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Cell migration is considered necessary for the invasion that accompanies the directional formation of the cellular protrusions
termed lamellipodia. In invasive breast cancer MDA-MB-231 cells, lamellipodia formation is preceded by translocation of the actin
cytoskeletal regulatory protein WAVE2 to the leading edge. WAVE2 translocation and lamellipodia formation require many
signaling molecules, including PI3K, Rac1, Pak1, IRSp53, stathmin, and EB1, but whether these molecules are necessary for
invasion remains unclear. In noninvasive breast cancer MCF7 cells, no lamellipodia were induced by IGF-I, whereas in MDA-MB-
231 cells, Rac1, stathmin, and EB1 were overexpressed. Depletion of Rac1 or stathmin by small interfering RNA abrogated the IGF-
I-induced invasion of MDA-MB-231 cells; however, depletion of EB1 did not, indicating the necessity of Rac1 and stathmin but
not EB1 for invasion. The signaling pathway leading to cell invasion may not be identical but shares some common molecules,
leading to cell migration through lamellipodia formation.

1. Introduction

The formation of cellular protrusions such as lamellipodia
at the leading edge of migrating cells is regulated by WASP/
WAVE family of the actin cytoskeletal regulatory protein
WAVE2 [1–3]. Before lamellipodia formation, WAVE2 is
translocated to the leading edge along microtubules [4–
6], which is mediated by many signaling and regulatory
molecules. WAVE2 forms a complex with IQGAP1, the
motor protein kinesin1 [6, 7], Pak1 [8], and IRSp53 [9] in the
cytoplasm of quiescent cells and gathers additional IQGAP1
and kinesin1 [6], which are released from the Rac1-CLIP-
170 complex [7], after stimulation of cells with HGF or IGF-
I. Concomitantly, WAVE2-bound Pak1 is Rac1-dependently
activated, which in turn inactivates stathmin, a microtubule-
destabilizing protein [10, 11], by phosphorylation [8].
Stathmin is constitutively associated with the microtubule-
end-binding protein EB1 [12], and the phosphorylated
stathmin-EB1 complex is recruited to the microtubule ends
that bear the WAVE2 complex after IGF-I stimulation [8].
Following translocation to the leading edge, WAVE2 is
captured by PtdInsP3through WAVE2-bound IRSp53 [13].

PtdInsP3 is produced by PI3K near the IGF-I receptor
IGF-IR that is locally activated in the membrane region
facing IGF-I [13]. These results indicate that many signaling
and regulatory molecules, including IGF-IR, PI3K, Rac1,
Pak1, IRSp53, stathmin, and EB1, are involved in inducing
the directional lamellipodia formation in migrating cells.
However, whether these molecules, except for WAVE2 [14],
are crucial for invasion of MDA-MB-231 cells remains
unclear.

We report here that Rac1, stathmin, and EB1 were over-
expressed in invasive breast cancer MDA-MB-231 cells com-
pared to noninvasive breast cancer MCF7 cells. In MCF7
cells, no lamellipodia formation was induced, and Rac1 was
not activated by IGF-I. Expression and activation of other
molecules were not significantly different between the cell
lines. Depletion of Rac1 and stathmin but not EB1 by RNA
interference resulted in significant inhibition of the IGF-I-
induced invasion of MDA-MB-231 cells. These results indi-
cate that Rac1, stathmin, and EB1 are overexpressed in inva-
sive MDA-MB-231 cells, whereas Rac1 and stathmin but not
EB1 are required for invasion of the cells in response to
IGF-I.
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Figure 1: Induction of lamellipodia formation and invasion by IGF-I in MDA-MB-231 cells but not MCF7 cells. (a) After stimulation with
(IGF-I) or without (mock) IGF-I, cells were stained with phalloidin. Scale Bar 20 μm. (b) Cells after stimulation with (+) or without (−) IGF-I
were stained with phalloidin, and the frequency of cells with lamellipodia was determined. The mean (SD) values of triplicate experiments
are given. ∗P < 0.003, by Student’s t-test. (c) After stimulation with (+) or without (−) IGF-I, cells were stained with anti-WAVE2 antibody,
and the frequency of cells with peripheral WAVE2 staining was determined. The means (SD) of triplicate experiments are given. ∗P < 0.0001.
(d) After incubation of cells toward medium containing (+) or lacking (−) IGF-I, invaded cells were stained with Giemsa solution. The
number of invaded cells relative to quiescent MDA-MB-231 cells was determined, and the mean (SD) values of triplicate experiments are
given. ∗P < 0.004.

