# Novel MiRNA and PhasiRNA Biogenesis Networks in Soybean Roots from Two Sister Lines That Are Resistant and Susceptible to SCN Race 4 

<br>1 Biotechnology Research Institute, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China, $\mathbf{2}$ Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China


#### Abstract

The soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pathogen of soybean worldwide. SiRNAs (small interfere RNAs) have been proven to induce the silencing of cyst nematode genes. However, whether small RNAs from soybean root have evolved a similar mechanism against SCN is unknown. Two genetically related soybean sister lines (ZP03-5373 and ZP03-5413), which are resistant and susceptible, respectively, to SCN race 4 infection were selected for small RNA deep sequencing to identify small RNAs targeted to SCN. We identified 71 less-conserved miRNAs-miRNAs* counterparts belonging to 32 families derived from 91 loci, and 88 novel soybean-specific miRNAs with distinct expression patterns. The identified miRNAs targeted 42 genes representing a wide range of enzymatic and regulatory activities. Roots of soybean conserved one TAS (Trans-acting siRNA) gene family with a similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profile. In addition, we found that six miRNAs (gma-miR393, 1507, 1510, 1515, 171, 2118) guide targets to produce secondary phasiRNAs (phased, secondary, small interfering RNAs) in soybean root. Multiple targets of these phasiRNAs were predicted and detected. Importantly, we also found that the expression of 34 miRNAs differed significantly between the two lines. Seven ZP03-5373-specific miRNAs were differentially expressed after SCN infection. Forty-four transcripts from SCN were predicted to be potential targets of ZP03-5373-specific differential miRNAs. These findings suggest that miRNAs play an important role in the soybean response to SCN.


Citation: Xu M, Li Y, Zhang Q, Xu T, Qiu L, et al. (2014) Novel MiRNA and PhasiRNA Biogenesis Networks in Soybean Roots from Two Sister Lines That Are Resistant and Susceptible to SCN Race 4. PLoS ONE 9(10): e110051. doi:10.1371/journal.pone. 0110051

Editor: Tianzhen Zhang, Nanjing Agricultural University, China
Received May 4, 2014; Accepted September 15, 2014; Published October 30, 2014
Copyright: © 2014 Xu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This work was supported by the National Key Basic Research Program (Grant Number 2010CB125903). And the National Natural Science Foundation of China (Grant Number 31271801, 31171575). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: wanglei01@caas.cn


## Introduction

Soybean (Glycine max) is an agronomically important crop that is rich in human dietary protein. The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is an obligate sedentary endoparasite that causes extensive damage to soybean worldwide and accounts for over one billion dollars of crop loss annually in the US [1]. These obligate parasites start their life cycles as nonfeeding, mobile infective second-stage juveniles (J2) in soil that are able to locate and then penetrate into host roots [2]. The J2 then initiate the formation of specialized feeding sites called syncytia, which function as metabolic sinks to nourish the nematodes. In susceptible cultivars, nematodes depend entirely on functional syncytia to acquire nutrients to develop into reproductive adult males or females. The J2 also penetrate roots of resistant cultivars and initiate syncytia. However, resistance soon manifests as degeneration of the young syncytia and failure of the nematode to develop further [3]. Syncytium formation and maintenance are mediated through nematode signaling and are accompanied by changes in plant gene expression [4]. Identification of host plant genes and nematode genes that change expression, and may
therefore be involved in plant-nematode interactions, would increase our understanding of the molecular mechanisms involved in this complex interaction, which will lead to the development of durable crop protection strategies. With the recent discovery of gene expression control of parasitism proteins via siRNA molecules [5], and recent advances in genomics, small RNAs (sRNAs), which are involved in the molecular mechanism of the soybean-SCN system, are now the focus of much research.

Endogenous sRNAs are known to be important regulators of gene expression at the transcriptional and post-transcriptional levels. In plants they are divided into several classes: trans-acting siRNAs (tasiRNAs), heterochromatin-associated siRNAs, natural antisense siRNAs (nat-siRNAs) and miRNAs [6]. These classes of non-coding RNAs are distinguished by their biogenesis pathways and the types of genomic loci from which they arise [7]. TasiRNA biogenesis from TAS loci depends on the miRNA-directed cleavage of their transcripts [8,9]; indeed, three tasiRNA pathways have been characterized in Arabidopsis [8,10]. Although miRNAs constitute only a small fraction of the sRNA population $[11,12]$, miRNA-guided post-transcriptional gene regulation is one of the most conserved and well-characterized gene regulatory
mechanisms [11,13,14]. There is increasing evidence that miRNAs negatively regulate their target genes, which function in a wide range of biological processes, including organogenesis, signal transduction and stress responses $[15,16]$.

Plant miRNAs are generated from hairpin-structured noncoding transcripts and processed by Dicer such as DCL1 (DICERLIKE 1), which cleaves a short (21-bp) duplex from the stem region [17]. The duplex is incorporated into an AGO complex and the miRNA* strand is subsequently degraded. The mature miRNA strand guides the AGO complex (RNA-induced silencing complex, RISC) to either protein-coding RNAs, which are cleaved by AGO at a specific position [18], or translational arrest [19]. Due to their evolutionary conservation, miRNAs have been found to exist in both plants [20,21] and animals [22-24]. Conserved miRNA molecules can also be found in ferns, mosses and fungi [11]. To date, many miRNAs have been identified and deposited in miRBase V20.0 (http://www.mirbase.org/). Of these, 25,141 are mature miRNA products, from a total of 193 species. Comparative analysis indicates that some of the miRNA families are highly conserved among all plant species while others have diverged and evolved, generating abundant family- and speciesspecific miRNAs $[11,25,26]$. These dynamic and evolving miRNAs could serve as a driving force for the selection of improved and novel traits in plants.
As non-conserved or species-specific miRNAs are often expressed at a lower level than conserved miRNAs, many species-specific miRNAs have not been identified in small-scale sequencing projects. However, high-throughput sequencing technologies allow identification of many species-specific miRNAs in several species [10,27-31]. Elucidating the function of these molecules requires effective approaches to identifying their targets. Recently, a new method called degradome sequencing, which combines high-throughput RNA sequencing with bioinformatic tools, has been used to screen for miRNA targets in Arabidopsis [32-34]. Using degradome sequencing, many of the previously validated and predicted targets of miRNAs and tasiRNAs have been verified $[32,33,35,36]$, indicating that this is an efficient strategy for identifying sRNA targets in plants on a large scale.

To determine if soybean has evolved sRNAs that repress the development and growth of SCN, and their potential targets, we selected the sister lines ZP03-5373 and ZP03-5413, which are resistant and susceptible, respectively, to SCN race 4 infection, and performed a comprehensive analysis of root miRNAs by deep sequencing, computational prediction and molecular approaches. Novel and conserved soybean miRNAs, tasiRNAs and phasiRNAs, and their partial targets were identified. Small RNAs
upregulated by SCN infection were identified and the molecular regulation mechanism was discussed.

## Results

## sRNA population in soybean root

To investigate the role of soybean miRNAs in response to SCN infection, two genetically related soybean sister lines (ZP03-5373 and ZP03-5413) were subjected to deep sequencing. The sister lines shared the same parents and displayed a different resistance to SGN race 4. Line ZP03-5373 exhibited high resistance to SCN race 4, whereas ZP03-5413 was susceptible to race 4 . Two sRNA libraries from the roots of the sister lines were constructed and sequenced using Illumina GAIIx. A total of $15,101,204$ sRNA raw reads were generated. After removing adaptor sequences, filtering out low quality reads and cleaning up sequences derived from adaptor-adaptor ligation, $7,903,242$ and $5,931,837$ reads, respectively, were obtained. These sRNAs consisted of 4,979,640 unique sequences (Table S1), which were matched to the public soybean genomic database (Soybean Genome V9.0, http://www. phytozome.net/index.php) using the SOAP program, leading to 3,409,866 genome-matched unique reads. These reads were subjected to further analysis (Table S1). The 20-24-nt sRNAs constituted over $80 \%$ of the identified soybean sRNAs, and the 21nt class of sRNAs was the most abundant in both lines (Figure 1A). Notably, the expression of the unique 24-nt sRNAs was markedly higher than the 21-nt class in both lines (Figure 1B).

## Conserved and less-conserved miRNA families and their expression in soybean root

The reads ( 3 million) that mapped perfectly to the soybean genome were subjected to miRNA identification. miRBase 20.0, which contains 555 soybean mature miRNAs, was searched for known soybean miRNAs. As a result, a total of 420 known soybean mature miRNAs were identified from the two libraries, of which 364 were sequenced in both libraries; 26 miRNAs were detected in only ZP03-5373 and 30 in only ZP03-5413 (Table S2). Expression levels of the known miRNAs, as reflected by normalized reads (reads per million genome-matched reads, RPM), varied substantially among families in both lines. The highest read abundance ( 31,416 RPM and 20,776 RPM) was detected for gma-miR159, and was $2-25$-fold greater than other relatively abundant miRNA families, including gma-miR396, gma-156, miR168, and miR166, whose total abundance ranged from 1,000 to 15,000 RPM (Table S2). Gma-miR862a was expressed in ZP03-5413 but not in ZP03-5373 (Table S2). Substantial variation was observed for gma-miR393,


Figure 1. Length distribution of redundant and unique sRNA sequences. The length distribution of redundant and unique sRNAs in ZP035373 (a) and ZP03-5413 (b). The 21 -nt of redundant is the predominant sRNA species and the 24 -nt of unique is the most abundant. doi:10.1371/journal.pone.0110051.g001
Table 1. New members of conserved and less-conserved soybean miRNAs

