d.w.);
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Table 1. Cont.

Waste Type Grape Variety Collecting Period Extraction Method Extraction Parameters Bioactive Compounds Obtained Ref.

Stems

Sauvignon blanc Late September

Solid-liquid extraction (shaker)
Solvent: 75% MeOH (90 mL); 10 g vegetal

crushed material; t = 2 h in a dark and cold
basic shaker;

Hydroxybenzoic acid: gallic acid (4.015 mg/L), 4-hydroxybenzoic
acid (0.076 mg/L), syringic acid (0.349 mg/L)

[29]
Blauer Portugieser October

Gallic acid (0.822 mg/L), Hydroxybenzoic acid: syringic acid
(1.346 mg/L), Hydroxycinnamic acid: caffeic acid (20 mg/L)

ferulic acid (n.p.), coumaric acid (n.p.); stilbenes: trans-resveratrol
(n.p.), Flavan-3-ol: epicatechin and catechin (n.p.)

Cabernet Moravia M-43 November Hydroxybenzoic acid: protocatechuic acid (1.201 mg/L)

Mavrodaphne

n.p. Ultrasound-assisted extraction
Solvent: mixture of MeOH/H2O/1.0 N

HCI = 90:9.5:0.5 v/v (200 mL); 50 g of
air-dried and powder stems; t = 10 min;

gallic acid (5.581 µg/mg extract), caffeic acid (3.700 µg/mg
extract), quercetin (0.620 µg/mg extract), quercitrin

(0.152 µg/mg extract)

[30]
Muscat Gallocatechin (0.089 µg/mg extract), polydatin (0.131 µg/mg

extract), hesperidin (0.058 µg/mg extract)

Rhoditis

procyanidin B1/B2 (10.010/2.999 µg/mg extract), catechin
(3.602 µg/mg extract), epicatechin (1.678 µg/mg extract),

2,5-dihydroxybenzoic acid (0.332 µg/mg extract), rutin
(0.287 µg/mg extract), quercitrin-3-b-glucoside

(0.761 µg/mg extract), trans-resveratrol (0.469 µg/mg extract)

Leaves

Zilavka

May Classical water extraction
(water bath)

Solvent: MeOH:H2O (70:30 v/v)
(40 mL) + HCl (0.1%); 2 g of dried and

grounded leaves; t = 60 min.

3,4-dihydroxybenzoic acid (116.08 ± 2.56 mg/100 g), (+)-catechin
(174.38 ± 5.79 mg/100 g), 1,2-dihydroxybenzene

(57.82 ± 2.50 mg/100 g), rutin-trihydrate (117.20 ± 3.35 mg/100 g),
quercetin (30.77 ± 0.66 mg/100 g), apigenin-7-glucoside

(14.75 ± 0.94 mg/100 g), caffeic acid (35.14 ± 0.53 mg/100 g)

[31]

Royal

3,4-dihydroxybenzoic acid (84.52 ± 2.34 mg/100 g), (+)-catechin
(212.46 ± 0.38 mg/100 g), 1,2-dihydroxybenzene

(134.13 ± 2.64 mg/100 g), rutin-trihydrate (70.17 ± 1.15 mg/100 g),
quercetin (57.09 ± 4.33 mg/100 g), apigenin-7-glucoside

(45.58 ± 0.02 mg/100 g), caffeic acid (50.05 ± 1.54 mg/100 g);
resveratrol (73.78 ± 1.34 mg/100 g)

Merlot

3,4-dihydroxybenzoic acid (82.90 ± 5.47 mg/100 g), (+)-catechin
(130.51 ± 3.23 mg/100 g), 1,2-dihydroxybenzene

(88.21 ± 2.61 mg/100 g), rutin-trihydrate (32.67 ± 0.42 mg/100 g),
quercetin (20.78 ± 0.30 mg/100 g), apigenin-7-glucoside

(20.84 ± 0.52 mg/100 g), caffeic acid (32.19 ± 0.98 mg/100 g)

Cardinal

3,4-dihydroxybenzoic acid (12.68 ± 0.82 mg/100 g), (+)-catechin
(99.99 ± 3.23 mg/100 g), 1,2-dihydroxybenzene

(122.69 ± 1.98 mg/100 g), rutin-trihydrate (17.66 ± 1.52 mg/100 g),
quercetin (18.09 ± 0.90 mg/100 g), apigenin-7-glucoside

(12.70 ± 1.00 mg/100 g), caffeic acid (27.89 ± 0.29 mg/100 g)
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Table 1. Cont.

Waste Type Grape Variety Collecting Period Extraction Method Extraction Parameters Bioactive Compounds Obtained Ref.

Blatina

3,4-dihydroxybenzoic acid (93.07 ± 2.59 mg/100 g), (+)-catechin
(208.00 ± 0.40 mg/100 g), 1,2-dihydroxybenzene

(196.08 ± 4.56 mg/100 g), rutin-trihydrate (39.96 ± 0.21 mg/100 g),
quercetin (12.73 ± 1.24 mg/100 g), apigenin-7-glucoside

(29.88 ± 0.7 mg/100 g), caffeic acid (28.23 ± 0.54 mg/100 g)

Trnjak

3,4-dihydroxybenzoic acid (54.75 ± 0.60 mg/100 g), (+)-catechin
(31.85 ± 0.07 mg/100 g), 1,2-dihydroxybenzene

(102.90 ± 3.08 mg/100 g), rutin-trihydrate (27.69 ± 0.33 mg/100 g),
quercetin (46.23 ± 0.15 mg/100 g), apigenin-7-glucoside

(222.49 ± 0.76 mg/100 g), caffeic acid (22.15 ± 0.54 mg/100 g)

Sugraone Seedless

3,4-dihydroxybenzoic acid (77.05 ± 0.10 mg/100 g), (+)-catechin
(110.65 ± 2.90 mg/100 g), 1,2-dihydroxybenzene

(57.56 ± 0.93 mg/100 g), rutin-trihydrate (33.27 ± 0.15 mg/100 g),
quercetin (37.90 ± 0.29 mg/100 g), apigenin-7-glucoside

(35.71 ± 3.72 mg/100 g), caffeic acid (142.55 ± 0.53 mg/100 g)