2. Materials and Methods

2.1. Cell Culture. Human breast cancer MDA-MB-231 and
MCF7 cells were obtained from American Type Culture Col-
lection (Manassas, VA) and maintained as described earlier
[9, 13]. Before stimulation with 50 ng/mL IGF-I (Peprotech,
London, UK), cells were serum-starved by incubation in
medium containing 0.1% FBS for 16 h.

2.2. Lamellipodia Formation and WAVE2 Translocation
Assays. Cells grown on glass slide chambers (BD Falcon,
Bedford, MA) were stained with rhodamine-phalloidin
(Invitrogen, Carlsbad, CA) or anti-WAVE2 antibody (Santa
Cruz Biotechnology, Santa Cruz, CA). For quantification of

lamellipodia formation and WAVE2 translocation, the fre-
quency of cells with lamellipodia or WAVE2 staining at the
leading edge of cells was counted as described earlier [6, 8, 9,
13].

2.3. Cell Invasion Assay. Cell invasion assay was performed,
using an invasion chamber (24-well, 8-μm pore size; BD Bio-
sciences, Bedford, MA). Cells in medium containing 0.1%
FBS (low-serum medium) were placed on the chamber insert
membrane coated with the basement membrane matrix and
incubated for 6 h toward the low-serum medium containing
or lacking 50 ng/mL IGF-I. Cells that invaded through the
pores and spread over the bottom surface of the chamber
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Figure 2: Expression and activation of IGF-IR and PI3K in MDA-MB-231 and MCF7 cells. (a) After stimulation with IGF-I for 0, 0.5, or
6 h, cells were lysed and processed for immunoblotting with anti-IGF-IR antibody. Values are given as band intensity relative to that in
unstimulated control MDA-MB-231 cells. (b) After stimulation with IGF-I, cells were immunostained with antibody to phospho-IGF-IR
(Tyr1135/1135). Scale Bars 20 μm. (c) After stimulation with IGF-I, cells were lysed and processed for immunoblotting with anti-PI3K (p85)
antibody. Values are given as band intensity relative to that in unstimulated control MDA-MB-231 cells. (d) Cells after stimulation with IGF-I
were lysed and immunoprecipitated with anti-PI3K (p85) antibody. PI3K activity was assayed for the immunoprecipitates as described in
Materials and Methods. The mean (SD) values of triplicate assays are given as activity relative to that in unstimulated control MDA-MB-231
cells.

membrane were stained with Giemsa solution, and the
number of invaded cells in 3 × 3 mm area on the membrane
was determined [7].

2.4. Immunoprecipitation and Immunoblot Analysis. Cells
were lysed in RIPA buffer with a cell disruptor [6, 8], and
proteins in the cell lysates were immunoprecipitated with
antibodies to the p85 subunit of PI3K, Rac1 (Millipore,
Temecula, CA), and active Rac1 (NewEast Biosciences, Mal-
vern, PA), followed by the slurry of Protein A-Sepharose
(GE Healthcare, Uppsala, Sweden). The SDS-PAGE and im-

munoblotting procedures were performed as described in
detail earlier [8, 9, 13] using antibodies to IGF-IR, Pak1,
stathmin, EB1, IRSp53 (Santa Cruz Biotechnology), PI3K
p85, Rac1, and WAVE2 (Millipore).

