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A B S T R A C T   

To accurately predict sequence data with seasonal characteristics, we combine data restart 
technology and fractional order accumulation into a novel seasonal grey model (FSGM (1,1, α)). 
The particle swarm optimization (PSO) algorithm is used to solve the fractional order and 
background value coefficients of the model, and the effectiveness of FSGM (1,1, α) is verified 
using three cases. Finally, we use FSGM (1,1, α) to predict quarterly electricity generation in 
Beijing and Henan Province and quarterly petroleum coke production in China from 2023 to 
2027. The research results indicate that, first, FSGM (1,1, α) is reasonable and effective and has 
the ability to accurately capture the dynamic trend of seasonal data. Second, compared with the 
grey model (GM (1,1)), seasonal grey model (SGM (1,1)), data grouping grey model (DGGM 
(1,1)), data grouping seasonal model (DGSM (1,1)), and data grouping seasonal time model 
(DGSTM (1,1)), which have seasonal characteristics, FSGM (1,1, α) can better fit the original data, 
achieve higher prediction accuracy, and perform better. Third, from 2023 to 2027, it is predicted 
that there will be no significant change in Beijing’s electricity generation, and the current stable 
trend will be maintained. Both the power generation in Henan Province and the petroleum coke 
production in China will steadily increase to a certain extent, with obvious seasonal cyclical 
fluctuations. Notably, the power generation and petroleum coke production in Henan Province in 
the fourth quarter of 2027 will increase by 11.50 % and 10.93 %, respectively, compared to those 
in the fourth quarter of 2023.   

1. Introduction 

Accurate prediction of economic operation data can provide valuable information for formulating medium- and long-term policies 
[1]. However, in practice, various complex factors, especially seasonal and uncertain factors, often lead to biased prediction results [2]. 
Seasonal fluctuations in economic data are common, mainly due to factors such as changes in the supply and demand, variations in 
economic activities and climate change, which directly or indirectly lead to systematic, cyclical or irregular changes in statistical 
indicators. Generally, seasonal fluctuation time series data exhibit both long-term trends and seasonal volatility, as well as local 
random oscillations [3]. In macroeconomics, seasonal data mainly include quarterly and monthly data, which are often highly var-
iable, while annual data display comparatively higher stability. Therefore, seasonal data can capture the underlying information 
associated with rapid environmental changes, and modeling can effectively avoid the loss of some key information. Seasonal data 
typically exhibit similar trends, volatility and randomness in different cycles, undoubtedly increasing the difficulty of prediction [4]. 
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Common seasonal data include fine particulate matter (PM2.5) pollution data [5], renewable energy consumption data [6], electricity 
demand data [7], natural gas consumption and production data [8,9], and residential electricity consumption data [10]. 

The complex data characteristics of seasonal time series pose significant challenges to the construction of corresponding prediction 
models. Therefore, scholars have continuously explored and proposed various prediction methods. At present, seasonal data prediction 
methods can be divided into three main categories. Statistical analysis methods fall into the first category and include exponential 
smoothing models [11], autoregressive integrated moving average (ARIMA) models [12], seasonal ARIMA (SARIMA) models [13], and 
SARIMA–support vector regression (SVR) models [14]. These methods use mathematical models for prediction based on the trend of 
historical data changes and relationships with influencing factors. The second category includes artificial intelligence models, such as 
artificial neural networks (ANNs) [15,16], support vector machines (SVMs) [17], random forests, and extreme gradient boosting [18]. 
These methods are used to obtain the inherent mathematical characteristics of historical data based on complex algorithms or pro-
grams and corrections to the prediction model in real time, thus avoiding the limitations of single models for predicting complex 
seasonal series. The third category includes the grey model series. Due to the complexity and uncertainty of influencing factors, 
seasonal fluctuation data are often characterized by unclear structures and uncertain behavior. The grey model is a commonly used 
mathematical modeling method for studying the prediction of uncertain systems. The existing seasonal grey prediction models include 
the seasonal grey model (SGM (1,1)) [19], discrete grey seasonal model (DGSM (1,1)) [2], data grouping seasonal time model (DGSTM 
(1,1)) [20], average weakening buffer operators–data grouping grey model (AWBO-DGGM (1,1)) [21], particle swarm optimized 
fractional-order-accumulation discrete grey seasonal model (PFSM(1,1)) [22], data restacking–seasonal factor grey model (DR-SFGM) 
[6], seasonal division-based grey seasonal variation index (OSGSVI) [23], and weighted average weakening buffer operator–fractional 
order accumulation seasonal grouping grey model (WAWBO-FSGGM (1,1)) [24], which are widely used in many fields. In addition, 
due to their broad applicability, small sample size requirement, and high accuracy, grey prediction models are widely used after 
continuous optimization and improvement. For example, water consumption [25], hydroelectricity consumption [26], renewable 
energy production [27], air pollution (Wang, Xie, & Yang, 2022) [5], air quality [28], power generation [29], urban per capita 
consumption [30], electricity demand [7], renewable energy generation [31], carbon emissions [32], residential electricity con-
sumption [10], passenger flow volume [33], high-tech industry values [34], new energy vehicle sales [35], and natural gas production 
and consumption [36] have been predicted. 