Cabernet Sauvignon

3,4-dihydroxybenzoic acid (74.01 ± 2.27 mg/100 g), (+)-catechin
(119.28 ± 1.28 mg/100 g), 1,2-dihydroxybenzene

(69.29 ± 1.71 mg/100 g), rutin-trihydrate (93.21 ± 0.40 mg/100 g),
quercetin (112.67 ± 0.74 mg/100 g), apigenin-7-glucoside

(22.68 ± 0.02 mg/100 g), caffeic acid (50.57 ± 1.12 mg/100 g)

Chardonnay

3,4-dihydroxybenzoic acid (85.33 ± 1.21 mg/100 g), (+)-catechin
(133.19 ± 1.66 mg/100 g), 1,2-dihydroxybenzene

(160.00 ± 4.23 mg/100 g), rutin-trihydrate (55.23 ± 0.01 mg/100 g),
quercetin (19.04 ± 1.11 mg/100 g), apigenin-7-glucoside

(95.23 ± 0.34 mg/100 g), caffeic acid (152.27 ± 0.25 mg/100 g)

Viktorija

3,4-dihydroxybenzoic acid (88.85 ± 0.78 mg/100 g), (+)-catechin
(103.50 ± 2.16 mg/100 g), 1,2-dihydroxybenzene

(195.07 ± 0.74 mg/100 g), rutin-trihydrate (57.84 ± 0.30 mg/100 g),
quercetin (30.38 ± 2.49 mg/100 g), apigenin-7-glucoside

(100.39 ± 1.50 mg/100 g), caffeic acid (47.15 ± 0.15 mg/100 g)

Vranac

3,4-dihydroxybenzoic acid (158.97 ± 0.96 mg/100 g), (+)-catechin
(158.64 ± 0.54 mg/100 g), 1,2-dihydroxybenzene

(270.92 ± 1.51 mg/100 g), rutin-trihydrate (79.24 ± 1.53 mg/100 g),
quercetin (32.27 ± 0.73 mg/100 g), apigenin-7-glucoside

(222.49 ± 0.76 mg/100 g), caffeic acid (55.73 ± 1.11 mg/100 g)
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Table 1. Cont.

Waste Type Grape Variety Collecting Period Extraction Method Extraction Parameters Bioactive Compounds Obtained Ref.

Pomace

Dunkelfelder 2012 Provided during 2012

Pressurized liquid extraction
Solvent: H2O; 100 g grape pomace;

T1 = 100 ◦C/T2 = 150 ◦C/T3 = 200 ◦C;
P = 25 MPa;

T1/T2/T3: Catechin
(25.62 ± 1.95/35.75 ± 1.09/65.84 ± 2.74 mg/100 g d.w.),

epicatechin
(18.83 ± 0.44/18.65 ± 0.31/28.49 ± 0.70 mg/100 g d.w.),

procyanidin dimers/trimers
(4.96± 0.77/18.65 ± 0.31/9.75 ± 0.31 mg/100 g d.w.)

[32]

Dunkelfelder 2013

Provided during 2013

T1/T2/T3: Catechin
(19.49 ± 2.30/31.14 ± 1.13/59.37 ± 2.79 mg/100 g d.w.),

epicatechin
(13.12 ± 0.53/17.55 ± 1.21/24.69 ± 1.24 mg/100 g d.w.),

procyanidin dimers/trimers
(4.27 ± 0.39/6.65 ± 0.79/7.23 ± 0.68 mg/100 g d.w.)

Cabernet Franc

T1/T2/T3: Catechin
(15.17 ± 1.01/18.29 ± 1.50/21.29 ± 0.32 mg/100 g d.w.),

epicatechin (13.87 ± 1.06/15.13 0.47/17.54 ± 0.90 mg/100 g d.w.),
procyanidin dimers/trimers

(2.91 ± 0.17/2.89 ± 0.64/2.29 ± 0.40 mg/100 g d.w.)

Merlot

T1/T2/T3: Catechin
(7.32 ± 11.65/11.65 ± 0.67/15.48 ± 0.74 mg/100 g d.w.),

epicatechin (5.20 ± 6.86/6.86 ± 1.09/3.03 ± 1.56), procyanidin
dimers/trimers

(2.08 ± 0.18/2.82 ± 0.33/0.49 ± 0.35 mg/100 g d.w.)

Chardonnay

T1/T2/T3: Catechin
(26.13 ± 2.40/28.48 ± 1.08/31.91 ± 0.97 mg/100 g d.w.),

epicatechin (8.24 ± 0.80/12.03 ± 0.17/14.53 ± 0.48 mg/100 g d.w.),
procyanidin dimers/trimers

(5.58 ± 0.08/6.04 ± 0.46/5.88 ± 0.22 mg/100 g d.w.)

1 where: d.w. = dry weight; EdD: Endo-dormancy; EcD = Eco-Dormancy; EtOH = ethanol; H = hybrid; H2O = water; HCl = chlorohydric acid; MeOH = methanol; MwP = microwave
power; n.p. = not provided by the authors; P = pressure; t = time; T = temperature.
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Prusova et al. [29] have conducted a comparative study between different grape
stalks from white (Sauvignon blanc and Grüner Veltliner) and blue (Blauer Portugieser
and Cabernet Moravia M-43) grape varieties. The waste material was first crushed and
homogenized. The extraction was performed in a dark and cold shaker using 75% methanol
as the extraction solvent (the ratio between vegetal material and solvent was 1:9 (w/v)),
with two hours of extraction time. The results show the highest concentrations of syringic
acid, caffeic acid, ferulic acid, coumaric acid, trans-resveratrol, catechin and epicatechin in
the case of Blauer Portugieser. Sauvignon Blanc presented the highest concentrations of
gallic acid and 4-hydroxybenzoic acid, and Cabernet Moravia M-43 contained the highest
level of protocatechuic acid. The lowest levels of alpha-amino acids were identified in the
Grüner Veltliner variety, and the highest in Blauer Portugieser. The conclusion provided
by the authors was that the major differences between the constituent polyphenols from
these four stem varieties may present the basis for new research on coniferous fermentation.
Subcritical-water extraction, an environmentally friendly technique, was used to extract
bioactive compounds with high antioxidant activity from vine canes [28]. Thus, 400 mL
of water (used as extraction solvent) was added to 40 g of milled vine canes from Touriga
Nacional (TN) and Tinta Roriz (TR) used as raw material. The authors studied the influence
of the extraction temperature at 125 ◦C and 250 ◦C for 50 min. A total of 1884 mg/100 g d.w.
and 1440 mg/100 g d.w. phenolic compounds were obtained for TR and TN, especially
phenolic acids, flavanols and stilbenes. The temperature of 250 ◦C ensures a more efficient
extraction, with an increased content of bioactive compounds in both cases of vine canes.
The researchers also found a direct dependency between the elevated levels of polyphenols
and increased antioxidant activity of the extracts.