2.5. Immunofluorescence Analysis. Cells on glass slides were
fixed, permeabilized, blocked, and stained with rhodamine-
conjugated phalloidin or antibodies to phospho-IGF-IR
(Tyr1135/1136) (Sigma-Aldrich, St. Louis, MO) and WAVE2
[13].
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Figure 3: Overexpression and activation of Rac1 by IGF-I in MDA-MB-231 but not in MCF7 cells. (a) Cells after stimulation with IGF-I for
0, 0.5, or 6 h were lysed and processed for immunoblotting with anti-Rac1 antibody. Band intensity was measured and values are given as
Rac1 expression relative to that in unstimulated control MDA-MB-231 cells. (b) After stimulation with IGF-I, total and activated Rac1 were
immunoprecipitated from the cell lysates and 4- or 8-fold concentrated cell lysates, respectively, and processed for immunoblotting with
anti-Rac1 antibody. Band intensity was measured and the mean (SD) values of triplicate experiments are given as the amount of active Rac1
relative to total Rac1.

2.6. PI3K Activity Assay. PI3K activity was measured by im-
munoprecipitation of PI3K p85 with anti-p85 antibody, fol-
lowed by the kinase reaction of the immunoprecipitates in a
PI3K activity ELISA kit (Echelon Bioscience, Salt Lake City,
UT), according to the manufacturer’s instructions.

2.7. Rac1 Activity Assay. Rac1 activity was measured by
immunoprecipitation with antibody to active-form GTP-
bound Rac1 (NewEast Biosciences). Immunoprecipitation
of active Rac1 was performed for 4- to 8-fold concentrated
cell lysates compared to total Rac1. The immunoprecipitates
were subjected to SDS-PAGE and immunoblotted with anti-
Rac1 antibody.

2.8. RNA Interference Assay. Cells were incubated with
50 nM of mismatch negative control small interfering RNA
(Dharmacon) or 2 different small interfering RNAs of Rac1,
stathmin, or EB1 (Invitrogen) for 48 h using RNAiMAX
(Invitrogen). The target sequences of human Rac1 (RAC1),
stathmin (STMN1) [8], and EB1 (MAPRE1) [13] used were
5′-CACCTCAGGATACCACTTTGCACGG-3′ (Rac1-1), 5′-
TATCCCATA-AGCCCAGATTCACCGG-3′ (Rac1-2), 5′-
TTGACCGAGGGCTGAGAATCAGCTC-3′ (stathmin-1),
5′-CTTTCACCTGGATATCAGAAGAAGC-3′ (stathmin-
2), 5′-TGCT-AGAAGTGAGAGGTTTCTTCGG-3′ (EB1-1),
and 5′-TTCAACTGCAGAGACTCA-TTGATCC-3′ (EB-1-
2), respectively. Cell viability was determined using a LIVE/
DEAD Fixable Dead Cell Stain kit (Invitrogen). To assess the
efficiency of small interfering RNA, the same amounts of

total cell lysates in SDS-PAGE buffer were resolved by SDS-
PAGE for immunoblot analysis with antibodies to β-actin
(Sigma-Aldrich) and Rac1, stathmin, or EB1.

2.9. Statistical Analysis. Statistical significance between the
mean values of triplicate assays was calculated using the
unpaired Student’s t-test. Data were considered significant at
a P value of less than 0.05.

3. Results

3.1. Distinct Phenotypes of Invasion and Lamellipodia For-
mation between MDA-MB-231 and MCF7 Cells in Response
to IGF-I. To determine the cellular abilities of lamellipodia
formation and invasion in response to IGF-I, we conducted
assays for lamellipodia formation, WAVE2 translocation, and
cell invasion for MDA-MB-231 and MCF7 cells. Phalloidin
staining of cells revealed that the F-actin framework in quies-
cent MDA-MB-231 cells was rearranged to form lamellipodia
at the leading edge after IGF-I stimulation (Figure 1(a)).
In contrast, a fine F-actin meshwork over the cytoplasm of
quiescent MCF7 cells formed a distinct F-actin framework or
local aggregates in the cell periphery after IGF-I stimulation
(Figure 1(a)). Although the frequency of lamellipodia in
MDA-MB-231 cells was significantly increased by IGF-I
(P < 0.003), it remained significantly low in MCF7 cells
after IGF-I stimulation (Figure 1(b)). Similarly, WAVE2
translocation to the leading edge was significantly promoted
by IGF-I in MDA-MB-231 cells (P < 0.0001; Figure 1(c)).
However, the frequency of cells with peripheral WAVE2
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Figure 4: Expression of Pak1, IRSp53, and WAVE2 in MDA-MB-231 and MCF7 cells. After stimulation with IGF-I for 0, 0.5, or 6 h, cells
were lysed and processed for immunoblotting with antibodies to Pak1 (a), IRSp53 (b), and WAVE2 (c). Band intensity relative to that in
unstimulated control MDA-MB-231 cells is given.