In a grey model modeling problem, to achieve optimization, many scholars have improved previous models and applied these new 
versions to predict seasonal data, which has expanded the application scope of grey models [5–10]. Moreover, scholars have developed 
different methods for the processing of seasonal data [20,21,24]. A seasonally fluctuating time series is different from a 
random-oscillation series, such as stock series, and has three major characteristics: trend, periodicity, and volatility. Therefore, 
effective mining of the characteristics of seasonally fluctuating data is the basis for constructing a reasonable prediction model. 
Although many studies have used grey models to predict seasonal data, these studies still have certain shortcomings in terms of the 
model structure and parameter-solving ability, making it difficult to accurately identify seasonal features. In response to this defi-
ciency, a new modeling concept is proposed in this study. By combining the fractional order accumulation method with data restart 
technology, a new grey seasonal model, namely, FSGM (1,1, α), is developed to predict quarterly electricity generation in Beijing and 
Henan and petroleum coke production in China from 2023 to 2027. The contributions of this study are as follows:  

(1) In this paper, a novel seasonal grey prediction model FSGM (1,1, α) is developed by combining existing data processing 
methods, namely, the data restart technique and fractional order accumulation method, and is applied for seasonal data 
prediction.  

(2) In the modeling process of the FSGM (1,1, α), by solving for the development coefficient a of FSGM (1,1, α), four groups are 
distinguished by seasonal factors and combined to obtain a new form of matrix B, resulting in a more reliable set of parameter 
values.  

(3) The verification results through three cases show that FSGM (1,1) with seasonal characteristics has higher prediction accuracy 
than GM (1,1), SGM (1,1), DGGM (1.1), DGSM (1,1), and DGSTM (1,1) models, and can better describe the trend of data 
changes.  

(4) FSGM (1,1, α) is applied to predict quarterly electricity generation in Beijing and Henan Provinces and quarterly petroleum coke 
production in China from 2023 to 2027. 

The organizational structure of this article is as follows. Section 2 introduces the construction and solution processes of FSGM (1,1, 
α), data restart techniques, optimization methods for background value coefficients, and error evaluation standards for the model. 
Section 3 verifies the feasibility and effectiveness of FSGM (1,1, α) through three case studies. In Section 4, electricity generation in 
Beijing and Henan Provinces and petroleum coke production in China from 2023 to 2027 are predicted. Section 5 provides the 
conclusion of this article. 

2. Construction of FSGM (1,1, α) 

This section first introduces the traditional GM (1,1) model, then describes the modeling and solving process of the newly proposed 
FSGM(1,1, α) model, as well as the PSO algorithm. Then, a flowchart of the FSGM (1,1) model is drawn, and error evaluation criteria 
are provided. 
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2.1. Traditional GM (1, 1) 

For the sequence X(0) = (x(0)(1),x(0)(2),⋯,x(0)(n)), where x(0)(k) ≥ 0,k = 1,2,⋯,n, X(1) = (x(1)(1), x(1)(2),⋯, x(1)(n)) is a first-order 
accumulation generation operator (1-AGO) for X(0), where 

x(1)(k)=
∑k

i=1
x(0)(i), k = 1, 2, 3,⋯, n (1)  

Z(1) is used to generate a sequence of immediately adjacent means for X(1), where 

z(1)(k)= 0.5x(1)(k) + 0.5x(1)(k − 1), k = 1, 2, 3,⋯, n (2) 

By assuming that the sequence (X(0),X(1),Z(1)) is as shown in the above definition, the basic form of GM(1,1) is 

x(0)(k)+ az(1)(k) = b, k = 1, 2,⋯n (3)  

