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Abstract

Previous studies have reported conflicting assessments of the ability of cell line-derived multi-gene predictors (MGPs) to
forecast patient clinical outcomes in cancer patients, thereby warranting an investigation into their suitability for this task.
Here, 42 breast cancer cell lines were evaluated by chemoresponse tests after treatment with either TFAC or FEC, two widely
used standard combination chemotherapies for breast cancer. We used two different training cell line sets and two
independent prediction methods, superPC and COXEN, to develop cell line-based MGPs, which were then validated in five
patient cohorts treated with these chemotherapies. This evaluation yielded high prediction performances by these MGPs,
regardless of the training set, chemotherapy, or prediction method. The MGPs were also able to predict patient clinical
outcomes for the subgroup of estrogen receptor (ER)-negative patients, which has proven difficult in the past. These results
demonstrated a potential of using an in vitro-based chemoresponse data as a model system in creating MGPs for stratifying
patients’ therapeutic responses. Clinical utility and applications of these MGPs will need to be carefully examined with
relevant clinical outcome measurements and constraints in practical use.
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Introduction

Breast cancer remains a significant cause of mortality in women

with nearly 40,000 deaths in the U.S. during 2010 alone [1].

Although neoadjuvant chemotherapy is widely used in the

treatment of early-stage breast cancer [2,3,4], selecting the best

treatment regimen for an individual patient from several options is

not straightforward, as the response to chemotherapy varies

considerably among patients–even those with cancers exhibiting

identical histological and molecular subtypes [5,6,7]. Gene

expression profiling studies have provided a molecular classifica-

tion of breast cancer into clinically relevant subtypes and new tools

to predict disease recurrence and response to different treatments.

Recently, efforts have been undertaken to develop multi-gene

predictors (MGPs) of drug response using a patient’s own tissue

samples in the hopes that the predictors might guide treatment

decisions [8,9,10,11]. In order to create such MGPs, large

numbers of clinically homogenous patient samples are required,

the acquisition of which is a costly, lengthy, and invasive process.

Moreover, creating MGPs using samples from patients undergoing

the same treatment limits their utility when predictors for multiple

standard-of-care treatments are necessary.

Recently, researchers have attempted to overcome the limita-

tions of patient sample-derived MGPs by using cancer cell lines to

develop MGPs, with varying degrees of success

[12,13,14,15,16,17,18]. A recent study of 51 breast cancer cell

lines by Neve, et al. reported that these cell lines mirror many,

though not all, of the biological and genomic properties of primary

tumors, which suggests the possibility of utilizing cell line-derived

MGPs as surrogates for homogeneous patient samples [18]. Shen

et al. also demonstrated the prediction capability of breast cancer

cell line-derived MGPs, which were validated in blinded clinical

trials (US Oncology 02-103 and NSABP B-27), suggesting the

feasibility of using breast cancer cell lines to develop genomic

predictors of response to neoadjuvant chemotherapy [19,20]. In

addition, Kadra, et al. recently determined gene signatures in

response to taxanes and ixabepilone in breast cancer cell lines and

achieved promising performance when the resulting predictors

were applied to publicly available clinical trial data [21]. However,

other studies have not reported such success. For example, when
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Baggerly, et al. examined five case studies, they found that

approaches using the in vitro drug response of NCI60 cell lines to

predict patient chemotherapy response were not successful [22].

Liedtke, et al. used 19 breast cancer cell lines to create MGPs for

four commonly used chemotherapies, but these did not accurately

predict patient responses [15].

These conflicting data on the utility of cell line-derived MGPs

highlights the need for further and complete evaluation, including

for those MGPs developed from breast cancer cell lines. Many

factors, including the precision of the in vitro assay, the selection

and number of cell lines, the platform and quality of array

measurements, and the statistical method employed, may contrib-

ute to this discrepancy. To address these questions, two different

sets of breast cancer cell lines were exposed to two combination

chemotherapies–TFAC (paclitaxel, 5-fluorouracil, doxorubicin,

and cyclophosphamide) and FEC (5-fluorouracil, epirubicin, and

cyclophosphamide)–and assayed by an in vitro chemoresponse test.