was very low in both quiescent and IGF-I-stimulated MCF7
cells (Figure 1(c)). When cells were incubated on invasion
chamber membranes coated with the basement membrane
matrix, the mean number of invaded MDA-MB-231 cells
after incubation for 6 h toward IGF-I-containing medium
was 1,382 in 3 × 3 mm area and significantly larger than 347
in quiescent cells incubated toward the low-serum medium
lacking IGF-I (P < 0.004; Figure 1(d)). In contrast, practically
no invaded MCF7 cells were observed either before (12) or
after IGF-I stimulation (10) (Figure 1(d)).

3.2. Comparable Expression and Activation of IGF-IR and
PI3K in MDA-MB-231 and MCF7 Cells. To clarify the differ-
ences in the signaling pathways that lead to WAVE2 translo-
cation and lamellipodia formation in the 2 breast cancer cell
lines, we first examined the expression and activation of IGF-
IR at 0.5 and 6 h after IGF-I stimulation. The expression
level of IGF-IR was nearly constant in MDA-MB-231 cells

before and after IGF-I stimulation, whereas in MCF7 cells, it
decreased after IGF-I stimulation to around 50% of that in
quiescent MDA-MB-231 cells (Figure 2(a)). We carried out
immunofluorescence assay using the antibody to phospho-
IGF-IR at Tyr1135/1136 (p-IGF-IR) to assess IGF-IR acti-
vation [15]. The results revealed that p-IGF-IR was locally
distributed at the leading edge of MDA-MB-231 cells after
IGF-I stimulation for 0.5 or 6 h (Figure 2(b)). In MCF7 cells,
p-IGF-IR was distributed at the tips of short cell protrusions
after IGF-I stimulation (Figure 2(b)). These results indicate
the local activation of IGF-IR in both cell lines in response to
IGF-I.

Because PI3K is recruited to and activated by the acti-
vated IGF-IR, we next compared the expression and activa-
tion of PI3K in the 2 cell lines. Immunoblot analysis revealed
that expression levels of the p85 subunit of PI3K were com-
parable in the cell lines before and after IGF-I stimulation
(Figure 2(c)). PI3K activity was comparable between the 2
quiescent cell lines, whereas activity increased by 20–40%
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Figure 5: Overexpression of stathmin and EB1 in MDA-MB-231 cells compared to MCF7 cells. Cells after stimulation with IGF-I for 0, 0.5,
or 6 h were lysed and processed for immunoblotting with antibodies to stathmin (a) and EB1 (b). Band intensity was measured, and values
are given as expression relative to that in unstimulated control MDA-MB-231 cells.
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Figure 6: Rac1 and stathmin but not EB1 are required for IGF-I-induced invasion of MDA-MB-231 cells. Cells after incubation for 48 h with
mismatch negative control small interfering RNA and 2 different small interfering RNAs of Rac1 (a), stathmin (b), or EB1 (c) were lysed and
the same amounts of total cell lysates were immunoblotted with antibodies to β-actin and Rac1 (a), stathmin (b), or EB1 (c). Cells transfected
with control small interfering RNA and Rac1-1 (a), stathmin-1 (b), or EB1-1 small interfering RNA (c) were incubated for 6 h toward
medium containing (+) or lacking (−) IGF-I. The mean (SD) values of triplicate assays are given as the number of invaded cells relative to
that in unstimulated control MDA-MB-231 cells.
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in MDA-MB-231 cells and decreased by 30% in MCF7 cells
during incubation with IGF-I (Figure 2(d)).