In a study conducted by Veskoukis et al. [30], the antioxidant and antimutagenic prop-
erties of extracts obtained by ultrasound-assisted extraction from Mavrodaphne, Muscat
and Rhoditis stems were demonstrated. For this purpose, 50 g of air-dried and powdered
stems was added into 200 mL of mixture of methanol (MeOH)/H2O/1.0 N HCl (90:9.5:0.5
v/v) as extraction solvent and sonicated for 10 min. The total phenolic content obtained
was 374.765 µg/mL, 264.795 µg/mL and 359.865 µg/mL for Mavrodaphne, Muscat, and
Rhoditis, respectively. The authors demonstrated that the predominant phenolics in Mavro-
daphne are represented by gallic acid, caffeic acid, quercetin and quercitrin, and in Muscat
variety by gallocatechin, polydatin and hesperidin. The Rhoditis variety composition
was dominated by higher amounts of procyanidin B1 and B2, catechin, epicatechin, di-
hydroxybenzoic acid, rutin, quercitrin-3-b-glucoside and trans-resveratrol in comparison
with the other two varieties. Salmonella typhimurium TA102 was used as bacterial strain to
determine the antimutagenic capacity of the extracts. The results indicate that the stem
extract of Mavrodaphne has a higher antioxidant and antimutagenic capacity than Muscat
and Rhoditis (in 2,2-diphenyl-1-picrylhydrazyl-DPPH and superoxide assays).

Caffeic acid, catechin, kaempferol, quercetin and resveratrol were easily extracted
from Pinot Noir leaves using suitable metabolic extraction with direct infusion-FT-ICR-
MS [34]. Sixteen different types of Vitis vinifera sativa canes have been studied for their
stilbene content, namely Cabernet franc (CF), Chardonnay (CH), Crimson seedless (CR),
Flame seedless (FS), Gewurztraminer (GT), Muscat of Alexandria (MA), Muscat Julius
(MJ), Ohanes (OH), Palomino fino (PF), Pinot noir (PN), Regent (RG), Sauvignon blanc
(SB), Syrah (SY), Tempranillo (TE), Thomson seedless (TS) and Tin-tilla de Rota (TR).
Following the extraction (200 milligrams of powder cane/10 mL of acetone: H2O mixture
(60:40 v/v)) the total stilbene content obtained varied from 2400–5800 mg/kg d.w. Thus,
ten stilbenes were identified: hopeaphenol, ampelopsin A, isohopeaphenol, piceatannol,
trans-piceid, trans-resveratrol, miyabenol C, ε-viniferin, r-viniferin and ω-viniferin [35].
Alongside the vegetative stage, variety and harvesting period, environmental factors and
the properties of the soil can significantly change the chemical composition of leaves [36,37].
Hence, the content of bioactive compounds and antioxidant activity were studied on leaves
from eleven different types of vine varieties, grown in the same areas and under the
same agronomic conditions by Banjanin et al. [31]. In the composition of the extracts of
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different leaves, flavonoids are predominant, followed by total phenol, then carotenoid.
The major components of vine leaves identified were: 3,4-dihydroxybenzoic acid, (+)-
catechin, 1,2-dihydroxybenzene, rutin-trihydrate, quercetin, apigenin-7-glucoside, and
caffeic acid. In another study, catechin, epicatechin and procyanidin dimers/trimers (flavan-
3-ol class) were identified in high concentrations in the composition of pomace collected
from Dunkelfelder 2012, Dunkelfelder 2013, Cabernet Franc, Merlot and Chardonnay [32].
Using pressurized liquid extraction (water as solvent), pomace (vegetal material) and
evaluating the optimal extraction temperatures (T = 100 ◦C/150 ◦C/200 ◦C) at P = 25 MPa,
flavan-3-ols can be successfully extracted. The highest flavan-3-ols content appeared in the
case of Dunkelfelder 2012 (198.86 mg/100 g dry matter/at 200 ◦C) and decreased in the
order Dunkelfelder 2013 > Cabernet Franc > Chardonnay > Merlot (38.70 mg/100 g dry
matter/at 100 ◦C). At 200 ◦C, (+)-catechin and (-)-epicatechin were most efficiently extracted
(from all five types of grape pomace); in contrast, at 150 ◦C Proanthocyanidins B1 and C1
showed remarkable results in the cases of Cabernet Franc, Merlot and Chardonnay [32].

The presented results support not only the possibilities to recover valuable bioactive
compounds from grapevine wastes, but also briefly present the influence of different
parameters on their final concentration. All these parameters should be considered when
aiming at developing particular tools for targeted applications, based on grapevine wastes.

3. Development of Cosmetic Formulations Based on Bioactive Compounds Obtained
from Grapevine Wastes

The cosmetics industry includes a wide range of products having as their main role
the care, protection and improvement of skin (Figure 4). Given their final application, they
can be classified into hygienic (deodorants, soaps), decorative (hair dyes, makeup) and pro-
tective (moisturizers, lubricants or sunscreens) products [38]. Each of them contains a basic
substance, an active ingredient and a raw material or main ingredient. Classic preservatives
in cosmetic formulations, mainly parabens or formaldehyde, exhibit negative effects on an
organism, and were eventually replaced by natural ingredients. The process includes the
extraction of biologically active principles (especially polyphenols) and their application in
cosmetic formulations, as antioxidants for skin care [39]. Various scientific studies confirm
the presence of high levels of bioactive compounds in grapevine wastes (especially canes,
stems, leaves, etc.), the literature data presenting over 183 phenolic compounds, 78 stil-
benes, 15 hydroxycinnamic acids, 9 hydroxybenzoic acids, 17 flavan-3-ols, 14 anthocyanins,
8 flavanoavonols, 2 flavones and 5 coumarins [40]. Many of these biocompounds can be
successfully applied for the development of new cosmetic formulations [41].