We also independently developed our MGPs using two prediction

methods, supervised principal component regression (superPC)

and CO-eXpression ExtrapolatioN (COXEN), developed by the

groups at Precision Therapeutics, Inc. and the University of

Virginia, respectively. We subsequently validated these MGPs in

five clinical trials with patient gene expression profiling data and

full clinical annotation of chemotherapy treatment and outcome.

The goal of this systematic investigation was to objectively evaluate

the effectiveness of cell line-derived MGPs as tools to guide clinical

decisions in the application of standard chemotherapies.

Materials and Methods

A Chemoresponse Test for Breast Cancer Cell Lines
Forty-two breast cancer cell lines (Table S1) were obtained

from either ATCC (Manassas, VA) or DSMZ (Braunschweig,

Germany). RPMI 1640 medium (Mediatech, Herndon, VA)

containing 10% FBS (HyClone, Logan, UT) was used to maintain

all of the cell lines at 37uC in 5% CO2. Before conducting in vitro

chemoresponse tests, each cell line was trypsinized and seeded into

384-well microtiter plates (Corning, Lowell, MA) after reaching

roughly 80% confluence.

Ten serial dilutions, in triplicate, of the TFAC combination of

paclitaxel (T, 0.2–100 nM), 5-fluorouracil (F, 0.1–50 mM), doxo-

rubicin (A, 2 nM–1.2 mM), and pre-activated cyclophosphamide

(4-hydroperoxycyclophosphamide, C, 0.2–13.6 mM), or the FEC

combination of 5-fluorouracil (F, 0.1–50 mM), epirubicin (E,

0.7 nM–13.5 mM), and pre-activated cyclophosphamide (4-hydro-

peroxycyclophosphamide, C, 0.2 mM–13.6 mM) plus media con-

trols were prepared in 10% RPMI 1640 medium before being

used to treat each cell line. Both combination treatments were

composed of equal volumes of each drug at each dose. The cells

were incubated at 37uC in 5% CO2 for 72 hours. The

chemoresponse test was performed as previously described [23].

Briefly, non-adherent cells and medium were first removed from

each well, and the remaining adherent cells were fixed in 95%

ethanol and stained with DAPI (Molecular Probes, Eugene, OR).

The number of stained cells remaining after drug treatment was

determined by a proprietary automated microscope [24], and the

survival fraction (SF) calculated as

SFi~mean i
drug =mean i

control ,

where mean i
drug is the average of the number of surviving cells in

the drug-treated wells at dose i, and mean i
control is the average

number of living cells in the control wells at dose i. The area under

the dose-response curve (AUD), AUD~
P10

i~1 SFi, was calculated

to quantify the sensitivity of each cell line to the TFAC or FEC

treatment. A lower AUD score generated by cell lines represents a

greater chemosensitivity to TFAC or FEC.

Breast Cancer Cell Line Data
The gene expression omnibus database (http://www.ncbi.nlm.

nih.gov/geo/, accession number GSE12777, labeled here as

‘‘Hoeflich’’ [17]) and the European Bioinformatics Institute

database (http://www.ebi.ac.uk/, accession number E-TABM-

157, labeled here as ‘‘Neve’’ [18]) were accessed to obtain gene

expression profiles for the 42 breast cancer cell lines generated by

the Affymetrix HG-U133 Plus 2.0 Array (Affymetrix, Santa Clara,

CA, Table 1). Probe-level intensities were generated by the

RMAExpress V1.05 software package (http://rmaexpress.

bmbolstad.com/) using default settings, except that the probe-

level model analysis method was used to summarize probe values.

Before further analyses, the probe-level intensities were log2-

transformed. Probe sets that had low levels of variation

(interquartile range ,0.5) or low expression values (median,log2

[100]) were non-specifically filtered out across all cell lines. The

expression values were then standardized to a mean of zero and a

standard deviation of one for each cell line.