3.3. IGF-I Activates Rac1 That Is Overexpressed in MDA-MB-
231 Cells. The GTPase Rac1 is activated by PI3K through
PtdInsP3 binding to RacGEF [16]. To determine whether the
PI3K activation signal is transmitted to Rac1, we compared
Rac1 expression and activation in the 2 cell lines. Whereas
Rac1 expression in MDA-MB-231 cells decreased slightly
after IGF-1 stimulation for 6 h, it remained low in MCF7
cells before and after IGF-I stimulation, at a range of 29–43%
of that in quiescent MDA-MB-231 cells (Figure 3(a)). The
relative amount of active Rac1 to total Rac1 in MDA-MB-
231 cells gradually increased from 11% to 14% and 18% after
IGF-I stimulation for 0.5 and 6 h, respectively (Figure 3(b)).
In contrast, only a trace amount of Rac1 was activated by
IGF-I in MCF7 cells (Figure 3(b)).

3.4. Comparable Expression of Pak1, IRSp53, and WAVE2 in
MDA-MB-231 and MCF7 Cells. Pak1 is a downstream effec-
tor of Rac1 [17] and is constitutively associated with WAVE2
in MDA-MB-231 cells [8]. Whereas the expression level of
Pak1 decreased slightly in MDA-MB-231 cells after a 6 h
incubation with IGF-I, it remained low in MCF7 cells before
and after IGF-I stimulation, at a range of 33–51% of that
in quiescent MDA-MB-231 cells (Figure 4(a)). After translo-
cation to the leading edge, WAVE2 is linked to PtdInsP3

by WAVE2-bound IRSp53 [9, 13]. Immunoblot analysis re-
vealed that IRSp53 expression was similarly reduced in both
cell lines during IGF-I stimulation, retaining comparable lev-
els (Figure 4(b)). WAVE2 expression levels in the 2 cell lines
were comparable and remained nearly constant throughout
the incubation with or without IGF-I (Figure 4(c)).

3.5. Overexpression of Stathmin and EB1 in MDA-MB-231
Cells Compared to MCF7 Cells. Upon stimulation of MDA-
MB-231 cells with IGF-I, Pak1 is activated and in turn phos-
phorylates stathmin, thereby leading to recruitment of the
phosphorylated stathmin-EB1 complex to the microtubule
ends, which bear the WAVE2 complex [13]. Expression levels
of stathmin remained nearly constant in both cell lines before
and after IGF-I stimulation; however, they were low in MCF7
cells (22–26%) of that in quiescent MDA-MB-231 cells
(Figure 5(a)). Similar to stathmin, EB1 expression levels in
MCF7 cells before and after IGF-I stimulation were less than
30% of those in quiescent MDA-MB-231 cells (Figure 5(b)).

3.6. Rac1 and Stathmin but Not EB1 Are Required for Invasion
of MDA-MB-231 Cells in Response to IGF-I. Rac1 was acti-
vated by IGF-I in MDA-MB-231 cells but not in MCF7 cells
(Figure 3(b)), and expression levels of Rac1, stathmin, and
EB1 were significantly higher in MDA-MB-231 cells than
those in MCF7 cells (Figures 3(a), 5(a), and 5(b)). To ex-
plore the necessity of these proteins for IGF-I-induced
invasion of MDA-MB-231 cells, we studied suppression of
each of these proteins by 2 different small interfering RNAs
(Figure 6). When Rac1 expression was depleted by Rac1-1
small interfering RNA, the mean number of invaded cells was
very small before (104) and after IGF-I stimulation (157),
contrary to control cultures in which it increased from 335 to

906 by IGF-I. In IGF-I-stimulated cells, the relative number
of invaded Rac1-deficient cells was significantly smaller than
that of control cells (P < 0.0002) (Figure 6(a)). Similarly,
the mean number of invaded cells was very small both
before (109) and after IGF-I stimulation (109) in stathmin-
deficient cells that were transfected with stathmin-1 small
interfering RNA. By contrast, the mean number of invaded
cells transfected with control small interfering RNA signif-
icantly increased from 315 to 1,356 by IGF-I stimulation.
Consequently, the relative number of invaded cells after IGF-
I stimulation was significantly smaller in stathmin-deficient
cells than that in control cells (P < 0.0001; Figure 6(b)).
Contrary to these, the mean number of invaded cells in EB1-
deficient quiescent culture was significantly larger (574) than
that in control quiescent culture (312, P < 0.04). In addition,
IGF-I stimulation caused a significant increase in the mean
number of invaded cells in both control (1,341, P < 0.005)
and EB1-deficient cultures (1,082, P < 0.02). Therefore, the
values were not significantly different from each other in
IGF-I-stimulated cultures (P > 0.3; Figure 6(c)).