Polyphenols play an important role in skin functionality, having moisturizing, smooth-
ing, calming, softening and astringent effects. In addition, they soothe irritation and reduce
the redness of the skin, accelerate the natural regeneration of the epidermis, and improve
the microcirculation and elasticity of the skin [42]. They also protect the skin from harmful
external factors, being used as active agents in cosmetic formulations as sun protection in-
gredients, having the same mechanism of action as chemical UV filters [43]. Oxidative stress,
defined by Kawamura et al. [44] as a “disturbance of the oxidation-reduction balance in
favor of oxidants”, can eventually lead to damage to biomolecules, changes in metabolism,
increased DNA mutations, and an increased rate of cell mitosis [45]. In addition, the impact
of oxidative stress on human body can generate inflammatory, cardiovascular, neurodegen-
erative or metabolic disorders, which in turn can lead to the development of cancer [46].
Free radicals and ROS (reactive oxygen species) are the main oxidizing agents in cellular
systems, physiologically produced in various cellular biochemical reactions that occur in
the organism, both in mitochondria for aerobic oxygen production, in the metabolism of
fatty acids and drugs, and during the activity of the immune system [47]. Furthermore, they
are involved in the aging process and in the evolution of many other types of diseases [48].
The aging process can be slowed down by using exogenous and endogenous antioxidants,
which can readjust the level of oxidative stress in the human body [49]. The antioxidant
effect of polyphenols (including those recovered from vineyard wastes) is to eliminate
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free radicals O2
− and OH−, by donating a proton from a hydroxyl group attached to

the aromatic ring. Thus, they prevent high levels of ROS, reactive nitrogen species and
oxidation of sensitive biomolecules, proteins or lipids [46]. Skin aging is a continuous phe-
nomenon, being caused by both internal factors (cellular metabolism, DNA metamorphosis,
mitochondrial and genetic dysfunction) [50,51] and external ones (including lifestyle, diet,
pollution, smoking, UV light and other environmental factors) [52].

Antioxidants 2022, 11, 393 13 of 26 
 

 

14 anthocyanins, 8 flavanoavonols, 2 flavones and 5 coumarins [40]. Many of these bio-
compounds can be successfully applied for the development of new cosmetic formula-
tions [41]. 

 
Figure 4. The main applications of bioactive compounds obtained from grapevine waste extracts in 
cosmetic formulations. 

Polyphenols play an important role in skin functionality, having moisturizing, 
smoothing, calming, softening and astringent effects. In addition, they soothe irritation 
and reduce the redness of the skin, accelerate the natural regeneration of the epidermis, 
and improve the microcirculation and elasticity of the skin [42]. They also protect the skin 
from harmful external factors, being used as active agents in cosmetic formulations as sun 
protection ingredients, having the same mechanism of action as chemical UV filters [43]. 
Oxidative stress, defined by Kawamura et al. [44] as a “disturbance of the oxidation-re-
duction balance in favor of oxidants”, can eventually lead to damage to biomolecules, 
changes in metabolism, increased DNA mutations, and an increased rate of cell mitosis 
[45]. In addition, the impact of oxidative stress on human body can generate inflamma-
tory, cardiovascular, neurodegenerative or metabolic disorders, which in turn can lead to 
the development of cancer [46]. Free radicals and ROS (reactive oxygen species) are the 
main oxidizing agents in cellular systems, physiologically produced in various cellular 
biochemical reactions that occur in the organism, both in mitochondria for aerobic oxygen 
production, in the metabolism of fatty acids and drugs, and during the activity of the im-
mune system [47]. Furthermore, they are involved in the aging process and in the evolu-
tion of many other types of diseases [48]. The aging process can be slowed down by using 
exogenous and endogenous antioxidants, which can readjust the level of oxidative stress 
in the human body [49]. The antioxidant effect of polyphenols (including those recovered 

Figure 4. The main applications of bioactive compounds obtained from grapevine waste extracts in
cosmetic formulations.

In addition to their antioxidant properties, polyphenols can inhibit the enzymes
(tyrosinase, collagenase and elastase) responsible for the aging process of the skin [53,54].

Thus, gallic acid, chlorogenic acid, epicatechin, rutin, and resveratrol, which are found
in vine-leaf extract, can inhibit the activity of tyrosinase with an IC50 value of 3.84 mg/mL
of tyrosinase inhibition, and thus the extracts can be used in cosmetic formulations as a
natural whitening agent [55].

In many cases, nanoformulation of resveratrol might be a reliable solution to increase
its efficiency because it is unstable against temperature, pH and light and has low solu-
bility in water [56]. Resveratrol-based gel (0.01% weight by volume, applied once a day)
may improve the severity of acne and the average surface of microcomedones without
any reported side effects [57], while resveratrol-enriched products can ameliorate facial
redness [58].
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In a recent study, Leal et al. [59] propose the use of grapevine stem extracts (Syrah
variety) as raw material in cosmetic products to combat skin wrinkling and pigmentation.
In addition, they exhibit anti-inflammatory activity (by inhibiting the nitrite production at
non-toxic cell concentrations), anti-aging activity by suppressing the enzymes tyrosinase
(53%) and elastase (98.02%), and antimicrobial effects on gram-positive bacteria, having the
ability to inhibit the growth of ulcerated bacteria in wounds to the foot [59].

Grape seed oil is known to be rich in unsaturated fatty acids and phenolic com-
pounds [60,61]. Furthermore, high levels of antioxidants from grape seeds exert a protective
effect on the skin by increasing cellular resistance and protecting fibroblasts from UV dam-
age by absorbing it [62]. Based on all these considerations, grape seeds can serve as value
added to cosmetic formulations [62]. In the composition of some sunscreens, extracts with
compounds that exhibit anti-inflammatory activity to reduce UVB-induced erythema or to
increase the protection factor (SPF) have been added [63]. In vitro studies on the photosta-
bility of the formulation containing 10% w/w grape pomace extract and 11.5% w/w UV filters
showed an SPF value of 16 and an antioxidant activity of 519.92 ± 0.00 µmol Trolox equiv-
alents/g [64]. Furthermore, the methodology proposed by Michailidis et al. [65] proposes
the use of grape seed extracts obtained by ultrasound-assisted extraction in dermo-cosmetic
products, as anti-elastase and anti-tyrosinase factors [65].