Breast Cancer Patient Data
To objectively evaluate the performance of our MGPs, gene

expression data and clinical outcomes for TFAC and FEC

treatments from five independent breast cancer clinical trials were

used as test sets (Table 2). All patients in these five cohorts

received neoadjuvant chemotherapy. The first two cohorts are

part of the MicroArray Quality Control (MAQC) breast cancer

dataset, who received 6 months of TFAC neoadjuvant chemo-

therapy. Since the first 130 patients were used as the training

dataset and the following 100 patients were used for validation in

the original study, these two datasets are referred to as MAQC-

training and MAQC-test, respectively. For both of these datasets,

there are ,60% ER+ patients, and ,40% ER– patients. Patients

in the third (Tabchy-TFAC n = 91) and fourth (Tabchy-FEC

n = 87) cohorts were accrued by MD Anderson and randomly

assigned to receive either weekly paclitaxel612 cycles followed by

FAC64 or FAC/FEC66 neoadjuvant chemotherapy. For both

datasets, there were ,55% ER+ patients, and ,45% ER–

patients. The fifth cohort (Iwamoto) included 82 patients, with

50% ER+ and 50% ER–. All patients were treated with four

courses of FAC or FEC chemotherapy. For all of these data sets,

the gene expression profiles of patients were measured from fine-

needle aspiration specimens before chemotherapy treatment. The

patient’s pathologic complete response (pCR) was tested after

treatment to demonstrate the chemotherapy efficacy.

Development of TFAC and FEC MGPs Using the SuperPC
Method

Supervised principal components (superPC) regression was used

to develop the MGPs for TFAC and FEC chemotherapies [25].

The resulting MGPs were then implemented using the superPC

V1.05 software package (http://www-stat.stanford.edu/,tibs/

superpc) under the programming environment R 2.11.1(http://

www.r-project.org/). In short, the association between the cell line

chemoresponse-derived AUD scores and the expression values for

each probe set was analyzed by univariate linear regression

analysis. In a linear regression model, the first principal

component was chosen to predict the result of patient chemother-

apy, as measured by pCR. A lower prediction score corresponded

Multi-Gene Predictors for Chemotherapy Response

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e49529



with greater chemotherapy sensitivity and therefore a higher

likelihood of achieving pCR. To investigate the impact of the

number of predictor genes, this parameter was varied from 50 to

1000.

Development and Validation of TFAC and FEC MGPs
Using the COXEN Method

The COXEN method was also used to develop MGPs, as

previously described [13]. In brief, in vitro chemoresponse data was

used for TFAC and FEC combination treatments of the 42 breast

cancer cell lines to obtain initial candidate expression biomarkers

(probe sets) that were the most predictive of the cell lines’

chemosensitivities to each drug combination. Specifically, initial

candidate biomarkers differentially expressed between chemo-

sensitive and –resistant cell lines were identified from the breast

cancer cell lines by two-sample t-test. In addition, biomarkers

highly associated with in vitro chemosensitivity were identified by

evaluating correlation coefficients between drug sensitivity of each

cell lines and gene expression data, both with a false-discovery rate

(FDR) ,0.05. These chemosensitivity biomarkers were then

triaged based on the COXEN coefficient which represents the

degree of concordance of expression regulation between the breast

cancer cell lines and a cohort of breast cancer patients. The

mathematical derivation of COXEN coefficient is based on the so

called ‘‘correlation of correlations’’, which first calculates the

expression correlations within each set on the same set of genes of

interest for both sets and then evaluates gene-by-gene correlation

between the two correlation matrices of the two sets. For the

derivation of COXEN coefficients in this study, a gene expression

dataset compiled from 251 breast cancer patients [26] was used,

which was not used in any other manner for our model

development or validation.

Using the final COXEN biomarkers for each drug combination,

MGPs were developed by applying within-gene standardization

and a cross-validated principal component regression analysis to

each cell line training set to avoid any potential statistical over-

fitting in large screening molecular-based prediction modeling.