| Name | miRNA-5p sequence | nt | Locus | Str | miRNA-3p sequence | nt | Precursor position |  | 5373 |  |  | 5413 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | start | end | $\mathrm{E}^{\text {a }}$ | re ${ }^{\text {b }}$ | re ${ }^{\text {c }}$ | $\mathrm{E}^{\text {d }}$ | re ${ }^{\text {e }}$ | re ${ }^{\text {f }}$ |
| gma-miR156C1 | ctgacagaagatagagagcac | 21 | Gm18 | - | gctcttagtcttctgtca | 19 | 61442581 | 61442703 |  | 0 | 0 | - | 266 | 2 |
| gma-miR156C2 | gtgacagaagagagtgagcac | 21 | Gm04 | + | gctaacttctatctgtcacc | 21 | 4257055 | 4257167 | - | 4 | 109 | - | 3 | 51 |
| gma-miR156C3 | tgacagaagagagtgagcaca | 21 | Gm17 | - | gctcacttctatatctgtcagc | 22 | 6149953 | 6150085 | - | 15 | 2066 | - | 2 | 268 |
| gma-miR156C4 | tgacagaagagagtgagcaca | 21 | Gm02 | + | gctcacttcttatttgtcagc | 22 | 41864163 | 41864265 | - |  |  | - |  |  |
| gma-miR156C5 | tgacagaagagagtgagcaca | 21 | Gm06 | - | gctcacttctttttttcaac | 22 | 4699136 | 4699258 | - | 15 | 410 | - | 30 | 308 |
| gma-miR156C6 | tgacagaagagagtgagcaca | 21 | Gm04 | + | gctcacttctttttgttaac | 22 | 4990845 | 4990967 | - |  |  | $\Delta$ |  |  |
| gma-miR156C7 | gtgacagaagagagtgagcac | 21 | Gm14 | + | gctcattctctatctgtcacc | 21 | 9431596 | 9431718 | - | 4 | 1706 | - | 3 | 402 |
| gma-miR156C8 | gtgacagaagagagtgagcac | 21 | Gm17 | - | gctcattctctatctgtcacc | 21 | 4291652 | 4291764 | - |  |  | $\Delta$ |  |  |
| gma-miR156C9 | gtgacagaagagagtgagcac | 21 | Gm17 | - | gcttactctctatctgtcacc | 21 | 38431865 | 38431977 | - |  | 949 | $\triangle$ | 3 | 206 |
| gma-miR156C10 | atgacagaagagagtgagcac | 21 | Gm06 | + | gcttactetctatctgtcatc | 21 | 4013568 | 4013680 | - | 6 | 391 | $\triangle$ | 128 | 17 |
| gma-miR157C1 | acagaagatagagagcacaga | 21 | Gm07 |  | gctetctaagcttctgtcatc | 21 | 9347121 | 9347273 | - | 44 | 9 | $\triangle$ | 43 | 5 |
| gma-miR157C2 | acagaagatagagagcacaga | 21 | Gm09 |  | gctettaggctttgtcatc | 21 | 37843733 | 37843885 |  |  |  | - |  | 8 |
| gma-miR157C3 | acagaagatagagagcacaga | 21 | Gm05 | - | gctctctatacttctgtcatc | 21 | 38621682 | 38621814 | - |  | 1334 | - |  | 1094 |
| gma-miR157C4 | acagaagatagagagcacaga | 21 | Gm02 | + | tgctctctagtcttcttgtcatc | 23 | 7812528 | 7812630 | - |  | 2 | - |  | 2 |
| gma-miR157C5 | ctgacagaagatagagagcac | 21 | Gm18 | - | gctetctagtcttctgtcatc | 21 | 61442581 | 61442703 | - | 12 | 276 |  | 0 | 0 |
| gma-miR159C1 | agctgcttagctatggatccca | 22 | Gm09 | + | cttccatatttggggagcttc | 21 | 37672401 | 37672593 | - | 12 | 2401 |  | 0 | 0 |
| gma-miR159C2 | agctgcttagctatggatccca | 22 | Gm07 | - | cttccatatctggggagcttc | 21 | 9524917 | 9525129 | - |  |  |  | 0 | 0 |
| gma-miR160C1 | gtgectggctccctgtatgce | 21 | Gm19 | - | cgtgcgaggagccatgcatg | 20 | 43795945 | 43796047 | - | 152 | 3 |  | 0 | 0 |
| gma-miR160C2 | tgcctggetccttgaatgcca | 21 | Gm15 | - | gcatgaggggagtcatgcagg | 21 | 9547165 | 9547297 | - | 436 | 271 | - | 561 | 5 |
| gma-miR162C1 | tggaggcagcggttcatcgat | 21 | Gm05 | - | tcgataaactctgcatccagc | 22 | 7692586 | 7692708 | - | 62 | 2 | - | 16 | 39 |
| gma-miR162C2 | tggaggcagcggttcatcgatc | 22 | Gm17 | + | tcgataaactctgcatccagc | 22 | 10181486 | 10181608 | - |  |  | - | 16 |  |
| gma-miR162C3 | ggatgcagcggttcatcgate | 21 | Gm06 | - | ggatgcagcggttcatcgate | 21 | 20176237 | 20176339 | - | 40 | 2 | - | 11 |  |
| gma-miR164C1 | tggagaagcagggcacatgct | 21 | Gm07 |  | cttgtgtcctacttctcaagc | 21 | 3508920 | 3509002 | - | 24 | 2 |  | 0 | 0 |
| gma-miR166C1 | ggaatggtgttggttcgaga | 21 | Gm20 | - | tcggaccaggattcattcccec | 22 | 43105388 | 43105500 | - | 110 | 44 | - | 86 | 9 |
| gma-miR166C2 | ggaatggtgttggttcgaga | 21 | Gm10 | + | tcggaccaggcttcattccccc | 22 | 41243362 | 41243474 | - |  |  | - |  |  |
| gma-miR166C3 | aatgttgtttggctcgaggta | 21 | Gm08 | + | ctcggaccaggettcattccc | 22 | 14990528 | 14990750 | - | 3 | 18 |  | 0 | 0 |
| gma-miR166C4 | ggaatgttgtttggctcgagga | 22 | Gm16 | - | tcggaccaggcttcattccccc | 22 | 1912569 | 1912721 | - | 7 | 44 |  | 0 | 0 |
| gma-miR167C1 | tgaagctgccagcatgatcta | 22 | Gm10 | - | agatcatgtggcagttcacc | 21 | 46574250 | 46574362 | - | 1405 | 44 | - | 744 | 15 |
| gma-miR167C2 | tgaagctgccagcatgatctta | 22 | Gm20 | + | agatcatgtggcagtttcacc | 21 | 37901892 | 37902004 | - |  |  | - |  |  |
| gma-miR168C1 | ttcgettggtgcaggtcgggaa | 22 | Gm09 | - | cccgccttgcatcaactgaat | 21 | 41353225 | 41353347 | - | 2 | 981 | - | 4 | 385 |
| gma-miR168C2 | ttcgcttggtgcaggtcgggaa | 22 | Gm01 |  | cccgccttgcatcaactgaat | 21 | 48070302 | 48070424 | - |  |  | - |  |  |
| gma-miR169C1 | agccaaggatgacttgccggc | 21 | Gm09 |  | ggcaagttgtgtttggctat | 20 | 35771781 | 35771943 | - | 317 | 2 | - | 237 | 4 |
| gma-miR169C2 | agccaaggatgacttgccggc | 21 | Gm10 |  | ggcaagttggcttggctat | 20 | 40332783 | 40332935 | - |  | 22 |  | 0 | 0 |
| gma-miR169C3 | agccaaggatgacttgccggc | 21 | Gm15 |  | ccggcgagacatcttggctca | 21 | 14191164 | 14191316 | - |  | 16 | - |  | 5 |

Table 1. Cont.

| Name | miRNA-5p sequence | nt | Locus | Str | miRNA-3p sequence | nt | Precursor position |  | 5373 |  |  | 5413 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | start | end | $\mathrm{E}^{\text {a }}$ | re ${ }^{\text {b }}$ | re ${ }^{\text {c }}$ | $\mathrm{E}^{\text {d }}$ | re ${ }^{\text {e }}$ | re ${ }^{\text {f }}$ |
| gma-miR169C4 | agccaaggatgacttgccgge | 21 | Gm09 |  | ccggcgagacatcttggctca | 21 | 5282105 | 5282217 | - |  | 16 | - |  | 5 |
| gma-miR169C5 | agccaaggatgacttgccgge | 21 | Gm09 |  | ggcaggttatcctgtggctac | 21 | 5299562 | 5299754 | - |  | 9 |  | 0 | 0 |
| gma-miR169C6 | agccaaggatgacttgccgge | 21 | Gm15 |  | agcgagacatcttgttcact | 21 | 14194104 | 14194226 | - |  | 75 | - |  | 25 |
| gma-miR169C7 | agccaaggatgacttgccgge | 21 | Gm15 |  | ggtgagacatcttgactcact | 21 | 14188499 | 14188621 |  | 0 | 0 | ^ |  | 2 |
| gma-miR169C8 | agccaagggtgatttgccggc | 21 | Gm15 |  | ggcaagtttctttggctac | 20 | 14150054 | 14150196 |  | 0 | 0 | - | 33 | 28 |
| gma-miR171C1 | tgttggaacagttcaatcaaa | 21 | Gm08 | - | tgattgagccgtgccaatatca | 22 | 921788 | 921900 | - | 60 | 23 | - | 6 | 18 |
| gma-miR171C2 | tgttggcttggctcaatcaaa | 21 | Gm16 | - | tgattgagccgtgccaatatca | 22 | 5347841 | 5347933 |  | 0 | 0 | - | 17 |  |
| gma-miR171C3 | agatattggtacggttcaatc | 21 | Gm15 | - | ttgagccgtgccaatatcacat | 22 | 8464103 | 8464215 | - | 188 | 4 |  | 0 | 0 |
| gma-miR171C4 | agatattggtacggttcaatc | 21 | Gm13 | + | ttgagccgtgccaatatcacat | 22 | 30650787 | 30650899 | - |  |  |  | 0 | 0 |
| gma-miR172C1 | ggagcatcatcaagattcaca | 21 | Gm18 | + | gggaatcttgatgatgctgca | 21 | 2968997 | 2969129 |  | 0 | 0 | - | 41 | 5 |
| gma-miR172C2 | ggagcatcatcaagattcaca | 21 | Gm14 | + | gggaatcttgatgatgctgca | 21 | 5548763 | 5548895 |  | 0 | 0 | - |  |  |
| gma-miR172C1 | gtagcatcatcaagattcaca | 21 | Gm13 | - | gagaatcttgatgatg ctgcat | 22 | 40401673 | 40401825 | - | 168 | 2 |  | 0 | 0 |
| gma-miR172C3 | cagcagcatcaagattcacac | 21 | Gm10 | + | tgagaatcttgatgatgetgc | 21 | 43474729 | 43474831 | - | 2 | 41 | - | 3 | 20 |
| gma-miR172C4 | cagcagcatcaagattcacac | 21 | Gm20 | - | tgagaatcttgatgatgctgc | 21 | 40895738 | 40895850 | - |  |  | - |  |  |
| gma-miR172C5 | gcagcaccatcaagattcaca | 21 | Gm10 | - | tgagaatcttgatgatgatgc | 21 | 31592562 | 31592704 | - |  |  | - | 3 |  |
| gma-miR319C1 | agagcttccttcagtccactc | 21 | Gm14 | + | ttggactgaagggagctcctc | 22 | 47959347 | 47959549 | - | 99 | 22 | - | 12 | 76 |
| gma-miR319C2 | agagcttcttcagtccacte | 21 | Gm02 | + | ttggactgaagggagctccttc | 22 | 45704224 | 45704416 | - |  |  | - |  |  |
| gma-miR319C3 | agagcttccttcagtccactc | 21 | Gm18 | - | ttggactgaagggagctccatt | 22 | 4278867 | 4279079 | - | 50 | 1216 | - | 12 | 1207 |
| gma-miR319C4 | agagcttctttagtccactc | 21 | Gm11 | + | ttggactgaagggagctccatt | 22 | 32902053 | 32902265 | - |  |  | - |  |  |
| gma-miR319C5 | agagctttttcagtccactc | 21 | Gm05 | + | ttggactgaagggagctccatt | 22 | 40832090 | 40832292 | - | 31 |  | ^ | 5 |  |
| gma-miR319C6 | agagctttttcagtccactt | 21 | Gm08 | - | ttggactgaagggagctccatt | 22 | 1647797 | 1647999 | - | 27 |  | - | 2 |  |
| gma-miR319C7 | agagctttttcagcccacta | 22 | Gm11 | + | ttggactgaagggagctccatt | 22 | 1374016 | 1374208 | - | 5 |  | - | 7 |  |
| gma-miR390C1 | aaagctcaggagggatagcgcc | 22 | Gm18 | + | cgctacccatcctgagttca | 21 | 53278033 | 53278165 | - | 3 | 19 | - | 7 | 15 |
| gma-miR390C2 | aaagctcaggagggatagcgcc | 22 | Gm03 | - | aaagctcaggagggatagcgcc | 22 | 6558180 | 6558282 | - |  | 898 | - |  | 306 |
| gma-miR390C3 | aaagctcaggaggatagcgcc | 22 | Gm01 |  | aaagctcaggagggatagcgcc | 22 | 42335602 | 42335724 | - |  |  | - |  |  |
| gma-miR390C4 | aaagctcaggagggatagcgcc | 22 | Gm18 | - | cgctatctatcctgagttca | 21 | 5047763 | 5047875 | - |  | 537 | - |  | 362 |
| gma-miR390C5 | aaagctcaggagggatagcgcc | 22 | Gm11 |  | cgctatctatcctgagttca | 21 | 30272752 | 30272864 | - |  |  | - |  |  |
| gma-miR390C6 | aagctcaggagggatagcacca | 22 | Gm02 | + | cgctatctatcttgagcttca | 21 | 44954747 | 44954859 | - | 5 | 34 |  | 0 | 0 |
| gma-miR393C1 | tccaaagggatcgcattgatct | 22 | Gm16 | + | tcatgcgatccttaggaact | 21 | 33891068 | 33891230 | - | 3323 | 28 | - | 55 | 69 |
| gma-miR395C1 | gtttccetgaacacttcatt | 20 | Gm02 | - | tgaagtgttgggggaactcc | 21 | 1723444 | 1723546 |  | 0 | 0 | - | 11 | 36 |
| gma-miR395C2 | agttctttgaatgcttcata | 21 | Gm02 |  | tgaagtgtttgggggaactcc | 21 | 1730681 | 1730793 |  | 0 | 0 | - | 16 | 0 |
| gma-miR395C3 | gttcccettaatgcttcattg | 21 | Gm08 |  | tgaagtgtttgggggaactcc | 21 | 40840211 | 40840333 |  | 0 | 0 | A | 9 | 0 |
| gma-miR395C4 | agttcctttgaacgettcat | 20 | Gm01 |  | tgaagtgtttgggggaactcc | 21 | 4813256 | 4813388 |  | 0 | 0 | - | 2 | 0 |
| gma-miR395C5 | gttcctcgaacacttcaacg | 21 | Gm18 | - | ctgaagtgttgggggaacce | 21 | 16316060 | 16316182 |  | 0 | 0 | - | 20 | 8 |