In this model, b is referred to as the grey action term, and a is the development coefficient. The column of least square values estimated 
for the model satisfies [â, b̂] = (BTB)− 1BTY, where 

B=

⎡

⎢
⎢
⎣

− z(1)(2) 1
− z(1)(3) 1

⋮ ⋮
− z(1)(n) 1

⎤

⎥
⎥
⎦, Y =

⎡

⎢
⎢
⎣

x(1)(2)
x(1)(3)

⋮
x(1)(n)

⎤

⎥
⎥
⎦ (4) 

The whitening equation of GM(1,1) is 

dx(1)

dt
+ ax(1) = b (5) 

Then, the solution to the whitening equation is 

x̂(1)(k)=
(

x(0)(1) −
b
a

)

e− a(k− 1) +
b
a
, k= 2, 3,⋯, n. (6) 

The final reduced equation is 

x̂(0)(k)= x̂(1)(k) − x̂(1)(k − 1)= (1 − ea)

(

x(0)(1) −
b
a

)

e− a(k− 1), k= 2, 3,⋯, n. (7)  

2.2. FSGM (1,1, α) model 

2.2.1. Raw data processing based on restart technology 
Currently, raw data are preprocessed using two main methods. First, seasonal factors are used to preprocess the data; for example, 

SGM (1,1) uses this technique. The seasonal factor fs(i) is a dimensionless parameter that reflects the average deviation of actual values 

Fig. 1. The data restart process.  
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from trend values due to seasonal effects, and its formula is fs(i) = x
− (0)

M (i)/x
− (0)

MN(i), where M is the number of cycles in a year. If seasonal 
data are used, then M = 4; if monthly data are used, then M = 12. N represents the year of the i-th time point. x

− (0)
M (i) and x

− (0)
MN(i)

represent the mean value of the quarter (or month) at the i-th time point and the total mean value of all quarters (or months), 
respectively. 

Another approach is to use restart techniques to preprocess the raw data, mainly by clustering observation data from the same 
month or quarter into the same group to eliminate disturbances caused by seasonal factors [43]. After restart processing, the original 
observation results are retained for each set of data, but there are no seasonal characteristics within each group. Thus, the accuracy of 
subsequent predictions can be significantly improved. The data restart process is shown in Fig. 1. 

In this article, a data restart method is used to process the raw sequence X(0) = (x(0)(1),x(0)(2),⋯,x(0)(n)). After processing, the 

sequence X(0) = (X(0)
1 ,X(0)

2 ,⋯X(0)
m )

T 
can be reconstructed, where X(0)

j = (X(0)
j (1),X(0)

j (2),⋯X(0)
j (n))

T
, j = 1,2⋯m and m represents the 

number of cycles. For quarterly data, m = 4; for monthly data, m = 12. 

2.2.2. Fractional order accumulation 
Assume that X(0) = (x(0)(1), x(0)(2),⋯, x(0)(n)) is a raw sequence. Then, its r-order fractional accumulation sequence (r-FOA) is 

X(r) = (x(r)(1),x(r)(2),…,x(r)(n)), r ∈ R+, where 

X(r) =ArX(0) (8)  

Ar =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[
r

0

]

0 0 ⋯ 0

[
r

1

] [
r

0

]

0 ⋯ 0

[
r

2

] [
r

1

] [
r

0

]

⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
[

r

n − 1

] [
r

n − 2

] [
r

n − 3

]

⋯

[
r

0

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9)  

Here, 
[

r
i

]

=
r(r+1)⋯(r+i− 1)

i =

(
r + i − 1

i

)

=
(r+i− 1)!
i!(r− 1)! , and 

[
0
i

]

= 0,
[

0
0

]

=

(
0
0

)

= 1. 

Assume that the raw sequence is X(0) = (x(0)(1), x(0)(2),⋯, x(0)(n)) and its r-order inverse fractional accumulation sequence (r- 
IFOA) is X(− r) = (x(− r)(1),x(− r)(2),…,x(− r)(n)), r ∈ R+, where 

X(− r) =DrX(0) (10)  

Dr =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[
− r

0

]

0 0 ⋯ 0

[
− r

1

] [
− r

0

]

0 ⋯ 0

[
− r

2

] [
− r

1

] [
− r

0

]

⋯ 0

⋮ ⋮ ⋮ ⋮
[

− r

n − 1

] [
− r

n − 2

] [
− r

n − 3

]

⋯

[
− r

0

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(11)  

Here, 
[
− r
i

]

=
− r(− r+1)⋯(− r+i− 1)

i = (− 1)i
(

r − i + 1
i

)

= (− 1)i(r− i+1)!
i!(r+1)! , and 

[
− r
0

]

= 0,
[

0
0

]

=

(
0
0

)

= 1, i > r. 