The biomarkers were then sequentially involved in regression

model training by the order of strength of chemosensitivity

association. Several competing, high-performance models with

different numbers of candidate biomarkers were obtained from the

training sets. These competing models were then evaluated and

compared by utilizing two of the five clinical trials (Table 2). For

this analysis, the MAQC-training and Tabchy-FEC datasets were

used for selecting the optimal prediction models for TFAC and

FEC, respectively. The performance of prediction models were

evaluated by testing the difference of prediction scores between

response and non-response patient groups using a non-parametric

Wilcoxon rank-sum test. The optimal prediction models deter-

mined from the evaluation of the two patient sets were then

applied in a prospective manner to the completely independent

patient cohorts, MAQC-validation and Tabchy-TFAC datasets

for TFAC and Tabchy-FEC and Iwamoto datasets for FEC, in

order to objectively assess their prediction performance. Predicted

scores were then converted into rank-based percentile scores

between zero and one within each training or test set for practical

use and interpretation of MGP scores as the relative chemor-

Table 1. Two breast cancer cell line sets for MGP model training.

Database source
GEO/EBI accession
number Microarray platform number of breast cancer cell lines

TFAC FEC

Hoeflich [17] GSE12777 HG-U133 Plus 2.0 41a 39b

Neve [18] E-TABM-157 HG-U133A 30c 30

Common cell lines between Neve and Hoeflich data sets 28d 27

aThe TFAC chemoresponse test for one cell line (SW527) did not pass quality control; therefore, the AUC values for 41 cell lines were available for further analysis.
bThe FEC chemoresponse test for three cell lines (HCC1419, HCC1569, and HCC1806) did not pass quality control; therefore, the AUC values for 39 cell lines were
available for further analysis.
cThe number of cell lines common to the Hoeflich data set and the 42 cell lines and whose chemoresponses were measured is 30.
dThere are 28 TFAC-treated and 27 FEC-treated cell lines common to the Neve and Hoeflich data sets.
doi:10.1371/journal.pone.0049529.t001

Table 2. Summary information for the gene expression and clinical outcome test sets for five clinical trials in the GEO database.

MAQC-training MAQC-validation Tabchy-TFAC Tabchy-FEC Iwamoto

GEO accession # GSE20194 GSE20194 GSE20271 GSE20271 GSE22093a

Neoadjuvant treatment TFAC TFAC TFAC FAC/FEC FAC/FEC

# of all patients 130 100 91 87 82

# of ER+ patients 80 61 49 49 41

# of ER2 patients 50 39 41 37 41

# of pCR patients 33 15 19 7 24

# of RD patients 97 85 72 80 58

pCR% 34.00% 17.60% 26.40% 8.80% 42.40%

aThe Tabchy-TFAC data set (GSE20271) has 31 samples that overlap with the Iwamoto data set (GSE22093); therefore, these two data sets are not completely
independent.
doi:10.1371/journal.pone.0049529.t002
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esponse of each cell line or patient in the population. Thus, a

higher predicted score implies a higher percentage of responders

in a given population to each drug combination used.

For the development of estrogen receptor (ER)-specific predic-

tion models, we divided the cell lines into ER+ and ER– groups

based on ESR1 mRNA expression levels, as described elsewhere

[27]. The above analyses of biomarker discovery and prediction

modeling were then repeated separately for ER+ and ER– patient

subsets using the COXEN method.

Results

Chemoresponse Test for Breast Cancer Cell Lines
The chemoresponse of each cell line to TFAC and FEC,

represented by AUD scores, can be seen graphically in Figure 1.

For TFAC, the AUD scores ranged from 3.36 to 9.09. For FEC,

the AUD scores ranged from 2.81 to 8.00. Generally speaking, the

ER+ cell lines demonstrated higher AUD scores (lower chemo-

sensitivity) than the ER– cell lines.

MGPs Based on Breast Cancer Cell Lines
Using the superPC method, we have developed MGPs for both

TFAC and FEC treatments (Tables S2, S3, S4, S5). For MGPs

developed from both the Neve and Hoeflich training sets, the

performance is stable for numbers of genes, in the range 100–700.