Table 1. Cont.

| Name | miRNA-5p sequence | nt | Locus |  | miRNA-3p sequence | nt | Precursor position |  | 5373 |  |  | 5413 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | start | end | $E^{\text {a }}$ | re ${ }^{\text {b }}$ | $\mathrm{re}^{\text {c }}$ | $\mathrm{E}^{\text {d }}$ | re ${ }^{\text {e }}$ | re ${ }^{\text {f }}$ |
| gma-miR395C6 | gttctcttaacgcttcattg | 21 | Gm18 | - | ctgaagtgttgggggagctt | 21 | 16305078 | 16305190 | - | 22 | 220 | - | 12 | 70 |
| gma-miR399C1 | gtgcaatttccttggcagg | 21 | Gm15 |  | tgccaaaggagaattgccetg | 21 | 6547375 | 6547497 | - | 7 | 14 |  | 0 | 0 |
| gma-miR399C2 | gggcatgtctttttggcagg | 21 | Gm16 |  | tgccaaaggagagctgccetg | 21 | 35606648 | 35606790 | - | 69 | 237 | - | 32 | 89 |
| gma-miR399C3 | tgccaaaggagattgccetg | 21 | Gm05 |  | gagcaaatctccagtggcaga | 21 | 34951411 | 34951523 | - | 153 | 19 |  | 0 | 0 |
| gma-miR399C4 | tgccaaaggagattgccctg | 21 | Gm08 |  | gagcaaatctccattggcagt | 21 | 9114310 | 9114422 | - |  | 31 |  | 0 | 0 |
| gma-miR399C5 | gggetccttttcctggcatg | 21 | Gm20 |  | tgccaagggagagttgccatg | 21 | 38248027 | 38248139 | - | 12 | 63 |  | 0 | 0 |
| gma-miR399C6 | gggctccttttcctggcatg | 21 | Gm10 |  | tgccaagggagagttgccett | 21 | 46279386 | 46279498 | - |  | 40 |  | 0 | 0 |
| gma-miR399C7 | gggcttcttttattggcagg | 21 | Gm20 |  | ttgccaaaggagagttgccatg | 22 | 38251187 | 38251279 | - | 537 | 14 |  | 0 | 0 |
| gma-miR399C8 | gggcttcttttattggcagg | 21 | Gm10 |  | ttgccaaaggagagttgccatg | 22 | 46275313 | 46275405 | - |  |  |  | 0 | 0 |
| gma-miR408C1 | ctgggaacaggcagggcacga | 21 | Gm03 |  | atgcactgcctettcctggct | 22 | 44626689 | 44626841 | - | 38 | 3 | - | 122 | 51 |
| gma-miR479C1 | cgtgatattggtacggctcatc | 22 | Gm06 |  | cgagccgaatcaatatcactct | 22 | 10859604 | 10859716 | - | 185 | 10 | - | 133 | 3 |
| gma-miR479C2 | cgtgatattggtacggctcatc | 22 | Gm04 |  | cgagccgaatcaatatcactct | 22 | 46988567 | 46988679 | - |  |  |  |  |  |
| gma-miR482C1 | ggaatgggctgattgggaagt | 21 | Gm18 | - | tcccaattccgcccattcctatga | 24 | 61452891 | 61453023 | - | 1010 | 3 | $\triangle$ | 2720 | 2 |
| gma-miR482C2 | ggaatgggctgattgggaagc | 21 | Gm02 | + | tcccaattccgcccattcctatga | 24 | 7783795 | 7783937 | - | 32443 | 3 | - | 52497 | 2 |
| gma-miR862C1 | tccttcaaaggcttcragtat | 21 | Gm08 |  | gctggatgtcttgaaggaac | 21 | 46853887 | 46854009 | - | 1161 | 8 | $\triangle$ | 537 | 2 |
| gma-miR1509C1 | ttaatcaaggaaatcacggttg | 22 | Gm05 |  | actgtgtttcttggttaaag | 21 | 7774097 | 7774209 | - | 26429 | 39 | $\Delta$ | 7837 | 27 |
| gma-miR1510C1 | gagggataggtaaaacaactact | 23 | Gm02 | + | tgttgtttacctattccacca | 21 | 6599288 | 6599400 | - | 2 | 1915 | - | 4 | 337 |
| gma-miR1514C1 | ttcattttaaaataggcattg | 22 | Gm07 | - | atgctattttaaaatgaaaa | 21 | 43175789 | 43175931 | - | 1038 | 32 | - | 494 | 19 |
| gma-miR1514C2 | attcccttgaccacttcatta | 21 | Gm01 | - | ttgaagtgtttggggaactc | 21 | 4760437 | 4760549 |  | 0 | 0 | - | 2 | 39 |
| gma-miR2109C1 | tgcgagtgtcttcgcttctga | 21 | Gm04 | - | ggaggegtagatacttacacc | 21 | 28532441 | 28532543 | - | 21019 | 9943 | - | 4187 | 9027 |
| gma-miR2118C1 | gggagatgggagggtcggtaa | 22 | Gm10 |  | ttgccgattccacccattccta | 22 | 48573991 | 48574163 | - | 17 | 29035 | - | 2 | 8825 |
| gma-miR3522C1 | tgagaccaaatgagcagctga | 21 | Gm15 |  | agctgctcatctgttctcagg | 21 | 4318762 | 4318894 | - | 3592 | 340 | - | 7602 | 207 |
| gma-miR4416C1 | tgggtgagagaaacacgtatt | 21 | Gm02 | - | acgggtcgettcaacttggag | 21 | 30498947 | 30499129 | - | 94 | 2 |  | 0 | 0 |
| gma-miR5037C1 | cctcaaaggcttcractactt | 21 | Gm18 |  | tggtggaacttgaggctt | 19 | 61631519 | 61631621 | - | 55 | 2 |  | 0 | 0 |
| gma-miR5044C1 | cctcaaaggcttccactactgcat | 24 | Gm08 | + | gtagtggatgcctggaggtcc | 21 | 46838000 | 46838122 | - | 2 | 363 | - | 8 | 264 |



Figure 2. Expression levels of gma-miRNAs by two methods. Profile of sequencing frequencies for gma-miRNAs (left column of $A, B$ and $C$ ); Profile of qRT-PCR Ct values for gma-miRNAs (right column of A, B and C). doi:10.1371/journal.pone.0110051.g002
gma-miR398 and gma-miR399, whose abundance in ZP03-5373 was 10 -fold greater than in ZP03-5413 (Table S2).

After excluding sRNA reads that perfectly matched known soybean miRNAs, the remaining 21 to 22 nt were subjected to rigorous secondary structural analysis of their precursors using RNAfold software (http://mfold.rna.albany.edu/). The minimum
free energy (MFE) of the hairpin structure of the miRNA precursor was set to less than $-25 \mathrm{kcal} / \mathrm{mol}$. Those precursors with a canonical stem-loop structure were further analyzed by means of a series of stringent filter strategies to ensure that they met common criteria [37]. Precursors carrying both the miRNA$5 p$ and miRNA miRNA-3p were then selected for further analysis.
Table 2. Candidate soybean-specific miRNAs.


16402343


| tgatgtcagcaccgtcttga |
| :--- |
| tatgagagaaagccatgactt |
| tagaggcccttggggaggagta |
| tagaaagggaaatagcagttga |
| tctcattccatacatcgtctgac |
| tctcattccatacatcgtctgac |
| cggcaagtttctcttggctac |
| agctctgttggctacactttg |
| tggactgaagggagctccttct |
| aaggcagaacgatatgtacgcaga |
| atctcggaccaggcttcattcc |
| atggtgatacatgtagttgca |
| aaaattggtggtttccaataa |
| catctacaaattagctaatgg |
| gctcaccactctttctgtcggtt |
| catctacaaattagctaatgg |
| catctacaaattagctaatgg |
| cccataccactgttttcctc |
| tttaagaatttcagttatgca |
| cctcattccaaacatcatctaa |
| cgaccgtgtttccttggttaa |
| cggcaagtaatctttggctgc |
| ctaatctttgggatgcagatt |


|  | $\begin{aligned} & \bar{\delta} \\ & \underset{\sim}{0} \end{aligned}$ | $\underset{\substack{0}}{ }$ | Eु | $\underset{V_{0}}{\circ}$ | $\stackrel{\underset{\Xi}{E}}{ }$ | $\underset{\substack{e}}{m}$ | $\underset{\varepsilon_{0}^{n}}{n}$ | $\stackrel{\stackrel{\rightharpoonup}{\varepsilon}}{ }$ |  | $\underset{\mathcal{E}}{\stackrel{m}{E}}$ | $\stackrel{\infty}{\ominus}$ | $\underset{j_{j}^{\prime}}{\underset{\varepsilon}{~}}$ | $\underset{\sum_{j}^{n}}{n}$ | $\underset{\underset{y}{\mid}}{\stackrel{\circ}{\varepsilon}}$ | $\underset{j_{0}^{\prime}}{\underset{\varepsilon}{\prime}}$ | © © | $\stackrel{m}{\varepsilon}$ | $\underset{\substack{\mathrm{j}}}{\stackrel{\circ}{2}}$ | ${\underset{\sim}{\varepsilon}}_{\infty}^{\infty}$ | Ò © | $\stackrel{\hat{E}}{\hat{E}}$ | $\stackrel{\hat{E}}{\hat{v}}$ | © © | $\stackrel{\infty}{\varepsilon}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$$
\dot{\mathbf{1}} \overline{\mathrm{N}} \overline{\mathrm{~N}} \overline{\mathrm{~N}} \overline{\mathrm{~N}} \bar{\sim} \bar{N} \bar{N}
$$


Name
gma-miRC1
gma-miRC2
gma-miRC3
gma-miRC4


 $\qquad$乌ั

gma-miRC11 gma-miRC12
 gma-miRC14


 gma-miRC18


 gma-miRC22 gma-miRC23
gma-miRC24 gma-miRC25
Table 2. Cont.