Grape seed extracts (GSE) have been successfully used in the formulation of emulsions
and emulgels. In a detailed study, Rafique et al. [66] demonstrated the anti-inflammatory
and anti-wrinkle properties of polyphenols from grape seeds, properties that increase
skin hydration and elasticity. The proposed emulsion consists of an oily phase containing
propylene paraben (preservative)/paraffin oil/Abil-EM 90 (emulsifier)/distilled water/5%
grape seed extract. In parallel, the emulgel was formed by mixing the oily phase with
an aqueous phase (containing grape seed extract) and finally with a gel phase (created
by homogenizing the Carbopol 940 with water). The authors claim that, due to its twice
as well-controlled release effect, the emulgel has better anti-aging properties than the
emulsion. Another type of oil-in-water emulsion was developed by Yarovaya et al. [62].
In the aqueous phase (containing glycerin and water) xanthan gum was dispersed until a
uniform gel was formed. The oily phase was formed in two stages: (i) emulsion consisting
of mineral oil, cetyl alcohol and cetamacrogol 1000, over which the aqueous phase and
grape seed extract were added and (ii) emulsion containing both grape seed extract and
octyl methoxycinnamate. A preservative was added to the mixture of these two parts.
The results showed that cells can be protected against UVA radiation if a concentration of
25 µg/mL of GSE is used (this increases the activity of dermal fibroblasts). At the same
time, the octyl methoxycinnamate plays an important role in cosmetic formulation because
it increases the absorption capacity of the UV filter [62].

Grape cane extracts enriched with polyphenols may activate SIRT1 (a cell longevity
protein) and have the ability to inhibit tyrosinase as effectively as pure E-resveratrol
and E-ε-viniferin, having utility against dark spots or as skin-lightening agents in eco-
dermocosmetic products [67]. In a 28-day study on 60 female subjects, shoot extracts
(serum/cream formulation) proved anti-aging effects through increasing radiant glow,
evenness, smoothness, hydration, texture, softness effects and decreasing of wrinkles and
fine lines [68].

A topical formulation was created by Moreira et al. [69] using subcritical water
vine-cane extract with high antioxidant properties. The ingredients used for this pur-
pose were: glycerin (7%)/Carbopol (0.5%)/triethanolamine (0.3%)/preservative (phe-
noxyethanol/methyl paraben/ethyl paraben/propyl paraben/butyl paraben mixture,
0.1%)/perfume (0.1%). The cosmetic formulation was achieved by dissolving the Carbopol
in a mixture of extract/water: 75%/17% ratio at room temperature, while to form a homoge-
neous gel, triethanolamine was added under continuous stirring. Furthermore, vine cane ex-
tracts effectively inhibit the formation of biofilm on Candida albicans and Candida parapsilosis
strains, with a minimum inhibitory concentration (MIC) value of 5 mg/L and 30 mg/L
respectively [70].
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The extracts obtained from tendrils and leaves of Vitis vinifera L. have shown an-
tioxidant activities (in the DPPH and ferric reducing antioxidant power — FRAP assays)
and anti-inflammatory capabilities by mitigating the proinflammatory response induced
by the exposure to lipopolysaccharides of human gingival fibroblasts cells. The authors
suggest that they may be used in oral hygiene products for periodontal disease [71]. In
another study, Singla et al. obtained a mouthwash solution based on grape seeds. From
in vitro studies, the grape-based oral care formulation showed a reduction of 12.5 % in oral
streptococci [72].

In a formulated cream based on an oil/water emulsion, Carica papaya leaf,
Psidium guajava leaf and Vitis vinifera seeds were used as natural preservatives. The ob-
tained emulsion showed a promising antibacterial effect against the proliferation of various
microorganisms, as the concentration of grape seed extract was higher [73]. Extracts rich
in stilbene, obtained from grapevine cane waste (Ohanes, Regent, Pinot noir and Tin-tilla
de Rota), have showed high antioxidant activity. Thus, they can be used as a natural raw
material in nutraceutical applications, but also as natural fungicides [35]. Some representa-
tive examples regarding the application of compounds from grapevine wastes in cosmetic
industry are presented in Table 2.

Table 2. Some examples of grapevine wastes application in cosmetic formulations.

Extracted Wastes Formulation Potential Application Ref.

Vine canes

Topical formulation: vine-cane extract/glycerin
(7%)/carbopol (0.5%)/triethanolamine

(0.3%)/preservative (phenoxyethanol/methyl
paraben/ethyl paraben/propyl paraben/butyl

paraben mixture, 0.1%)/perfume (0.1%).

Protection against different oxidants [69]

Extracts enriched with polyphenols Utility against dark spots or as
skin-lightening agents [67]

Vine shoots Serum: vine shoot extract 0.045%/biotechnological
extract—Ronacare Hydroine 1% Anti-aging effects [68]

Grape seeds

Emulsion: oily phase containing propylene paraben
(preservative)/paraffin oil/Abil-EM 90

(emulsifier)/distilled water/5% grape seed extract
Anti-aging

[66]
Emulgel: oily phase + aqueous phase (containing

grape seeds extract) + gel phase (Carbopol 940/water) Anti-aging

Emulsion: 5% mineral oil/7% cetomacrogol 1000/2%
cetyl alcohol/7% octyl methoxycinnamate/3% grape

seed extract/1% xanthan/5% glycerin/0.5%
phenoxyethanol/purified water qs to 100

UVA protection [62]

Extract obtained via an ultrasound-assisted method Anti-elastase and anti-tyrosinase factors in
dermo-cosmetics [65]

Grape pomace

Sunscreen: 10% w/w grape pomace extract and 11.5%
w/w UV (Butylmethoxydibenzoyl methane—UVA,

ethylhexyl methoxycinnamate and ethylhexyl
dimethyl PABA-UVB)