In this work, we selected the top 150 genes whose expression

values are most correlated with the in vitro chemosensitivity as gene

signatures to predict patient chemotherapy response.

For MGP-FEC and MGP-TFAC, there is substantial overlap no

matter which training dataset is used. With Neve used as the

training set, the overlap for MGP-TFAC and MGP-FEC was 107

biomarkers, while with Hoeflich used as the training set, the

overlap was 80 biomarkers. This was an inevitable result, since

TFAC and FEC are very similar chemotherapeutic regimens with

two drugs in common (F and C), as well as two drugs that are of

the same mechanism of action (A and E). However, the MGPs

developed by the Neve and Hoeflich training sets have a relatively

small overlap of their biomarkers This may be because these two

training sets were measured at different sites and using different

platforms (HG-U133 vs HG-U133 plus 2.0). To assess the

reproducibility of array data, we calculated the correlation of

gene expression based on the 28 cell lines which are common to

both training sets, and obtained a correlation of 0.77 for the set of

genes that are common in HG-U133 and HG-U133 plus 2.0. The

superPC method selects genes based on the association of each

gene with drug response; therefore even slight changes in training

dataset may lead to a complete different set of genes selected for

prediction. Nevertheless, functional analysis indicates that most of

these genes are from the same gene functional networks, including

cell death, the cell cycle, cellular development, small molecule

biochemistry, molecular transport, cellular growth and prolifera-

tion, cellular assembly and organization, and cellular function and

maintenance. Moreover the scores of predictors generated from

Neve and Hoeflich datasets are consistent for all five validation

datasets, with the correlation of predictors generated from two

training sets all greater than 0.86.

Using the COXEN method, we have also developed MGPs for

both TFAC and FEC (Tables S6, S7, S8, S9). For the MGPs

based on the Neve training set, 47 and 162 COXEN biomarkers

were identified for TFAC and FEC, respectively, of which 14

biomarkers were in common. For the MGPs based on the Hoeflich

training set, 124 and 20 biomarkers were selected for each TFAC

and FEC, and 17 of 20 biomarkers for FEC were also included in

those for TFAC. The gene functions of TFAC COXEN

biomarkers were primarily from the cell cycle, cellular growth

and proliferation, hematological system development, cellular

compromise, and drug metabolism and function. Of these, six

genes (ABAT, DEPDC1, KIF2C, SMAD4A, TAF1D, and

TUBB6) have been reported to be directly relevant to cancer

mechanisms, such as mammary tumor progression (P = 0.046)

[28,29,30,31]. A majority of FEC COXEN biomarkers were

involved in cell death, cancer cellular mechanism, cell morphol-

ogy, molecular transport, hematological systems and development,

as well as DNA replication, recombination, and repair. In

particular, 12 genes, including AXL, CDH1, CFLAR, FKBP1A,

NT5E, and VIM, were reported to be significantly associated with

tumor metastasis (P,8E-04) [28,29,30,31]. Also, 7 genes (CTGF,

ESR1, MAPK3, PIK3R3, PLAU, PRNP, and RET) were

reported to be highly relevant to growth (P,1E-04) and

microtubule dynamics (P,4E-05) in tumor cell lines, and

apoptosis in breast cancers (P,1E-04) [32,33,34,35].

Evaluation of MGPs Developed by All Breast Cancer Cell
Lines

The performance of MGPs was validated by data from five

clinical trials, comprised of microarray data from tumors biopsied

before the initiation of therapy for each breast cancer patient in

the cohort. The prediction scores generated by the MGPs are

reported for each clinical trial test set for the superPC and

COXEN methods and for both TFAC and FEC treatments. We

found that superPC and COXEN prediction scores were highly

consistent for both Neve (top row) and Hoeflich (bottom row)

training sets. The two prediction methods provided highly

correlated scores for both TFAC and FEC chemotherapies with

Spearman correlation coefficients between 0.75 and 0.91 (p-value

,1026) for all cases, which included different training sets,

treatments, and test sets (Figure 2). Moreover, predictors

developed from the Neve training set distribute significantly

different in responders vs non-responders for all five trials

(Figure 3). A similar phenomenon was observed for predictors

Figure 1. Chemoresponse-derived AUD values for each cell
line, labeled by ER status, for both TFAC (top) and FEC
(bottom) treatments.
doi:10.1371/journal.pone.0049529.g001
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developed from the Hoelifch training set in all trials except

Tabchy-FEC (data not shown).