| Name | miRNA-5p sequence | nt | Locus | Str | miRNA-3p sequence | nt | Precursor position |  | 5373 |  |  | 5413 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | start | end | $E^{\text {a }}$ | $\mathrm{Re}^{\text {b }}$ | $\mathrm{Re}^{\text {c }}$ | $E^{\text {d }}$ | $\mathrm{Re}^{\mathbf{e}}$ | $\mathbf{R e}^{\mathbf{f}}$ |
| gma-miRC26 | ctatacaactatacatggatg | 21 | Gm02 | - | ttcatgtatgattgtatgtct | 21 | 7455342 | 7455504 | - | 2 | 1 |  | 0 | 0 |
| gma-miRC27 | acaaagcceccgagtgaagaa | 21 | Gm19 | + | ctccactcgaggactttgtcc | 21 | 41390254 | 41390386 | - | 0 | 2 | - | 1 | 4 |
| gma-miRC28 | cttagatttgggtttggtc | 21 | Gm04 | + | cccaaactcaaattctaagaa | 21 | 7505150 | 7505252 | - | 2 | 0 |  | 0 | 0 |
| gma-miRC29 | gcaccaatccgtggttcttcct | 21 | Gm18 | + | gaagagccacagattggtgctg | 22 | 17786331 | 17786523 | - | 1 | 1 |  | 0 | 0 |
| gma-miRC30 | gaatgttgtctggctcgagga | 21 | Gm16 | - | gtcggaccaggcttcattccc | 21 | 1912569 | 1912721 |  | 0 | 0 | - | 3 | 1 |
| gma-miRC31 | gagcttatggatcacctgat | 21 | Gm01 | - | caggtgattcgtaaaactcac | 21 | 55781589 | 55781691 | - | 15 | 2 |  | 0 | 0 |
| gma-miRC32 | gagttccctgcactccaagtct | 22 | Gm16 | - | attggagtgaagggagctccaga | 23 | 2794127 | 2794309 | - | 80 | 0 |  | 0 | 0 |
| gma-miRC33 | ccaaagggatcgcattgatccc | 22 | Gm11 | + | gatcatgctatccctttggat | 21 | 36567510 | 36567642 | - | 2 | 96 | $\triangle$ | 3 | 75 |
| gma-miRC34 | ccaaagggatcgcattgatccc | 22 | Gm18 | - | gatcatgctatccetttggat | 21 | 2409738 | 2409860 |  | 0 | 0 |  | 0 | 0 |
| gma-miRC35 | ccaaagggatcgcattgatccc | 22 | Gm02 | - | gatcatgctatccetttggat | 21 | 47136196 | 47136328 |  | 0 | 0 |  | 0 | 0 |
| gma-miRC36 | acagaagatagagagcacaga | 21 | Gm09 | - | gctctctaggcttctgtcatcc | 22 | 37843733 | 37843885 | - | 6 | 12 |  | 0 | 0 |
| gma-miRC37 | tgccaagtaaatgtgaaaagta | 21 | Gm20 | - | gctttctatttattgtggca | 21 | 46584855 | 46584987 |  | 0 | 0 | - | 0 | 2 |
| gma-miRC38 | ggccaaacctaaaagattcca | 21 | Gm08 | + | gaaactcttaagtttggcctt | 21 | 13130608 | 13130690 | - | 41 | 23 |  | 0 | 0 |
| gma-miRC39 | agaggcctgattccatagccat | 22 | Gm05 | $+$ | ggctctgtgaatctgtctccga | 22 | 35743158 | 35743320 | - | 0 | 2 |  | 0 | 0 |
| gma-miRC40 | gggaaggcatgggtatggggg | 21 | Gm20 | + | cccataccactgttttcctc | 21 | 35360269 | 35360441 | - | 133 | 81 | - | 127 | 44 |
| gma-miRC41 | gggcacctctctcctggcagg | 21 | Gm09 | + | ttgccaaaggagagttgccctg | 22 | 34181516 | 34181638 | - | 4 | 2 |  | 0 | 0 |
| gma-miRC42 | gggcactctctcctggcagg | 21 | Gm16 | + | ttgccaaaggagagttgecctg | 22 | 35612504 | 35612616 | - |  |  |  | 0 | 0 |
| gma-miRC43 | ggttcgtgcgtgaatctaatc | 21 | Gm10 | $+$ | ttagattcacgcacaaacttgt | 22 | 1085226 | 1085328 | $\bullet$ | 1 | 0 |  | 0 | 0 |
| gma-miRC44 | gtggtatcaggtcctgcttca | 21 | Gm18 | + | aaccaggctctgataccatgg | 21 | 21161231 | 21161333 | - | 35 | 31 | - | 55 | 37 |
| gma-miRC45 | gttcccettaatgcttcattg | 21 | Gm08 | + | actgaagtgtttgggggaact | 21 | 40840221 | 40840313 | - | 2 | 0 |  | 0 | 0 |
| gma-miRC46 | atcagtagcatcatcatcaaa | 21 | Gm07 | + | gtttgatgatgatgttaccga | 21 | 10004506 | 10004628 | $\bullet$ | 1 | 12 |  | 0 | 0 |
| gma-miRC47 | atcagtagcatcatcatcaaa | 21 | Gm14 | $+$ | gtttgatgatgatgttaccga | 21 | 13818986 | 13819108 |  | 0 | 0 |  | 0 | 0 |
| gma-miRC48 | atcagtagcatcatcatcaaa | 21 | Gm07 | + | gtttgatgatgatgttaccga | 21 | 10001904 | 10002006 |  | 0 | 0 |  | 0 | 0 |
| gma-miRC49 | gttgtaaatcatgactttct | 21 | Gm20 | - | gaaagccatgacttacacacge | 22 | 223675 | 223767 |  | 0 | 0 | $\triangle$ | 40 | 2 |
| gma-miRC50 | taagacggtaatgtccccaaa | 21 | Gm12 | + | tggggacataaccgtcttaga | 21 | 25767259 | 25767361 | $\bullet$ | 2 | 1 | $\triangle$ | 2 | 1 |
| gma-miRC51 | tagatcaatagagcttaagag | 21 | Gm05 | - | cgtaagctctattgatctatt | 21 | 32896903 | 32897065 |  | 0 | 0 | $\triangle$ | 4 | 1 |

Table 2. Cont.

| Name | miRNA-5p sequence | nt | Locus | Str | miRNA-3p sequence | nt | Precursor position |  | 5373 |  |  | 5413 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | start | end | $E^{\text {a }}$ | $\mathrm{Re}^{\text {b }}$ | $\mathrm{Re}^{\text {c }}$ | $\mathrm{E}^{\text {d }}$ | $\mathrm{Re}^{\text {e }}$ | $\mathrm{Re}^{\text {f }}$ |
| gma-miRC52 | tatgagagaaagccatgactt | 21 | Gm17 | - | gtcatggcattatctcatatc | 21 | 1401425 | 1401527 | - | 16 | 1 |  | 0 | 0 |
| gma-miRC53 | tcaatctgaatacatgactatt | 22 | Gm13 | - | cagccatgtactttgattgagc | 22 | 39325490 | 39325602 |  | 0 | 0 | $\triangle$ | 6 | 1 |
| gma-miRC54 | tcacgectaatcactgacgca | 21 | Gm03 | + | tgttagtgataaggcgtgatgatg | 24 | 25186806 | 25187048 | - | 11 | 1 |  | 0 | 0 |
| gma-miRC55 | tcattgagtgcagcgttgatga | 22 | Gm08 | - | atcgacactgcactcaatcatg | 22 | 4639027 | 4639169 | - | 8 | 1 | $\triangle$ | 5 | 1 |
| gma-miRC56 | gaacgatttgatggtttggaat | 22 | Gm13 | - | tcccaagcaacgagtcttcggt | 22 | 2155583 | 2155665 |  | 0 | 0 | $\triangle$ | 0 | 13 |
| gma-miRC57 | gaacgatttgatggtttggaat | 22 | Gm08 | $+$ | tcccaagcaacgagtcttcggt | 22 | 14019990 | 14020072 |  | 0 | 0 | $\triangle$ | 0 | 0 |
| gma-miRC58 | tctccctcaagggcttctcget | 22 | Gm08 | + | ctagaggccettggggaggagt | 22 | 1771404 | 1771486 | - | 15 | 3 |  | 0 | 0 |
| gma-miRC59 | tctcttgggtgcattgtaatt | 21 | Gm01 | - | ttacaaatgcacgcaagaaatc | 22 | 39527403 | 39527505 | - | 3 | 0 |  | 0 | 0 |
| gma-miRC60 | agacatcaccacaaacaagtc | 22 | Gm19 | + | tcttgtttgtggtgatgtctag | 22 | 43786812 | 43786914 | - | 1 | 16 | $\triangle$ | 1 | 4 |
| gma-miRC61 | tgaaaaattcatggatcagtt | 21 | Gm08 | - | atcctaggactttcatcttc | 21 | 27936700 | 27936802 | - | 4 | 1 |  | 0 | 0 |
| gma-miRC62 | agttcctctgaacgettcatg | 21 | Gm01 | - | tgaagtgtttgggggaactct | 21 | 4810812 | 4810944 | - | 10 | 33 | $\triangle$ | 10 | 128 |
| gma-miRC63 | agttcctctgaacgcttcatg | 21 | Gm02 | + | tgaagtgtttgggggaactct | 21 | 1736337 | 1736459 | - |  |  | $\triangle$ |  |  |
| gma-miRC64 | agttcctctgaacgettcatg | 21 | Gm02 | $+$ | tgaagtgtttgggggaactct | 21 | 1750582 | 1750684 | - |  |  | $\Delta$ |  |  |
| gma-miRC65 | agttcctctgaacgcttcatg | 21 | Gm01 | - | tgaagtgtttgggggaactct | 21 | 4797899 | 4798021 | - |  |  | $\triangle$ |  |  |
| gma-miRC66 | tgagctaaggatgacttgccgg | 22 | Gm09 | $+$ | agcaagacatcctttctcact | 21 | 5287902 | 5288004 | - | 5 | 0 |  | 0 | 0 |
| gma-miRC67 | ggttagctcaaggatctcaca | 21 | Gm16 | + | tgatatccttgagctaataca | 21 | 35590506 | 35590718 | - | 3 | 4 | $\triangle$ | 3 | 6 |
| gma-miRC68 | tgaaaaattcatggatcagt | 21 | Gm01 | - | tgatccaggaactttcatct | 21 | 24948431 | 24948533 | - | 1 | 8 | $\triangle$ | 1 | 7 |
| gma-miRC69 | tgcctcaatctgaatacatga | 21 | Gm13 | - | atgtactttgattgagccgcg | 21 | 39325490 | 39325602 | - | 6 | 0 |  | 0 | 0 |
| gma-miRC70 | tgcgggtatctttgcctctga | 21 | Gm04 | - | agtggcgtagatccccacaaca | 22 | 28578959 | 28579081 | - | 30 | 0 | $\triangle$ | 25 | 1 |
| gma-miRC71 | aactggaaattcttaaagcatt | 21 | Gm02 | - | tgctttaagaatttcagttat | 21 | 8618676 | 8618788 | - | 0 | 25 | $\triangle$ | 1 | 2 |
| gma-miRC72 | tatcttggatcacagccccattg | 21 | Gm18 | $+$ | tggggcttgatccaagatagg | 21 | 10413939 | 10414031 | $\bullet$ | 0 | 9 | $\triangle$ | 47 | 2 |
| gma-miRC73 | tgttggcttggctcaatcaaa | 21 | Gm16 | - | tgattgagccgtgccaatatca | 22 | 5347841 | 5347933 | - | 7 | 0 |  | 0 | 0 |
| gma-miRC74 | tgttgtaagcacatctgagtc | 21 | Gm16 | - | ctcagttgtacttacaacaca | 21 | 31233995 | 31234117 | - | 2 | 0 | $\triangle$ | 5 | 1 |
| gma-miRC75 | ttaaagtgcttcactttgtgg | 21 | Gm04 | $+$ | acaaagtgaagcactctaaca | 21 | 869303 | 869405 |  | 0 | 0 | $\Delta$ | 30 | 0 |
| gma-miRC76 | ttaaggtattggcgtgcctca | 21 | Gm12 | + | agccgcgtcaatatcttattt | 21 | 35489085 | 35489197 | $\bullet$ | 14 | 0 | $\Delta$ | 3 | 1 |