UV protection [64]

Extract as raw material

Combat skin wrinkling and
pigmentation/ability to inhibits the

growth of ulcerated bacteria in wounds to
the foot

[59]

4. Applications in the Food and Beverage Industries

The food industry is one of the main industries that generates different types of waste.
Worldwide, the interest in new valorization mechanisms has increased significantly in order
to protect resources and the environment [74]. Due to its phytochemical profile, abundant
polyphenols and fibers, and exhibiting of high antioxidant and antimicrobial activities,
grapevine waste extract (vine shoots, grape stalks and wine lees) might be efficiently used
in the food sector as an oenological and functional additive, functional food or even as
fillers in food packaging [24]. Therefore, adding grape by-products (pomace) into animals’
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diets has been shown to be effective in increasing the nutritional value of their meat. In the
same way, they have been added to the diets of poultry, observing the ratio improvement
of polyunsaturated and saturated fatty acids [75,76]. Furthermore, the use of grape stems
and wine lees grape extracts as feed additives in broilers’ diets improves the quality of the
meat [77].

De Iseppi et al. [78] proposed the use of wine yeast glycocompounds (a winemaking
by-product) in order to improve both the sensory properties and stability of wine. Re-
sults obtained in the case of wine lees extracted by autoclave showed an enhancement
of wine foaming along with the efficient recovery of tartrates from its insoluble fraction,
and the yeast extracted by enzymatic and ultrasound methods stabilizes the proteins from
heat-sensitive wine [78]. Raposo et al. [79] studied extracts from vine shoots, which con-
tain 29% stilbenes, for their potential preservative effect on bottled wine. In the initial
phase, the wines treated with shoot extracts presented qualitative superior oenological
parameters and higher values of purity and color intensity; unfortunately, these charac-
teristics are not maintained after a year [79]. Additionally, Gutiérrez-Escobar et al. [80]
have studied the possibility of the replacement of SO2 in wine with pure stilbene ex-
tracts from grapevine shoots. The natural extracts, abundant in E-ε-viniferin (70%) and
E-resveratrol (18%) and with no aromatic compounds, exhibited high antimicrobial activity
against Brettanomyces bruxellensis and Zygosaccharomyces bailli yeasts strains. Thus, vine
shoot extract might be used as a preservative of wine as well as to increase its stilbenes
content [80].

Various scientific studies report the applicability of grape stems extracts in the food indus-
try. Phenolic acids, flavanols and tannins from dried and milled vine stems have the ability to re-
move unstable proteins, being used as a replacement for bentonite (a clay used in wine to avoid
protein haze formation) [81]. The hydroalcoholic extracts of grape stems play an important
role in the inhibition of food pathogens such as Listeria monocytogenes, Staphylococcus aureus,
Salmonella enterica subsp. enterica serovar Typhimurium and Escherichia coli in the cases of lettuce
and spinach [82]. By drying, crushing and autolysis of wine yeast, proteins are successfully
extracted and applied in the production of fortified cereal bars, improving their protein
content [83].

Due to their phytochemical composition, wine lees can also enhance the antioxidant
and antimicrobial activity and phenolic compounds in burgers, being used as an alternative
to synthetic additives [84]. Phenolic compounds and dietary fiber from wine lees can be
also used in the production of high added-value ice cream, conferring better structure,
high antioxidant content and inhibitory effect towards the oxidation of human erythrocyte
membranes [85], enhancing their physical, chemical and sensory properties, along with
protection against Lactobacillus acidophilus during storage [86].

Iuga et al. [87] proposed the use of grape seeds and pomace as secondary flours in
the production of pasta and pastry products, having the effect of improving the functional
ingredients in these branches of the food industry [87]. In the same way, the flours obtained
from these types of waste offer physico-chemical characteristics within the nutritional
standards, being applied in the biscuit industry [88].

The negative effects of plastic materials on the environment have led the scientific
community to develop new biodegradable materials. Thus, insoluble lignocellulosic fibers
extracted from grape stalks are used as foams in food packaging, giving them improved
mechanical properties, high resistance to moisture and biodegradable characteristics [89].
Díaz-Galindo et al. [90] created a new sustainable food packaging formula based on poly-
lactic acid loaded with grapevine cane extract (5–15 wt%), aiming to prevent food con-
tamination throughout transport and storage. The material showed thermal stability up
to 300 ◦C and resistance values at traction similar to those of commercial materials; the
addition of larger amounts of extract increases the breaking strength of the films. Some
representative examples regarding the application of compounds from grapevine wastes in
food and beverage industry are presented in Table 3.
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Table 3. Applications of grapevine wastes-derived products in food and beverage industry.

Type of Wastes Application Effect Ref.

Grape pomace
Added into animals’ diets Increasing the nutritional value of meat [75]

Pasta and pastry products as
secondary flours Growing functional ingredients in food industry [87]

Grape stems/stalks

Disinfectants in cases of leafy fresh
vegetables: lettuce and spinach

Inhibition of pathogens Listeria monocytogenes,
Staphylococcus aureus, Salmonella enterica subsp. enterica

serovar Typhimurium and Escherichia coli
[82]

Substitute for bentonite in wine Removing unstable proteins [81]

Food packaging as foams Increased mechanical properties, high resistance to
moisture, biodegradable characteristics [89]

Grapevine canes Food packaging formula (polylactic acid
loaded with grapevine cane ex-tract)

Prevent food contamination during transport and
storage; increases the breaking strength of the

packaging films
[90]

Grape stems and wine lees Feed additives in broilers’ diets Improvement of meat quality [77]

Vine shoots

Preservative of wine Increased quality of oenological parameters and higher
values of purity and color intensity [79]

Replacement of SO2 in wine
High antimicrobial activity against Brettanomyces

bruxellensis and Zygosaccharomyces bailli; increased wine
stilbene content

[80]

Wine lees

Wine industry Reversing wine foam and stabilizing proteins in
heat-sensitive wine [78]

Development of fortified cereal bars Improving protein content [83]

Alternative to synthetic additives Enhancement of antioxidant and antimicrobial activity
in burgers [84]

Production of high added-value
ice cream

Superior structure, high antioxidant effect, oxidation
inhibition on human erythrocyte membranes [85]

Production of high added-value
ice cream

Enhanced physical, chemical and sensory properties,
protection against Lactobacillus acidophilus

during storage
[86]

5. Potential Uses of Grapevine Waste-Derived Products in Biomedical Applications

It is well known that the long-term use of commercial synthetic drugs presents side
effects on human health [91]. Various scientific papers claim the benefits that polyphenols
recovered from different plants in general, and from grapevine wastes in particular, can
bring on human health, by protecting the cardiovascular system and neurons as well as
anticancer activity [92–97]. In different parts of the grapevine, there are different nutritional
components such as proteins, lipids, carbohydrates, minerals, vitamins and a wide diversity
of bioactive compounds that can have antioxidant, antiviral, antiplatelet, antifungal, anti-
cataract, anti-obesity, anticholinergic, and anti-inflammatory effects among others [98].