4. Discussion

Assays for lamellipodia formation, WAVE2 translocation,
and cell invasion revealed that IGF-I induced significant
increases in the frequencies of lamellipodia formation,
WAVE2 translocation, and cell invasion in MDA-MB-231
cells. In contrast, IGF-I failed to induce lamellipodia forma-
tion, WAVE2 translocation, or invasion in MCF7 cells. This
suggests that MDA-MB-231 cells have the ability to invade
through the invasion chamber membranes and that MCF7
cells do not form lamellipodia nor invade in response to
IGF-I.

The signaling pathway leading to lamellipodia forma-
tion through WAVE2 translocation in MDA-MB-231 cells
is mediated by many molecules that include IGF-IR, PI3K,
Rac1, Pak1, IRSp53, stathmin, and EB1 [8, 9, 13]. All of
these molecules are essential for IGF-I-induced lamellipodia
formation, but whether they are also necessary for invasion
was unclear, except for WAVE2 [14]. Comparison of MDA-
MB-231 and MCF7 cells revealed that the expression and
activation of IGF-IR and PI3K are not significantly different
in the 2 cell lines before and after IGF-I stimulation. This
suggests that both cell lines respond to IGF-I and produce
PtdInsP3, dependent on PI3K. The small GTPase Rac1, a key
inducer of lamellipodia [18] and a downstream effector of
PI3K [16], was overexpressed and activated by IGF-I in
MDA-MB-231 cells but not MCF7 cells, in the latter of which
Rac1 was hardly activated by IGF-I. A possible explanation
for the lack of Rac1 activation in MCF7 cells is reduced ex-
pression of RacGEF, but the actual reason for the lack of Rac1
activation remains unknown in the current study. A crucial
role of Rac1 in the IGF-I-induced invasion of MDA-MB-231
cells was clearly demonstrated by RNA interference assay.
Rac1 depletion significantly suppressed the frequency of
invasion in both quiescent and IGF-I-stimulated MDA-MB-
231 cells. This indicates the necessity of Rac1 for IGF-I-
induced cell invasion in the cells. Overexpression of Rac1 has
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been reported in breast carcinomas [19] and may be involved
in the invasion of gliomas [20] and macrophages [21].

The WAVE2 complex, including Pak1 [8] and IRSp53 [9],
is translocated along microtubules following stathmin phos-
phorylation and EB1-mediated binding of the phosphory-
lated stathmin-EB1 complex to the microtubule ends that
bear the WAVE2 complex [8, 13]. Both stathmin inactivation
by phosphorylation [22] and EB1 binding to the microtubule
ends are considered to promote the persistent microtubule
growth [23]. However, depletion of stathmin or EB1 in
MDA-MB-231 cells differentially affected the invasive poten-
tial of the cells. Stathmin depletion significantly inhibited
the IGF-I-induced invasion of MDA-MB-231 cells, whereas
EB1 depletion did not. This suggests that stathmin but not
EB1 is essential for MDA-MB-231 cell invasion in response
to IGF-I. Because binding of the stathmin-EB1 complex to
the microtubule ends is mediated by EB1 [13], not only EB1
but also the binding of stathmin to the microtubule ends
may be unnecessary for MDA-MB-231 cell invasion. Overex-
pression of stathmin has been reported in breast carcinomas,
sarcomas, and hepatomas [24–26] and may be involved in
tumor invasion or metastatic potential [25, 26].

In conclusion, Rac1, stathmin, and EB1 are overexpressed
in MDA-MB-231 cells compared to MCF7 cells, which do
not form lamellipodia nor invade in response to IGF-I.
Among these proteins, Rac1 and stathmin but not EB1 are
also required for IGF-I-induced invasion of MDA-MB-231
cells. These results suggest that the signaling pathway leading
to cell invasion is not identical but shares some common
molecules, leading to cell migration through lamellipodia
formation. Further investigation of the signaling molecules
that are required and sufficient for cell invasion may
increase understanding of the regulation of cell invasion and
metastasis.
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