Table 2. Cont

| Name | miRNA-5p sequence | nt | Locus | Str | miRNA-3p sequence | nt | Precursor position |  | 5373 |  |  | 5413 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | start | end | $E^{\text {a }}$ | $\mathbf{R e}^{\text {b }}$ | $\mathrm{Re}^{\text {c }}$ | $E^{\text {d }}$ | $\mathbf{R e}^{\mathbf{e}}$ | $\mathbf{R e}^{\mathbf{f}}$ |
| gma-miRC77 | ttagcttcttcaccttccc | 21 | Gm17 | - | gtgagaggtgaaggaagctaa | 21 | 14170501 | 14170623 | - | 0 | 8 |  | 0 | 0 |
| gma-miRC78 | ttcattttaaaatagacattg | 22 | Gm17 | + | atgcctatttaaaatgaaaa | 21 | 1497604 | 1497836 | - | 39 | 4 | - | 35 | 3 |
| gma-miRC79 | atgttggtgaggttcaatccga | 22 | Gm13 | + | ttgagccgcgecaatatcactt | 22 | 26271133 | 26271245 | - | 1 | 8 | - | 1 | 3 |
| gma-miRC80 | atgttggtgaggttcaatccga | 22 | Gm17 | - | ttgagccgcgecaatatcactt | 22 | 9101688 | 9101800 |  |  |  | - |  |  |
| gma-miRC81 | tggagggataggtaaaacaatg | 22 | Gm16 | + | ttgtttacctattccacccat | 22 | 31518896 | 31519008 | - | 16 | 94 | - | 18 | 48 |
| gma-miRC82 | tttaatgaaatgtttctgtt | 21 | Gm08 | - | tagaaaacatttccttaaacc | 21 | 10928837 | 10929089 |  | 0 | 0 | - | 7 | 1 |
| gma-miRC83 | ttatcagtagcatcatcatc | 21 | Gm07 | + | tgatgatgttaccgataatga | 21 | 10001904 | 10002006 |  | 0 | 0 | $\Delta$ | 10 | 0 |
| gma-miRC84 | taaccattcatttcatgaaa | 21 | Gm04 | - | tttcaagaaaatgaatggtga | 21 | 5771445 | 5771537 |  | 0 | 0 | $\triangle$ | 1 | 5 |
| gma-miRC85 | aatgtcgttggttcgagatc | 21 | Gm10 | - | tttcggaccaggcttcattcc | 21 | 2905311 | 2905423 | - | 4 | 114 | - | 2 | 61 |
| gma-miRC86 | gaatgttgtctggctcgagga | 21 | Gm07 | - | tttcggaccaggcttcattcc | 21 | 4453642 | 4453794 | - | 1 |  | - | 3 |  |
| gma-miRC87 | aatgtcgtctggttcgagacc | 21 | Gm02 | $+$ | tttcggaccaggcttcattcc | 21 | 14340763 | 14340875 | $\bullet$ | 4 |  | - | 0 |  |
| gma-miRC88 | tttattgaaaatcacaaatta | 21 | Gm18 | + | tttgtgatttcaataaatta | 21 | 61878800 | 61878912 | - | 2 | 8 | - | 1 | 4 |

 same number with the previous row.
doi:10.1371/journal.pone. $0110051 . t 002$

Table 3. Identification of soybean miRNAs targets using the degradome.

| miRNA | Target | Cs ${ }^{\text {a }}$ | $C^{\text {b }}$ | P-value | Location | Target gene annotation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Targets for known miRNAs |  |  |  |  |  |  |
| gma-miR1508a | Glyma16g27802.1 | 347 | 1 | 0.02 | CDS | PPR superfamily protein |
| gma-miR1510a-3p | Glyma15g37255.2 | 743 | 0 | 0.01 | CDS | TIR-NBS-LRR class |
|  | Glyma15g37276.3 | 901 | 3 | 0.02 | CDS | Auxin signaling F-box |
| gma-miR156c/d/e/i/j/l/m | Glyma04g32002.1 | 1937 | 0 | 0.02 | 3'-UTR | SBP dom ain containing protein |
|  | Glyma11g36980.6 | 1243 | 0 | 0.01 | CDS | SBP domain containing protein |
|  | Glyma01g08056.1 | 1408 | 3 | 0.04 | CDS | SBP domain containing protein |
| gma-miR156f | Glyma04g32002.1 | 1937 | 0 | 0.02 | 3'-UTR | SBP domain containing protein |
|  | Glyma03g29901.1 | 1149 | 3 | 0.05 | 3'-UTR | SBP domain containing protein |
|  | Glyma11g36980.6 | 1243 | 0 | 0.02 | CDS | SBP domain containing protein |
|  | Glyma18g36960.1 | 902 | 3 | 0.05 | CDS | SBP domain containing protein |
| gma-miR156k/n/o | Glyma04g32002.1 | 1937 | 0 | 0.02 | 3'-UTR | SBP domain containing protein |
|  | Glyma11g36980.6 | 1243 | 0 | 0.01 | CDS | SBP domain containing protein |
|  | Glyma01g08056.1 | 1408 | 3 | 0.05 | CDS | SBP domain containing protein |
| gma-miR156p/r/t | Glyma04g32002.1 | 1937 | 0 | 0.02 | 3'-UTR | SBP domain containing protein |
|  | Glyma11g36980.6 | 1243 | 0 | 0.01 | CDS | SBP domain containing protein |
|  | Glyma01g08056.1 | 1408 | 3 | 0.02 | CDS | SBP domain containing protein |
| gma-miR164a/e/f/g/h/i/j/k | Glyma15g40510.1 | 734 | 2 | 0.01 | CDS | NAC domain containing protein |
| gma-miR164b/c/d |  | 734 | 2 | 0.02 |  | NAC domain containing protein |
| gma-miR169o/r | Glyma07g01870.1 | 1328 | 1 | 0.03 | 3'-UTR | Flavonol synthase/flavanone 3-hydroxylase-like |
| gma-miR169p | Glyma03g36140.5 | 1569 | 3 | 0.02 | 3'-UTR | Nuclear transcription factor Y |
|  | Glyma08g45030.1 | 1407 | 0 | 0.01 | 3'-UTR | Nuclear transcription factor Y |
| gma-miR171c/i-3p/o/q | Glyma06g11610.2 | 380 | 3 | 0.02 | CDS | GRAS family transcription factor |
| gma-miR171k-3p | Glyma06g11610.2 | 380 | 3 | 0.04 | CDS | GRAS family transcription factor |
|  | Glyma13g02840.1 | 565 | 3 | 0.03 | CDS | Nodulation-signaling pathway 2 protein-like |
| gma-miR319a/b/e | Glyma08g10350.1 | 2130 | 3 | 0.04 | 3'-UTR | Transcription factor TCP2-like |
|  | Glyma05g27367.3 | 2063 | 3 | 0.04 | 3'-UTR | Transcription factor TCP2-like |
| gma-miR319h/j/k/m | Glyma08g10350.1 | 2130 | 3 | 0.04 | $3^{\prime}$-UTR | Transcription factor TCP2-like |
|  | Glyma05g27367.3 | 2063 | 3 | 0.04 | 3'-UTR | Transcription factor TCP2-like |
| gma-miR393a | Glyma02g17170.2 | 1741 | 0 | 0.01 | CDS | F-box/RNI-like superfamily protein |
| gma-miR393c/d/e/f/g/ | Glyma02g17170.2 | 1741 | 0 | 0.01 | CDS | F-box/RNI-like superfamily protein |
| gma-miR393h/i/i/k | Glyma19g27280.1 | 2247 | 3 | 0.01 | 3'-UTR | Auxin signaling F-box |
|  | Glyma02g43980.5 | 268 | 3 | 0.04 | CDS | Ribosomal protein L20 |
| gma-miR408a/b/c-3p | Glyma07g13840.1 | 885 | 0 | 0.00 | 3'-UTR | Stellacyanin-like |
|  | Glyma04g42120.1 | 33 | 1 | 0.02 | CDS | Plantacyanin |
| gma-miR4354 | Glyma01g37690.2 | 402 | 1 | 0.01 | CDS | Uncharacterized |
| gma-miR5770a | Glyma01g07860.1 | 235 | 1 | 0.03 | CDS | Copper amine oxidase family protein |
| gma-miR5770b | Glyma01g07860.1 | 235 | 1 | 0.05 | CDS | Copper amine oxidase family protein |
| Targets for conserved miRNA candidates |  |  |  |  |  |  |
| gma-miR1510C1 | Glyma02g08415.1 | 97 | 3 | 0.01 | CDS | Uncharacterized |
|  | Glyma16g27510.1 | 214 | 1 | 0.03 | 3'-UTR | Uncharacterized |
| gma-miR1514C1 | Glyma07g01730.2 | 890 | 1 | 0.04 | $3^{\prime}$-UTR | Uncharacterized |
| gma-miR156C1 | Glyma04g32002.1 | 1937 | 0 | 0.03 | 3'-UTR | SBP domain containing protein |
|  | Glyma11g36980.6 | 1243 | 0 | 0.02 | CDS | SBP domain containing protein |
| gma-miR156C2 | Glyma04g32002.1 | 1937 | 0 | 0.03 | 3'-UTR | SBP domain containing protein |
|  | Glyma11g36980.6 | 1243 | 0 | 0.02 | CDS | SBP domain containing protein |
| gma-miR156C10 | Glyma04g32002.1 | 1937 | 0 | 0.03 | 3'-UTR | SBP domain containing protein |
|  | Glyma11g36980.6 | 1243 | 0 | 0.02 | CDS | SBP domain containing protein |
| gma-miR157C1 | Glyma17g18640.1 | 1974 | 3 | 0.02 | 3'-UTR | Integrase-type DNA-binding superfamily protein |

Table 3. Cont.

| miRNA | Target | Cs ${ }^{\text {a }}$ | c ${ }^{\text {b }}$ | P-value | Location | Target gene annotation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Glyma10g22390.2 | 1647 | 0 | 0.03 | 3'-UTR | ERF RAP2-7-like |
| gma-miR164C1 | Glyma15g40510.1 | 734 | 2 | 0.01 | CDS | NAC domain containing protein |
| gma-miR167C1 | Glyma10g22390.2 | 1647 | 0 | 0.00 | 3'-UTR | ERF RAP2-7-like |
| gma-miR169C6 | Glyma08g14700.1 | 227 | 1 | 0.02 | CDS | Sulfate transporter |
| gma-miR171C3 | Glyma08g10360.1 | 192 | 0 | 0.01 | CDS | F-box family protein |
|  | Glyma10g22790.2 | 201 | 0 | 0.00 | CDS | F-box family protein |
| gma-miR172C3 | Glyma14g37730.1 | 1307 | 3 | 0.01 | CDS | UDP-Glycosyltransferase superfamily protein |
| gma-miR393C1 | Glyma02g17170.2 | 1741 | 0 | 0.01 | CDS | F-box/RN-like superfamily protein |
| Targets for soybean-specific miRNA candidates |  |  |  |  |  |  |
| gma-miRC15 | Glyma01g08056.1 | 1409 | 3 | 0.04 | CDS | SBP domain containing protein |
|  | Glyma18g00903.1 | 2438 | 0 | 0.01 | 3'-UTR | SBP domain containing protein |
|  | Glyma16g05895.2 | 1557 | 0 | 0.02 | 3'-UTR | SBP domain containing protein |
|  | Glyma02g13371.2 | 1400 | 3 | 0.04 | CDS | SBP domain containing protein |
| gma-miRC23 | Glyma10g35481.1 | 1610 | 0 | 0.01 | CDS | Auxin response factor |
| gma-miRC26 | Glyma13g34690.2 | 953 | 3 | 0.04 | CDS | Transcription factor TCP like |
|  | Glyma08g10350.1 | 2130 | 3 | 0.04 | 3'-UTR | Transcription factor TCP2-like |
|  | Glyma05g27367.3 | 2063 | 3 | 0.04 | 3 3'UTR | Transcription factor TCP2-like |
| gma-miRC33 | Glyma16g05500.1 | 2303 | 3 | 0.01 | 3'UTR | Auxin signaling F-box |
| gma-miRC61 | Glyma06g11610.2 | 380 | 3 | 0.03 | CDS | GRAS family transcription factor |
|  | Glyma01938360.1 | 835 | 1 | 0.02 | CDS | GRAS family transcription factor |
| gma-miRC83 | Glyma07g13840.1 | 885 | 0 | 0.00 | 3'-UTR | Stellacyanin-like |
|  | Glyma04g42120.1 | 33 | 1 | 0.05 | CDS | Plantacyanin |

${ }^{\text {a }}$ Cleavage site; ${ }^{\text {b }}$ Category $0:>1$ raw read at the position, abundance at position is equal to the maximum on the transcript and there is only one maximum on the transcript. Category 1:>1 raw read at the position, abundance at position is equal to the maximum on the transcript, and there is more than one maximum position on the transcript. Category 2: >1 raw read at the position, abundance at position is less than the maximum but higher than the median for the transcript. Category 3: >1 raw read at the position, abundance at position is equal to or less than the median for the transcript. Category 4: only one raw read at the position. P-value should not exceed 0.05 .
doi:10.1371/journal.pone.0110051.t003