As mentioned before, winemaking by-products consist of high levels of polyphenols
and dietary fiber that fulfil various beneficial roles on human health, namely cardiovascular
disease and obesity prevention, control of glucose absorption and the levels of cholesterol in
blood [99,100]. One of the main radical generators involved in cell damage is the powerful
oxidant called peroxynitrite (ONOO−). Thus, quercetin, catechin and epicatechin extracted
from grape seeds and skins lead to IC50 values of 48.8, 55.7 and 56.7 mM [101].

Two potential inhibitor compounds of amyloid β-protein 25−35 (Aβ) were recovered
from grapevine extracts, namely ampelopsin A and piceatannol [102]. It is known that
ampelopsin A is responsible for the in vivo protection against brain cell dysfunction by
blocking the aggregation of Aβ [103]. In addition, piacetamol (a hydroxyresveratrol)
has cardioprotective activity and can also decrease neuronal inflammation in microglial
cells [104]. Another compound that can prevent the aggregation of amyloid-β peptides
was isolated by Chaher et al. from vine shoot extracts. Thus, the newly isolated compound,
Vitisinol C, showed an EC50 value of 5 ± 3 (µmol/L), being proposed for use in the
evolution of pharmaceutical therapy for Alzheimer’s disease [105].
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Nowadays, it is a generally accepted premise that moderate and regular consump-
tion of red wine might be the key to the prevention of cardiovascular, oncological and
neurodegenerative diseases, type 2 diabetes and other chronic diseases [106]. However,
winemaking by-products present a much higher total content of anthocyanins, stilbenes,
and flavanols, being much more effective in antioxidant therapy than wine itself [107].

Bioactive compounds from wine by-products exert their protective effect on disor-
ders caused by oxidative stress or inflammatory processes [108]. Thus, flavonoids from
grape pomace can decrease the production of RONS (reactive oxygen species and nitro-
gen) by inhibiting the enzymes that produce them, in particular NOX4 (NADPH oxidase
4), eNOS (endothelial nitric oxide synthase), COX2 (ciclooxigenase 2) and SOD1 and 2
(superoxide dismutase 1 and 2), upregulating NF-κB (nuclear factor-kappa B) and downreg-
ulating Nrf2 (nuclear factor erythroid 2-related factor 2) pathways [109]. Enzymatic grape
pomace extracts can adapt, in vitro, the transcription of 7α-hydroxylase cholesterol and
27-hydroxylase sterol [110], and ex vivo tests in Wistar rats show lowering levels of VLDL
cholesterol and triacylglycerol [106]. Ulcerative colitis, induced by acetic acid, showed
ulceration, edema and erosions to the colon in laboratory mice. Histological examination
presented an improvement in the intensity and distribution of lesions during the treatment
with 0.15 and 0.1 mg of grape pomace seeds [111].

Following the evaluation of grape stem extracts, Quero et al. [112] reported the effects
they have on cancer cells (Caco-2, MCF-7, and MDA-MB-231) and also on the intestinal bar-
rier (differentiated Caco-2 cells), suggesting them as a promising factor in cancer treatment
and in adjustment of ROS in the gastrointestinal tract. The extracts exerted a decreasing
effect on the growth of cancer cells, causing death by apoptosis and an inhibitory effect on
the antioxidant enzyme TrxR1, which is responsible for the growth of ROS at the cellular
level. In the intestinal barrier, bioactive compounds produce an antioxidant effect providing
protection to the intestine in the case of disturbances associated with oxidative stress [112].
Similarly, grape seed extracts from the Negramaro variety were found to be able to induce
apoptotic cell death in MCF-7 breast cancer cells. Researchers demonstrated that this effect
of grape seed extracts is mediated by improving gap-junction-mediated cell–cell communi-
cations through reallocating connexin-43 proteins on plasma membranes and controlling
cx43 mRNA expression [113]. A preliminary test over 14 days was performed on rats, to
which a pretreatment with 4 mL/kg/day grape seed oil (GSO) was applied, following
the experimental induction of ischemia by a single administration of isoproterenol (ISO)
45 mg/kg after 14 days. The final results showed that GSO pretreatment has the ability to
remarkably decrease the ventricular conduction, the levels of proinflammatory cytokines
and the myocardial fraction of creatine kinase, thus providing a cardioprotective effect
in ISO-induced myocardial ischemia [114]. In the case of Cyclophosphamide-induced
cardiotoxicity (a single dose of 200 mg/kg/b.w.), a pretreatment consisting of grape seed
extracts (oral administration on rats, 150 and 300 mg/kg doses for 6 weeks) has the ability
to protect the liver and heart tissue, and may also have an ameliorating effect on oxidative
and apoptotic biomarkers, as well as the activity of liver and heart function enzymes [115].
Grape seed extracts were also proven to possess the capacity to reduce two digestive
enzymes, namely pancreatic lipases and α-glucosidases, thus having utility in preventing
obesity [116].