We performed receiver operating characteristic (ROC) analysis

to evaluate the overall predictability of our MGPs (Figure 4). For

the TFAC-treated patients, the AUC (Area Under the Curve)

values for the superPC and COXEN methods were similar when

using either the Neve cohort (0.749, 0.717, 0.731 vs. 0.778, 0.764,

0.707 for MAQC-Training, MAQC-Validation, and Tabchy-

TFAC datasets, respectively) or using the Hoeflich database

(0.717, 0.733, 0.682 vs. 0.780, 0.746, 0.703 for MAQC-Training,

MAQC-Validation, and Tabchy-TFAC datasets, respectively). For

the FEC-treated patients, the AUC values for the superPC and

COXEN methods were again comparable when using either the

Neve database (0.784, 0.769 vs. 0.793, 0.738 for Tabchy-FEC and

Iwamoto datasets, respectively) or using the Hoeflich database

(0.664, 0.687 vs. 0.688, 0.682 for Tabchy-FEC and Iwamoto

datasets, respectively). Overall, these data suggest consistent

performance of MGPs derived from the in vitro chemoresponse

assay on breast cancer cell lines in predicting patient clinical

outcome.

We also evaluated superPC and COXEN MGPs by AUC for

ER+ and ER– patients separately. For ER+ patients, both the

superPC and COXEN models achieved good prediction results for

all but the MAQC-validation cohort (Table 3). However, for ER–

patients, the performances of neither the superPC nor the

COXEN models were significant for the test sets, except for the

Tabchy-FEC cohort (Table 3). Thus, the MGPs developed both

with ER+ and ER– breast cancer cells were not predictive for ER–

patients, which is consistent with previous studies that reported

difficulties in prediction of pCR in ER– cancers [36,37,38,39].

Evaluation of ER-specific MGPs
In order to improve the prediction for ER– cancers, ER-specific

predictors were thus developed using the COXEN model (Tables

Figure 2. Correlation between the prediction scores calculated by the superPC and COXEN methods from the Neve training set for
each test set.
doi:10.1371/journal.pone.0049529.g002

Figure 3. Distributional difference between prediction scores calculated by the superPC or COXEN methods from the Neve training
set for responders (pCR, pathologic complete response) and non-responders (RD, residual disease), with p-value and AUC. In the top
row, the prediction scores are calculated by the superPC method, and in the bottom row, the prediction scores are calculated by the COXEN method.
Red lines represent median prediction scores in each group.
doi:10.1371/journal.pone.0049529.g003

Multi-Gene Predictors for Chemotherapy Response
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S10, S11, S12, S13, S14, S15, S16, S17). (Due to the small

sample size of ER– and ER+ cell lines, an ER-specific predictor-

based superPC model did not achieve significant prediction results,

data not shown.) The development of ER-specific predictors was

similar as before, except that ER– or ER+ predictors were

developed separately, based on 22 ER– or 19 ER+ cell lines

instead of all 41 cell lines (Table 4). The ER– predictors showed a

significant improvement in predicting the therapeutic responses

and outcomes of ER2 patients with AUC values between 0.533

and 0.733 for Neve-based prediction and between 0.503 and 0.818

for Hoeflich-based prediction in all five studies. Thus, the

COXEN MGPs specifically developed for the ER– cancers were

able to predict pCRs for these patients. By contrast, the ER+-

specific predictors performed more poorly for ER+ patients (AUC

values between 0.432 and 0.741 for Neve-based prediction and

between 0.471 and 0.761 for Hoeflich-based prediction) than the

MGPs developed from all cases.