A total of 258 new soybean miRNA candidates that were not previously reported, including miRNA-5p and miRNA-3p, were identified from the two libraries, of which 132 were sequenced in both libraries. Eighty-seven miRNAs were detected in only ZP035373 and 39 in only ZP03-5413. Novel miRNA candidates were further assigned to miRNA families using sequences similar to other known miRNAs in the miRBase database (two or fewer mismatches). These miRNAs or families had been reported previously in some plant species or families, but are not conserved among angiosperm and coniferophyta lineages [26]. They were referred to as less-conserved miRNAs in this study.
A total of 71 miRNAs-miRNAs* counterparts belonging to 32 families derived from 91 loci (Table 1 and Figure S1), that had previously been identified and reported in at least one plant species or family [11] were identified from the 258 miRNA candidates. A canonical predicted stem-loop structure could be identified in all 32 less-conserved miRNA families (Figure S1). Overall, all lessconserved miRNAs displayed lower expression levels than the conserved miRNAs, with the exception of gma-miR482C2, which was expressed at abundances of 4,000 RPM and 8,000 RPM in ZP03-5373 and ZP03-5413, respectively (Table 1). However, as with the conserved miRNAs, some of the less-conserved miRNAs were expressed differentially between ZP03-5373 and ZP03-5413. For example, ZP03-5413-biased expression was observed for gmamiR395C1, while ZP03-5373-biased expression was apparent for gma-miR393C1 and gma-miR2109C1 (Table 1). To validate the
miRNA RPM data, we performed stem-stoop-based qRT-PCR analysis for selected miRNAs representing conserved, lessconserved and soybean-specific (discussed below) examples in the two lines. We found that while the qRT-PCR results for most of the miRNAs (miR1509a, miR1509b, miR2111 (Figure 2A) and miR395C1 (Figure 2B), miRC2, miRC6, miRC20 (Figure 2C), etc.) were reflective of the relative abundances of the sequenced RNAs in the two lines, others displayed varying degrees of divergence between the two analyses. For example, the miRC18 RPM value for ZP03-5373 was fourfold higher than for miRC10, while the abundances of miRC18 and miRC10 were in agreement, based on qRT-PCR results (Figure 2C). For miR482C2 the opposite pattern between qRT-PCR and miRNA sequencing was observed (Figure S2), which may have resulted from deep-sequencing deviation.

## Prediction and validation of novel soybean-specific miRNAs

Because numerous species-specific miRNAs considered to be of a more recent evolutionary origin [11] have been identified in other species, soybean is likely to have evolved unique miRNAs. After excluding sRNA reads homologous to known miRNAs or families (two or fewer mismatches, miRBase 20), the remaining 21-22-nt sRNAs were subjected to rigorous secondary structural analysis of their precursors using the RNAfold software (http:// mfold.rna.albany.edu/). Those precursors with a canonical


Figure 3. Five novel phasi-acting siRNA biogenesis pathways in soybean root. The abundance of each secondary siRNAs is plotted (left). The phasing secondary siRNAs corresponding to the miRNA cleavage sites are highlighted in red. The miRNA complementary sites are shown with red arrows. The length distribution is plotted on the right (middle). The phasing radial graph is represented next to this (right). Each spoke of the radial graph represents 1 of the 21 phasing registers, with the total number of sRNAs mapping to that register plotted as distance from the center. A, sense transcript; AS, antisense transcript. doi:10.1371/journal.pone.0110051.g003
stem-loop structure were further analyzed by means of a series of stringent filter strategies to ensure that they met the criteria established by the research community [37]. A total of 74 miRNA family candidates derived from 88 loci (Table 2 and Figure S3) met the screening criteria, of which all had miRNA star (miRNA*) sequences identified from the same libraries. We termed these soybean-specific miRNAs. Of the 88 soybean-specific miRNAs, 75 belonged to the 21 -nt class and 13 to the 22 -nt class (Table 2 and Figure S2). In general, the soybean-specific miRNAs were less abundant than the conserved and less-conserved miRNAs in the two lines examined. For example, only gma-miRC20 displayed a
read abundance above 600 RPM in ZP03-5373, while $50 \%$ of the 88 miRNA family candidates yielded levels below 10 RPM (Table 2). This low level of expression was confirmed by stemloop qRT-PCR analysis. (Figure 2C). As reported above for conserved miRNAs, the RPM values of some soybean-specific miRNAs corresponded to their relative abundance determined by miRNA qRT-PCR (gma-miR2 and gma-miR20, etc.), but several exhibited divergence (e.g., gma-miRC4, gma-miRC14 and gmamiRC32 (Figure 2C and Figure S2)).

| G1yma04g32002 | $\downarrow_{10 / 10}$ |  |
| :---: | :---: | :---: |
|  | 1926 | GTGCTCTCTCTCTTCTGTCAT 1946 |
|  |  | \|||||||||0|||||||||* |
| gma-miR156 | $3^{\prime}$ | CACGAGAGAUAGAAGACAGUU 5' |
|  | $\downarrow 7 / 8$ |  |
| Glyma07g01870 | 1315 TGCCAGCAAGCCATCTTGGCTTT 1337 |  |
|  |  |  |
| gma-miR169o | $3^{\prime}$ | CGGCCGUUCGGUAGGACCGAGU 5' |
| Glyma15g40510 | $\downarrow$ 7/10 |  |
|  | 723 | 3 AGCAAGTGCCCTGCTTCTCCA 743 |
|  |  | \||||*||||||||||||||| |
| gma-miR164C1 | 3 | UCGUACACGGGACGAAGAGGU 5' |
| G1yma16g05500 | $\downarrow$ 9/15 |  |
|  | 2291 | TGAAACAATGCGATCCCTTTGG 2312 |
|  |  | *\|*|*||||||||||||||||| |
| gma-miRC33 |  | CCCTAGTTACGCTAGGGAAACC $5^{\prime}$ |

Figure 4. Differential expressed miRNAs in response to SCN. doi:10.1371/journal.pone.0110051.g004

## Identification of the targets of miRNAs by degradome analysis

To identify the targets of the conserved and soybean-specific miRNAs reported here, we performed degradome sequencing to generate a total of 12.8 million short reads representing the $5^{\prime}$ ends of uncapped, poly-adenylated RNAs. About $77.66 \%$ of the unique reads were perfectly aligned to the soybean genome (Soybean Genome V9.0, http://www.phytozome.net/search.php). These reads were subsequently screened and analyzed using the Cleaveland 3.0 software [38]. A total of 42 targets in five categories (0 to 4) were identified (Table 3 and Figure S4), with 42 targets for 76 conserved and soybean-specific miRNAs belonging to 21 families (Table 3 and Figure S4).

Among these targets for the conserved miRNA families, eight fell into category 0 , which represented the most abundant degradome tags corresponding to the cleavage site and matching cognate transcripts, and one of them into category 2, whose cleavage abundance was higher than the median but below the maximum. The number of identified gene targets varied among the miRNAs, from one to four (Table 3). However, miRNAs that targeted members of a gene family usually had more targets. For example, miR156 could target four members of the squamosa promoter-binding-like protein family (Table 3). Although most of the genes ( 36 of 42 ) identified were the conserved targets of these miRNAs across a wide range of plant species, some ( 6 of 42) had not previously been reported in other species. For example, miR169, which is known to target NF-YA (nuclear factor-Y subunit alpha) in other species, was found to target the genes encoding flavonol synthase and sulfate transporter. Similarly, miR393, which exclusively targeted mRNAs for the F-box auxin receptors TIR1 (Transport Inhibitor Response Protein 1), and several members of auxin signaling F-box protein, the growth regulating factor (AFB) gene family in plants also targeted the ribosomal protein L20 gene (Table 3). It was noted that a few identified soybean-specific gene targets fell into category 4, a lowconfidence group, and so should be further validated experimentally. Therefore, the targets falling into category 4 were not listed in the results.

Gene targets were also identified for six soybean-specific miRNAs. Of the 13 gene targets identified, 4 belonged to category

0 and 2 to category 1 , while the remainder was classified into category 3 (Table 3). The soybean-specific miRNAs, like the conserved miRNAs, targeted genes of diverse functions. For example, gma-miRC23 targeted the gene encoding the auxin response factor, while gma-miRC33 targeted the gene encoding auxin-signaling F-box. Gma-miRC26 and gma-miRC61 each targeted members of gene families that encode the transcription factor TCP and the GRAS family transcription factor, respectively. Furthermore, gma-miRC15 targeted up to four members of the SBP-domain-containing-protein gene families. Hence, these soy-bean-specific miRNAs may be involved in the regulation of an array of metabolic and biological processes and signaling pathways.

## miRNAs triggered secondary siRNAs biogenesis pathway in soybean root

TAS transcripts are directed by miRNAs to produce tasiRNAs, which then guide the cleavage of other transcripts. To date, four TAS gene families have been characterized in Arabidopsis, of which the miR390-TAS3 and miR828-TAS4 pathways are conserved in plants [39,40]. Here we identified TAS3 soybean orthologous genes (Glyma09g03731.1 and Glyma15g14675.1), together with their corresponding trigger miRNAs-miR 390 . These two genes also contained two complementary sites for gmamiR390, and the signatures were detected only at the 3 ' target site (Figure S5). We also found similar siRNA biogenesis patterns in the cleaved TAS3 (Table S3). Together, these data indicate that miR390-TAS3 biogenesis pathways and functions are at least partially conserved in soybean root. Because auxin signaling and modulation are essential for diverse biological processes in soybean, especially root development and seed ripening [41,42], miR390-TAS3 biogenesis-derived tasiARFs in roots could orchestrate auxin signaling that might be directly relevant to seed growth and development. In addition, four gma-miR393 target transcripts and three gma-miR 1510 target transcripts in both ZP03-5373 and ZP03-5413 were identified as producing secondary siRNAs (Figure S5). Gma-miR393 and gma-miR1510-triggered secondary siRNA biogenesis pathways have been reported in soybean [15].

The secondary small RNAs derived from all identified miRNA targets by PsRobot [16] in soybean were searched, and four transcripts (Glyma01g33270.1, Glyma04g29220.3, Glyma09g02920.2, Glyma05g33260.1), targeted respectively by gma-miR171, gma-miR1507, gma-miR1515, and gmamiR2118, were identified to produce secondary siRNAs (Figure 3 ).

The targets of these phasiRNAs were identified by analysis of the soybean degradome (Table S3). Besides the ARF4, a further five novel targets of miR390-TAS3 were found. Moreover, we identified six novel targets for the five phasiRNAs derived from gma-miR393 targets, eight novel targets for the five phasiRNAs derived from gma-miR1507 targets, 29 novel targets for the 22 phasiRNAs derived from gma-miR1510 targets, eight novel targets for the seven phasiRNAs derived from gma-miR1515 targets, five novel targets for the four phasiRNAs derived from gma-miR171 targets and 15 novel targets for the nine phasiRNAs derived from gma-miR2118 targets (Table S3).

## Verification of miRNA-guided cleavage of target mRNAs in soybean

To verify the miRNA-guided target cleavage, RLM-5' RACE experiments were performed to detect cleavage products of the four predicted gma-miRNAs. As shown in Figure 4, all four gmamiRNA guided target cleavages occurred at nucleotide 10 or 11


Figure 5. Predicted schematic model of miRNA-SCN system in soybean root.
doi:10.1371/journal.pone.0110051.g005
(Figure 4). Thus, all four predicted targets had specific cleavage sites corresponding to the miRNA complementary sequences.