According to Doshi et al. [117], grape seeds and stems may be a new source of insulin
secretagogues, suggesting their application in the treatment of type II diabetes. In the
presence of these waste extracts, clinical trials on mice showed that, in the pancreatic
islets, there is a 2- to 8-fold increase in insulin secretion at a concentration of 5.5 mM
and 16.5 mM glucose [117]. One of the major risk factors for cardiovascular disease is
represented by hypertension. Thus, Odai et al. [118] conducted a scientific study in which,
for 12 weeks, they administered high doses of grape seed proanthocyanidin extract (400 mg)
to 6 men and 24 women, all middle-aged and prehypertensive. The final results revealed an
improvement in vascular elasticity and a decrease in systolic blood pressure by 13 mmHg
after 12 weeks [118].
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Two experimental pathways have been adopted by Empl et al. [119] to investigate
the possibility of using grapevine shoots extracts as agents in the prevention of human
gastrointestinal cancer. In vivo research on ApcMin mice, which were subject to a high-fat
diet similar to a human model of adenomatous polyposis, reported that both low and
high doses of grapevine shoot extracts have the ability to reduce the number (in males)
and volume (in females) of intestinal adenoma. An in vitro experiment was conducted on
APC10.1 cells derived from one ApcMin mouse, showing that shoot extracts may reduce
the increase in APC10.1 cells by stopping the cycle and cell sequence, as well as by lessening
the number of cells [120].

The neuroprotective effects of organic and conventional extracts from grapevine
leaves have been analyzed by their ability to diminish protein and lipid damage and by
adjustment of enzymatic antioxidant activity. Organic extracts have shown a protective
effect on oxidative deterioration (caused by hydrogen peroxide in the brain of rats) of lipids
and proteins in the hippocampus and cerebellum tissues. The conventional ones could
reduce TBARS (thiobarbituric acid reactive species) levels in the cortex [120]. The MTT test,
applied to evaluate the antiproliferative activity of grape leaf extracts on melanoma A375
and SK-MEL cells, revealed that, with increasing water concentrations and methanolic
leaf extracts (1.136, 2.27 and 4.54 mg/mL), a decrease in melanoma cell proliferation is
observed during 72 h. Thus, the extracts exert an antiproliferative effect comparable to
Cisplatinium [121].

Meng et al. [122] induced obesity in mice by applying a high-fat diet, containing 60%
kcal from fat. They claim that the intragastric application of leaf extract (400 mg/(kg × day)
inhibits the secretion of pancreatic lipase (IC50 = 1.18 mg/mL), supports the secretion of
fibroblast growth factor-15 (which stops the synthesis of bile acids and fatty acids) and
can reduce food intake by suppressing orexigenic neuropeptide-Y. All these aspects can
lead to a lower level of serum cholesterol and low-density lipoproteins in triglycerides,
while also decreasing the amount of tissue fat. Thus, leaf extracts may be a natural source
of components for preventing obesity mediated by neuropeptide-Y and bile acids [122].
Some representative examples regarding the biomedical applications of compounds from
grapevine wastes are presented in Table 4.

Table 4. Examples of biomedical applications of compounds from grapevine wastes.

Waste Type of Study Biomedical Activity Effect Ref.

Grape leaves
In vivo

Antiproliferative
Reduce melanoma A375 and SK-MEL cells

proliferation over 72 h; induce antiproliferative
effect comparable to Cisplatinium

[121]

Neuroprotective

Protection against oxidative deterioration of
lipids and proteins in the hippocampus and

cerebellum tissues; reduce levels of
thiobarbituric acid reactive species in the cortex

[120]

Obesity prevention

Inhibit the secretion of pancreatic lipase;
increase the secretion of fibroblast growth

factor-15; decrease levels of serum cholesterol
and low-density lipoproteins in triglycerides;

reduced the amount of tissue fat

[122]

Grape seeds Decrease pancreatic lipases and α-glucosidases [116]

Grape pomace

In vitro
Anti-cholesterol

Transcription of 7α-hydroxylase cholesterol
and 27-hydroxylase sterol [110]

Ex-vivo Reduce VLDL cholesterol and triacylglycerol [106]

In vivo Inflammatory bowel disorders
prevention

Decrease intensity and distribution of
ulcerations, edema and erosions in the colon [111]
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Table 4. Cont.

Waste Type of Study Biomedical Activity Effect Ref.

Grape shoots

In vivo

Anticarcinogenic

Decrease the number of intestinal adenoma
(male mice); decrease the volume of intestinal

adenoma (female mice) [119]

In vitro Reduce the increasing of APC10.1 cells number;
stopping the cycle and cell sequence

Grape stems

In vivo

Reduce growth of Caco-2, MCF-7, and
MDA-MB-231 cancer cells; inhibition effect on
the enzyme TrxR1; protection of the intestine

[112]

Grape seeds

Induce apoptotic cell death to MCF-7
cancer cells [113]

Cardioprotective

Reduce ventricular conduction; decrease levels
of proinflammatory cytokines; reduce
myocardial fraction of creatine kinase;

protective effect in ISO-induced
myocardial ischemia

[114]

Ameliorating effect on oxidative and apoptotic
biomarkers; ameliorating activity of liver and

heart function enzymes
[115]

Hypertension prevention
Improvement of vascular elasticity; reduced

systolic blood pressure by 13 mmHg after
12 weeks

[118]

Grape stems
and seeds Type II diabetes prevention Increased insulin secretion in the

pancreatic islets [117]

6. Conclusions and Future Perspectives

The winemaking industry represents a major opportunity for obtaining high value
by-products with potential industrial applications. As is the case for many other similar
wastes, grapevine wastes are a rich source of compounds with antioxidant effects (besides
the well-known resveratrol), which can act as potent reactive free radical scavengers or as
enzyme activators, as antibacterial, anti-inflammatory, or anti-carcinogenic agents, among
other health benefits. Alongside antioxidant compounds, the use of grape biomass is
gaining interest as a source of dietary fiber or pigments, for example. In this context, future
trends target processes obtaining multiple product based on integrated up-stream and
down-stream systems, thus developing sustainable approaches.

From the details given in this review, it could be concluded that grapevine wastes are
a rich source of bioactive compounds, which makes them desirable raw materials to scale
up extraction processes, conducive to a full and circular exploration of the whole plant.
The accomplishment of this goal would lead to superior use of these wastes, in contrast
with the current approach, which applies the wastes as fertilizers or feedstock. Advances
in research domains may provide further insights into the mechanistic aspects of the health
benefits of bioactive compounds obtained from grape waste.
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