Discussion

In this study the prediction performance of MGPs using breast

cancer cell lines and an in vitro chemoresponse assay was evaluated

using different gene expression training sets, multiple test patient

sets, two commonly administered chemotherapy combinations,

and two different prediction methods. In particular, to create these

MGPs we used a large number of breast cancer cell lines both with

ER+ and ER– subtypes to represent a wide spectrum of

heterogeneous breast tumors. The systematic evaluation per-

formed here showed consistent prediction of patient clinical

outcomes by the cell line-derived MGPs across different training

sets, two prediction methods, two chemotherapies, and five test

patient sets. We believe these results support the potential for using

cancer cell line drug sensitivity and genomic data as a proxy for

pharmacogenomic data to predict therapeutic responses of breast

cancer patients to standard chemotherapies.

Figure 4. ROC curve validation of MGPs from the Neve training set in 5 clinical trials. In each figure, blue lines represent MGPs developed
using the superPC method, while red lines represent MGPs developed using the COXEN method.
doi:10.1371/journal.pone.0049529.g004

Table 3. Prediction results for the superPC and COXEN methods in all breast cancer cell lines evaluated by AUC scores.

Neve-based prediction Hoeflich-based prediction

Clinical trial test set ER(+/2) SuperPC COXEN SuperPC COXEN

TFAC MAQC-Training All 0.749** 0.778** 0.717** 0.780**

ER+ 0.791** 0.732* 0.664* 0.725*

ER2 0.605 0.564 0.523 0.57

MAQC-Validation All 0.717** 0.764** 0.733** 0.746**

ER+ 0.449 0.542 0.390 0.424

ER2 0.524 0.547 0.515 0.577

Tabchy-TFAC All 0.731** 0.707** 0.682** 0.703**

ER+ 0.750* 0.678 0.728* 0.622

ER2 0.644* 0.605 0.556 0.615

FEC Tabchy-FEC All 0.784** 0.793** 0.664* 0.688*

ER+ 0.804** 0.819* 0.717 0.587

ER2 0.902** 0.811** 0.583 0.788*

Iwamoto All 0.769** 0.738** 0.687** 0.682**

ER+ 0.794** 0.643 0.777* 0.668

ER2 0.730** 0.706** 0.453 0.539

**: P,0.05,
*: P,0.1.
The AUC values are grouped by ER status: All (cells of both ER status), ER+ (ER2 positive cells), and ER– (ER-negative cells) and are separated based on the cell line
expression database used to create the cell line MGPs. Note that these five validation datasets (except Tabchy-TFAC and Iwamoto) were independent for the superPC
prediction method, because this predictor was not pre-optimized or optimized using any of these data sets. For the COXEN prediction method, MAQC-training and
Tabchy-FEC datasets were used for optimization, and therefore the remaining three datasets were truly independent validation sets for this method.
doi:10.1371/journal.pone.0049529.t003
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Strategies using in vitro chemosensitivity data in developing

MGPs have a number of advantages over conventional approach-

es based on patient data. First, the in vitro cell line chemoresponse

test can efficiently provide molecular biomarker information for

the activities of many chemotherapeutic agents, while not relying

on complex human patient outcome data. The in vitro chemor-

esponse test can be performed in conjunction with various breast

cancer subtypes, e.g. for ER–, HER–, or triple-negative breast

cancer (TNBC). This may provide a means to efficiently discover

and evaluate effective therapeutic options for these aggressive

subtypes of breast cancer, which have been limited due to the

relatively small proportions of breast cancer patients exhibiting

these subtypes. This strategy also allows one to discover and test

biomarkers for various single chemotherapy agents and their

combinations, including unusual combinations that have occa-

sionally or never been used in clinics.