## SCN-infection-associated miRNAs

The sequencing frequencies for miRNAs in the two libraries were used as an index for estimation of the relative abundance. The expression levels in SCN-resistant soybean root and SCNsensitive soybean root were compared based on the "reads per million" genome-matched reads (RPM) of miRNAs. Using ZP035373 (RPM)/ZP03-5413 (RPM) values $>5$ or $<5$, a total of 34 miRNAs belonging to 27 families were identified to be significantly differentially expressed. The results are shown in Table S4. Most of the differentially expressed miRNAs were up regulated in the roots of the SCN-resistant line ZP03-5373 (Table S4). Although the absolute expression level of miRNA is useful, the identification of differential expression profiles at the wholegenome level in response to endogenous cues or stresses is often desirable to detect miRNA function in particular cell processes. In order to examine if the miRNAs might play a role in SCN
resistance, the expression pattern of 14 miRNAs that were expressed specifically in ZP03-5373 were analysed using qRTPCR in SCN-infected and uninfected ZP03-5373 plants. Seven miRNAs were up regulated significantly after the SCN-infection (Figure 5), and therefore appeared to be important in SCN infection and re-generation. A search of the SCN genome sequences identified 44 potential target genes in SCN by these seven SCN-inducible soybean miRNAs, suggesting a possible function of these miRNAs in regulating the expression of these SGN genes (Table 4).

Forty-four transcripts were predicted to be potential targets of differentially expressed miRNAs. A large number of the identified targets were function proteins (Table 4), including NADH dehydrogenase, SSR2, FLP and CBN-ATP-4; i.e., the relative expression level of gma-miRC6 in ZP03-5373 was markedly higher than that of ZP03-5413 (Table 2 and figure 5). Nineteen targets of gma-miRC6 were identified. One of the gma-miRC6 targets, the SSR2 gene, encodes a translocon-associated protein subunit beta, which is associated with protein translocation across

Table 4. Potential targets in SCN for miRNAs expressed at a high level in the ZP03-5373 line.

| miRNAs | Target gene ${ }^{\text {a }}$ | E-value ${ }^{\text {b }}$ | Annotation |
| :---: | :---: | :---: | :---: |
| gma-miRC6 | gi\|10713756 | 9.00E-28 | Hypothetical protein WUBG_11282, partial |
|  | gi\|10713770 | $2.00 \mathrm{E}-08$ | Hypothetical protein CBG14284 |
|  | gi\|10713984 | 2.00E-08 | Hypothetical protein CBG14284 |
|  | gi\|10713995 | $2.00 \mathrm{E}-08$ | Hypothetical protein CBG14284 |
|  | gi\|10714125 | $2.00 \mathrm{E}-08$ | Hypothetical protein CBG14284 |
|  | gi\|10713899 | 3.00E-47 | Translocon-associated protein subunit beta(SSR2) |
|  | gi\|10713915 | 4.00E-25 | transcription regulator NC2 alpha chain |
|  | gi\|10713976 | $3.00 \mathrm{E}-13$ | FLP-16 protein |
|  | gi\|10714333 | $3.00 \mathrm{E}-13$ | FLP-16 protein |
|  | gi\|10714022 | 2.00E-09 | CBN-ATP-4 protein |
|  | gi\|10714052 | 4.00E-16 | acyl carrier protein (ACP) |
|  | gi\|10714121 | $1.00 \mathrm{E}-66$ | Protein HSP-25, isoform |
|  | gi\|10714146 | $5.00 \mathrm{E}-16$ | Protein VHA-14 |
|  | gi\|10714164 | $8.00 \mathrm{E}-14$ | Protein NEF1 |
|  | gi\|10714245 | 2.00E-66 | Protein mago nashi homolog (MAGOH) |
|  | gi\|10714275 | $9.00 \mathrm{E}-13$ | hypothetical protein DAPPUDRAFT_330564 |
|  | gi\|10714325 | 5.00E-08 | Patched domain-containing protein 3 (PTCHD3) homolog |
|  | gi\|10714342 | 2.00E-12 | hypothetical protein Bm1_39195 |
| gma-miRC6/miRC46 | gi\|10714166 | 1.00E-12 | Ribosomal protein L39(RPL39) |
| gma-miRC18 | gi\|10713732 | 1.00E-26 | hypothetical protein CAEBREN_03276 |
|  | gi\|10713748 | 6.00E-77 | Ubiquitin- Conjugating Enzyme (Ubc-2) |
|  | gi\|10713868 | 4.00E-49 | Hypothetical protein CBG12012 |
|  | gi\|10713929 | 6.00E-08 | Immediate early response 3-interacting protein 1(IER3IP1) |
|  | gi\|10713932 | 2.00E-14 | RE18871p |
|  | gi\|10713953 | 3.00E-21 | conserved hypothetical protein DUF1242 |
|  | gi\|10714016 | $1.00 \mathrm{E}-08$ | $39 \mathrm{~S} \mathrm{ribosomal} \mathrm{protein} \mathrm{L32}$ |
|  | gi\|10714199 | 6.00E-59 | hypothetical protein CAEBREN_23803 |
|  | gi\|10714274 | $3.00 \mathrm{E}-11$ | Protein ATP-4 |
| gma-miRC18/miRC38 | gi\|10714087 | 3.00E-06 | hypothetical protein LOAG_04475 |
| gma-miRC31 | gi\|10713799 | 2.00E-54 | 40 S ribosomal protein S18 |
|  | gi\|10714049 | $2.00 \mathrm{E}-54$ | 40 S ribosomal protein S18 |
| gma-miRC32 | gi\|10713767 | 3.00E-27 | cleavage stimulation factor subunit 2 |
|  | gi\|10714061 | 3.00E-27 | cleavage stimulation factor subunit 2 |
|  | gi\|10713949 | 7.00E-11 | Import inner membrane translocase subunit tim-13 |
|  | gi\|10713988 | 1.00E-82 | troponin C-like protein |
|  | gi\|10714106 | 3.00E-05 | hypothetical protein LOAG_03714 |
|  | gi\|10714297 | 1.00E-25 | NADH dehydrogenase ubiquinone 1 alpha subcomplex subunit 2 (NDUFA2) |

Table 4. Cont.

| miRNAs | Target gene ${ }^{\text {a }}$ | $E$-value ${ }^{\text {b }}$ | Annotation |
| :---: | :---: | :---: | :---: |
|  | gi\|10714305 | $9.00 \mathrm{E}-20$ | cytochrome P450, family 3, subfamily A, polypeptide 5 |
| gma-miRC32/miRC58 | gi\|10714119 | 1.00E-39 | Eukaryotic translation initiation factor 1A, Y-chromosomal |
| gma-miRC58 | gi\|10714213 | $3.00 \mathrm{E}-06$ | Protein MICAL-3 |
|  | gi\|10713990 | $3.00 \mathrm{E}-06$ | Protein MICAL-3 |
|  | gi\|10714084 | $3.00 \mathrm{E}-06$ | Protein MICAL-3 |
|  | gi\|10714090 | 3.00E-06 | Protein MICAL-3 |
|  | gi\|10714167 | $3.00 \mathrm{E}-11$ | Transcriptional activator protein Pur-alpha |

${ }^{\text {a }}$ The target gene is the transcript identified from the SCN ESTs. (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=51029); b E-value was calculated according to Blast and should be less than $1.00 \mathrm{E}-5$.
doi:10.1371/journal.pone.0110051.to04
the endoplasmic reticulum (ER) membrane. Another miRC6targeted FLP-16 protein was potentially involved in the neuropeptide signaling pathway and negatively regulated striated muscle contraction. The acyl carrier protein (ACP) is an important component in the fatty acid synthase complex. MAGOH mutations in the mago nashi (grandchildless) gene produce progeny with defects in germplasm assembly and germline development $[43,44]$. PTCHD3 plays a role in reproduction development [45], while others are related to protein phosphorylation (AGC family protein kinase) and ATPase activity (Protein VHA-14). All of these genes are important in the development and regeneration of SCN. Ten genes were potential targets of gmamiRC18, which is involved in both the folding and transportation of proteins, and degradation pathways (Table 4). The gmamiRC32 targets encode a hypothetical NADH dehydrogenase, which is the first enzyme required in the respiratory chain pathway.

## Discussion

Soybean is an important economic crop. Recently, highthroughput sequencing of sRNAs and RNA degradome has been successfully used to reveal large numbers of soybean miRNAs and their targets. A number of miRNAs have been reported to be involved in organ development [46], nutrient signaling [47], biotic and abiotic stress [48,49]. These studies imply the important roles of miRNAs in soybean development and interaction with environment, which provide clues for deciphering the functions for microRNA/target modules in soybean. SCN is a significant plant pathogen responsible for an estimated $\$ 2$ billion annually in yield losses worldwide. The planting of resistant soybean cultivars is the key to managing SCN population levels in the field. Despite some resistant cultivars having been developed and used, there remains a lack of understanding of the molecular basis of the resistance to this pathogen because only two major loci, rhgl and rhg4 have been cloned [50]; the remaining quantitative trait loci (QTLs) are distributed on the other 16 linkage groups (LG) (except LG Dlb and F) (soybase.net) and remain unknown. Progress in understanding the effectiveness and durability of natural plant resistance and enabling the design of novel strategies for resistance through biotechnological approaches has, therefore, been limited. Comparison of the gene expression profiles of soybean-SCN interactions has revealed distinct differences in gene expression between the resistant and susceptible reactions. Therefore, it is
important to select suitable soybean lines to detect differently expressed genes.

In this study, to develop a better understanding of the molecular events associated with resistance to SCN race 4, we employed the sister lines, ZP03-5373 and ZP03-5413, in a comparative analysis of sRNA expression using deep sequencing. ZP03-5373 and ZP035413 have similar agronomic traits except for resistance to SCN race 4 . Our previous study showed that ZP03-5373 was resistant but ZP03-5413 was susceptible to SCN 4, suggesting that some differentially expressed genes may have negative impacts on syncytium development and maintenance.

SCNs are highly evolved sedentary plant endoparasites that can enter soybean roots to successfully parasitize plants. RNA interference (RNAi) involving host-induced gene silencing in parasites has been reported [5]. A potential mechanism underlying the involvement of miRNAs in controlling cyst nematodes is proposed. Here, the candidate targets of differentially expressed miRNAs in SCN were predicted (Table 4). Our results predicted the existence of a novel miRNA-mediated regulatory cascade involved in the SCN life cycle in soybean root. These observations demonstrate the relevance of the targeted genes of SCN during the nematode life cycle and, potentially more importantly, suggest that an effective resistance to cyst nematodes in soybean may be achieved using this technology. But which should be confirmed by experiment in the future.

## Conclusions

This study describes large scale cloning and characterization of two genetically related soybean sister lines miRNAs, phasiRNAs and their potential targets, we also found that the expression of 34 miRNAs differed significantly between the two lines. Seven ZP03-5373-specific miRNAs were differentially expressed after SCN infection. Forty-four transcripts from SCN were predicted to be potential targets of ZP03-5373-specific differential miRNAs. These findings suggest that miRNAs play an important role in the soybean response to SCN and providing the foundation for further characterization of their roles in the regulation of diverse physiological processes.

## Methods

## Plant materials

Two genetically related soybean lines, Zhongpin03-5373 (ZP035373) and Zhongpin03-5413 (ZP03-5413), which are resistant and
susceptible, respectively, to SCN race 4 were used in this study. The two sister lines, ZP03-5373 and ZP03-5413 were developed from the cross of two SCN resistant parents "Jin 1265". "Hartwig". The former was resistant and the latter was susceptible to SCN race 4. Elite line Jin 1265 was derived from cultivar Hupizhi Heidou for its resistance. Thus, ZP03-5373 and ZP035413 have the same genetically pedigrees but different resistance to SCN race 4, which provided an opportunity to gain further insight into the underlying genetic control of resistance. Soybean were grown in a glasshouse at $22-25^{\circ} \mathrm{C}$ with a 16 h light $/ 8 \mathrm{~h}$ dark photoperiod and light intensity of $>8000 \mathrm{~lx}$. Roots from 3 -weeksold seedlings were collected and used for RNA extraction. And was used for small RNA expression and degradome analysis.

## RNA extraction and preparation of sRNA and degradome cDNA libraries for Solexa sequencing

Soybean root total RNA was extracted using TRIzol (Invitrogen, Carlsbad, CA, USA). Total RNA was size-fractionated by $15 \%$ denaturing polyacrylamide gel electrophoresis, after which small RNA fragments of 18-28 nt were isolated from the gel and purified. The small RNA molecules were then sequentially ligated to a $5^{\prime}$ adaptor and a $3^{\prime}$ adaptor and converted to cDNA by RTPCR following the Illumina protocol. The concentration of the sample was adjusted to $\sim 10 \mathrm{nM}$ and a total of $10 \mu \mathrm{~L}$ were used in a sequencing reaction. The purified cDNA library was sequenced on an Illumina GAIIx.

The degradome library was constructed as described previously [33]. For the short RNA libraries, the degradome cDNA library was sequenced on an Illumina GAIIx.

## Bioinformatic analyses

After masking adaptor sequences and removal of contaminated reads, the clean reads were filtered for miRNA prediction. First, reads that matched rRNA, tRNA, snRNA, snoRNA, repeat sequences, and other ncRNAs deposited in Rfam (http://www. sanger.ac.uk/software/Rfam) [51] and the GenBank noncoding RNA database (http://www.ncbi.nlm.nih.gov/) were discarded. The retained $18-28-\mathrm{nt}$ reads were mapped onto the genome of soybean, using V 9.0 (http://www.phytozome.net) by the bowtie2 software. All perfectly matched sRNAs were retained for miRNA prediction. After rigorous screening, all retained sequences of 1828 nt with a frequency of three or more copies were considered potential miRNAs. We then attempted to align the predicted miRNAs to all soybean known mature miRNA sequences in miRBase, version 19.0 [51] to identify novelty. Finally, secondary structure prediction of individual miRNAs was performed with the MFOLD software (Version 2.38, http://mfold.rna.albany.edu/ ? $\mathrm{q}=\mathrm{mfold} /$ RNA-Folding-Form) using the default folding conditions [52], and novel miRNAs were predicted using the psRobot software [53]. The identification of phased transcripts in soybean was performed by a method described previously [54].

The degradome analysis and the classification of target categories were performed using CleaveLand 3.0 [38]. Small RNA target prediction was run against the transcriptome of interest. The alignment scores (using the [8] rubric) for each hit up to a user-defined cutoff were calculated, full RNA-RNA alignments were printed, and the 'cleavage site' associated with each prediction was also calculated. The cleavage site is simply the $10^{\text {th }} \mathrm{nt}$ of complementarity to the aligned sRNA. For randomized queries, no alignments were retained; however, concise records of each predicted target for the random queries were retained, including the predicted cleavage sites. We also used the psRobot
software to identity the targets of phasiRNAs. miRNA targets were predicted in SCN using the microTar software (http://tiger.dbs. nus.edu.sg/microtar/) [55].

## End-point and SYBR Green I real-time PCR assays of soybean miRNAs

End-point and real-time looped RT-PCR [56] were used to validate and measure the levels of soybean miRNA. Stem-loop RT primers, a universal reverse primer and miRNA-specific forward primers for gma-miR 160a, gma-miR398a, gma-miR398c, gma-miR399a, gma-miR399d, gma-miR4412-5p, gma-miR862a, gma-miR156C1, gma-miR160C1, gma-miR157C5, gmamiR159C1, gma-miR172C1, gma-miR2109C1, gma-miR393C1, gma-miR395C1, gma-miR399C3, gma-miR399C5, gmamiR399C7, gma-miR1C2, gma-miRC4, gma-miRC6, gmamiRC10, gma-miRC18, gma-miRC19, gma-miRC31, gmamiRC32, gma-miRC36, gma-miRC38, gma-miRC46, gmamiRC49, gma-miRC52, gma-miRC58, gma-miRC71 and gmamiRC75 were designed according to Varkonyi-Gasic et al. [48] (Additional file 10: Table S5). One microgram of total RNA was reverse-transcribed to cDNA using ReverTra Ace (TOYOBO, Osaka, Japan). Stem-loop pulsed reverse transcription and endpoint PCR were performed according to [56]. Real time qRTPCR (quantitative reverse transcriptase PCR) was performed using SYBR Premix Ex Taq ${ }^{\text {TM }}$ of TaKaRa (TaKaRa Code: DRR041A) on a model 7500 thermocycler (Applied Biosystems, Foster City, CA, USA). All reactions were run in triplicate. After the reaction, the threshold cycle $(\mathrm{Ct})$ was determined using default threshold settings. The Ct was defined as the fractional cycle number at which the fluorescence surpasses the fixed threshold.

## Supporting Information

Figure S1 Secondary structures of 71 putative lessconserved soybean miRNAs and miRNAs. Pink section represents miRNA-5p; yellow section represents miRNA-3p. (PDF)
Figure S2 qRT-PCR results. qRT-PCR confirming express pattern of miRNAs in ZP03-5373 and ZP03-5413. The expression levels were normalized against the U6 RNA.
(JPG)
Figure S3 Secondary structures of 75 putative soybeanspecific miRNAs and miRNAs counterparts. Pink section represents miRNA-5p; yellow section represents miRNA-3p. (DOCX)
Figure S4 degradome T-plot. We used reads in plotting the cleavages on target mRNAs, which were referred to as 'target plots' (t-plots) by German et al [17]. Signature abundance throughout the length of the indicated transcripts is shown. miRNA:mRNA alignments along with the detected cleavage frequencies are shown. The frequencies of degradome tags with 5 'ends at the indicated positions are shown in black, with the frequency at position 10 of the inset miRNA target alignment highlighted in red.
(PDF)
Figure S5 The small RNAs corresponding to the miRNA targets. The abundance of each secondary siRNAs is plotted (A). The phasing secondary siRNAs corresponding to the miRNA cleavage sites are highlighted in red. The miRNA complementary sites are shown with red arrows. The length distribution is plotted on the right (B). The phasing radial graph is represented next to
this (C). Each spoke of the radial graph represents 1 of the 21 phasing registers, with the total number of sRNAs mapping to that register plotted as distance from the center. A, sense transcript; AS, antisense transcript.
(PDF)
Table S1 Statistics of sRNA sequences from G. max. a: Redundancy $(\%)=100$-(Total unique high quality Reads/Total high quality Reads x 100); b: using soap2.0 aligner;c: Glycine max Genome were downlaod from Phytozome (http://www. phytozome.net/index.php), and the version is 9.0.

## (XLSX)

## Table S2 Known miRNAs identified in $G$. max. (XLSX)

Table S3 miRNAs triggered secondary phasiRNAs and its targets.
(XLS)

## References

1. Wrather JA, aK SR (2009) Effects of diseases on soybean yields in the United States 1996 to 2007. Plant Health Progress.
2. JONES MGK (1981) Host cell responses to endoparasitic nematode attack: structure and function of giant cells and syncytia. Annals of Applied Biology 97: 20.
3. Sobczak M GW, editor (2009) Structure of Cyst Nematode Feeding Sites. Berlin Springer. 153-187 p.
4. Davis EL, Hussey RS, Mitchum MG, Baum TJ (2008) Parasitism proteins in nematode-plant interactions. Curr Opin Plant Biol 11: 360-366.
5. Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, et al. (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60: 315-324.
6. Schwach F, Moxon S, Moulton V, Dalmay T (2009) Deciphering the diversity of small RNAs in plants: the long and short of it. Brief Funct Genomic Proteomic 8: 472-481.
7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.
8. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207-221.
9. Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127: 565-577.
10. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20: 3407-3425.
11. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57: 19-53.
12. Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, et al. (2005) Elucidation of the small RNA component of the transcriptome. Science 309: 1567-1569.
13. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-20.
14. Voinnet O (2009) Fly antiviral RNA silencing and miRNA biogenesis claim ARS2. Cell Host Microbe 6: 99-101.
15. Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13: 343-349.
16. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12: 301309.
17. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101: 12753-12758.
18. Mallory AC, Elmayan T, Vaucheret H (2008) MicroRNA maturation and action-the expanding roles of ARGONAUTEs. Curr Opin Plant Biol 11: 560566.
19. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, et al. (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320: 1185-1190.
20. Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14: 1605-1619.
21. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17: 49-63.
22. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294: 853-858.
23. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858-862.
24. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862-864.

Table S4 Differential expressed soybean miRNAs. (XLS)

Table S5 miRNA and primer sequences. (XLSX)

## Acknowledgments

This work was supported by the National Key Basic Research Program (Grant Number 2010CB125903). And the National Natural Science Foundation of China (Grant Number 31171575).

## Author Contributions

Conceived and designed the experiments: MYX YHL QXZ TX LJQ YLF LW. Performed the experiments: MYX TX. Analyzed the data: MYX QXZ. Contributed reagents/materials/analysis tools: YHL LJQ LW. Contributed to the writing of the manuscript: MYX YLF LW.
25. Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17: 1658-1673.
26. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23: 431-442.
27. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, et al. (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2: e219.
28. Moxon S, Moulton V, Kim JT (2008) A scoring matrix approach to detecting miRNA target sites. Algorithms Mol Biol 3: 3.
29. Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MP, et al. (2008) Highthroughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9: 593.
30. Wang C, Li Q (2007) Identification of differentially expressed microRNAs during the development of Chinese murine mammary gland. J Genet Genomics 34: 966-973.
31. Xia H, Ooi LL, Hui KM (2012) MiR-214 targets beta-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma. PLoS One 7: e44206.
32. Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18: 758-762.
33. German MA, Pillay M, Jeong DH, Hetawal A, Luo S, et al. (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26: 941-946.
34. Gregory BD, O'Malley RC, Lister R, Urich MA, Tonti-Filippini J, et al. (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14: 854-866.
35. Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, et al. (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62: 960-976.
36. Xu MY, Dong Y, Zhang QX, Zhang L, Luo YZ, et al. (2012) Identification of miRNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis. BMC Genomics 13: 421.
37. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, et al. (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20: 3186-3190.
38. Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25: 130-131.
39. Hofmann NR (2010) MicroRNA evolution in the genus Arabidopsis. Plant Cell 22: 994.
40. O'Donnell KA, Boeke JD (2007) Mighty Piwis defend the germline against genome intruders. Cell 129: 37-44.
41. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, et al. (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: 39-44.
42. Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, et al. (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108: 661-673.
43. Newmark PA, Mohr SE, Gong L, Boswell RE (1997) mago nashi mediates the posterior follicle cell-to-oocyte signal to organize axis formation in Drosophila. Development 124: 3197-3207.
44. Zhao XF, Nowak NJ, Shows TB, Aplan PD (2000) MAGOH interacts with a novel RNA-binding protein. Genomics 63: 145-148.
45. Fan Y, Liu ZH, Chen SH, Cai DB, Sun P, et al. (2007) [Shengli capsules enhance sexual ability in male rats]. Zhonghua Nan Ke Xue 13: 660-663.
46. Turner M, Yu O, Subramanian S (2012) Genome organization and characteristics of soybean microRNAs. BMC Genomics 13: 169.
47. Xu F, Liu Q, Chen L, Kuang J, Walk T, et al. (2013) Genome-wide identification of soybean microRNAs and their targets reveals their organspecificity and responses to phosphate starvation. BMC Genomics 14: 66.
48. Kulcheski FR, de Oliveira LF, Molina LG, Almerao MP, Rodrigues FA, et al. (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12: 307.
49. Zeng QY, Yang CY, Ma QB, Li XP, Dong WW, et al. (2012) Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol 12: 182.
50. Cook DE, Lee TG, Guo X, Melito S, Wang K, et al. (2012) Copy number variation of multiple genes at Rhgl mediates nematode resistance in soybean. Science 338: 1206-1209.
51. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36: D154-158.
52. Guerra-Assuncao JA, Enright AJ (2010) MapMi: automated mapping of microRNA loci. BMC Bioinformatics 11: 133.
53. Wu HJ, Ma YK, Chen T, Wang M, Wang XJ (2012) PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40: W22-28.
54. Chen HM, Li YH, Wu SH (2007) Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci U S A 104: 3318-3323.
55. Thadani R, Tammi MT (2006) MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics 7 Suppl 5: S20.
56. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3: 12.