Mixed results have been reported in some previous studies of

cell line-derived MGPs [12,14,15,16]. While our study demon-

strated consistently accurate prediction using in vitro-based MGPs,

caution is needed in drawing conclusions from this finding, which

should be restricted to the chemotherapies investigated in this

study. We believe that one of the key issues in using cell lines to

develop MGPs is whether the surrogate cell line system can

accurately approximate patient clinical outcomes. Gene expression

patterns have been found to vary widely between cancer cell lines

and patients, possibly diminishing the suitability of cell lines as

patient sample surrogates [15,40]. An artificial in vitro system

cannot fully mimic a tumor’s in vivo environment or emulate

complex in vivo drug metabolism, and cancer cell lines that can

proliferate in artificial in vitro environments might represent only a

subset of in vivo tumor cells [15]. Despite these limitations, we

believe that our MGPs have demonstrated potential utility for the

following reasons. First, a large number of genes associated with

chemosensitivity appear to show expression patterns that are

consistent between in vitro and in vivo environments. Also, while

individual genes are highly variable, MGPs aggregating informa-

tion from multiple genes have the effect of mitigating this

variability. A majority of biomarkers from different prediction

methods for each chemotherapy treatment shared the same gene

networks and functions, such as cellular growth and proliferation,

cell morphology, and cell death, despite the relatively small

number of overlapping genes (5 biomarkers for TFAC and 2

biomarkers for FEC). As recently reported, we believe there also

exist a relatively large number of biomarkers that can effectively

stratify tumors with contrasting chemosensitivity [41]. While this

research supports the potential of utilizing cell lines for the

development of genomic predictors to predict therapeutic

responses to chemotherapies, additional development and valida-

tion will be necessary to establish the clinical utility of these MGPs.

ER– and ER+ breast cancers have been widely recognized as

having heterogeneous gene expression patterns, different muta-

tions, distinct alterations in DNA copy number, and many other

differences [42,43,44]. ER– cancer patients, in particular, are

typically more sensitive to chemotherapy, but often show earlier

recurrence and unfavorable prognosis compared to ER+ patients

[38,45,46]. In this study, we have thus developed and evaluated

the MGPs for ER– and ER+ patients separately, which enabled us

to accurately predict clinical outcomes for ER– patients. By

contrast, past studies have reported difficulties in predicting pCR

in ER– patients due to discrepancies in gene expression profile

between ER– and ER+ patients [36,37,38,39]. It is unclear why

the MGPs developed by exclusively using ER+ cells did not

perform well for ER+ patients. It may be due to the small sample

size of the subset, with a lower proportion of patients experiencing

pCR. This issue will need to be further investigated with more

ER+ cell lines and large numbers of patient sets.

Table 4. Prediction results for the COXEN model using either ER+ (ER-positive) or ER– (ER-negative) breast cancer cell lines,
evaluated by area under receiver operator characteristic (AU-ROC) scores.

Neve based prediction Hoeflich based prediction

Drug Clinical trial test set ER(+/2) ER+(14) ER2(16) ER+(16) ER2(23)

TFAC MAQC-Training All 0.663** 0.631** 0.443 0.785**

ER+ 0.741* 0.617 0.588 0.676

ER2 0.644* 0.678** 0.349 0.721**

MAQC-Validation All 0.599 0.562 0.536 0.677**

ER+ 0.432 0.441 0.508 0.347

ER2 0.624 0.533 0.536 0.503

Tabchy-TFAC All 0.582 0.598 0.464 0.774**

ER+ 0.478 0.472 0.594 0.778*

ER2 0.615 0.699** 0.415 0.726**

FEC Tabchy-FEC All 0.646 0.636 0.504 0.650

ER+ 0.703 0.529 0.761 0.428

ER2 0.515 0.720 0.295 0.818**

Iwamoto All 0.647** 0.749** 0.301 0.769**

ER+ 0.735* 0.655 0.471 0.765**

ER2 0.488 0.733** 0.260 0.706**

**: P,0.05,
*: P,0.1.
The MAQC-Validation and Tabchy-TFAC were truly independent validation sets here because the MAQC-training and Tabchy-FEC were used to optimize the COXEN
model.
doi:10.1371/journal.pone.0049529.t004
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