Matrix Ar and matrix Dr satisfy ArDr = In. 

2.2.3. Construction of FSGM (1,1, α) 

After data restart processing, the sequence X(0) = (x(0)(1), x(0)(2),⋯, x(0)(n)) is rearranged as X(0) = (X(0)
1 ,X(0)

2 ,⋯X(0)
m )

T
, X(0)

j =

(x(0)
j (1), x(0)

j (2),⋯x(0)
j (n))

T
,j = 1,2⋯m, where m represents the number of cycles. If the data are quarterly, then m = 4; if the data are 
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monthly, then m = 12. j represents the year. The fractional order accumulation sequence can be represented as X(α) =

(X(α)
1 ,X(α)

2 ,⋯X(α)
m )

T
, where X(α)

j = (X(α)
j (1),X(α)

j (2),⋯X(α)
j (n))

T
, j = 1,2⋯m. The relationship between X(0)

j and X(α)
j can be expressed as 

X(α)
j = AαX(0)

j . 
The whitening equation expression in FSGM (1,1, α) is 

dx(α)m (t)
dt

+ ax(α)m (t) = bm (12) 

Next, we can obtain the following time response functions: 

x(α)m (k)=
(

x(0)m (1) −
bm

a

)

ea(1− k) +
bm

a
(13) 

Now, the following reduction equation can be established: 

x(α)m (k) − x(α)m (k − 1)+ az(α)m (k) = bm, k = 2, 3⋯n (14) 

The background value is z(α)m (k) = λmx(α)
m (k)+ (1 − λm)x(α)

m (k + 1). In the reduction equation, there are a total of m+ 1 parameters, 
which are a,b1,b2,⋯,bm. By using the least squares method, we can obtain the following parameters: 

(a, b1, b2,⋯, bm)
T
=
(
BT B

)− 1BT Y (15)  

Fig. 2. The modeling process of FSGM (1,1, α).  
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B=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− zα
1(2) 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮

− zα
1(n) 1 0 ⋯ 0

− zα
2(2) 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮

− zα
2(n) 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮

− zα
m(2) 0 0 ⋯ 1
⋮ ⋮ ⋮ ⋮

− zα
m(n) 0 0 ⋯ 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(α)1 (2) − x(α)1 (1)
⋮

x(α)1 (n) − x(α)1 (n − 1)
x(α)2 (2) − x(α)2 (1)

⋮
x(α)2 (n) − x(α)2 (n − 1)

⋮
x(α)m (2) − x(α)m (1)

⋮
x(α)m (n) − x(α)m (n − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c (16)  

Therefore, the time response function ̂X(α)
j is calculated to obtain ̂X(0)

j = Dα ̂X(α)
j . 

2.2.4. Optimization of the fractional order and background values 
In the above process, the fractional order α and background value coefficient λ1, λ2,⋯, λm can directly affect the values of pa-

rameters a,b1,b2,⋯,bm, thereby affecting the forecasting accuracy. Thus, choosing a reliable fractional order is crucial for improving 
modeling accuracy. In this paper, PSO is used to determine the optimal parameters via the following steps. 

Every optimization problem’s solution corresponds to a separate PSO algorithm, that is, a particle. Specifically, the first particle’s 
position is represented by i,(i = 1,2,⋯,m), Xi = {x1

i ,x2
i ,⋯,xd

i },(d = 1,2,⋯,D), and the velocity is represented by Vi = {v1
i ,v2

i ,⋯,vd
i }. By 

combining their own experiences pbest and those of others gbest, the position and velocity of particles are dynamically modified. After 
several adjustments, the best position of a particle is ultimately given by Pi = {p1

i , p2
i ,⋯, pd

i }, and the swarm’s best position is rep-
resented by Gi = {g1

i , g2
i ,⋯, gd

i }. Furthermore, the equations used to update the position and velocity of each particle are shown in 
formulas (17) and (18). 

xd
i = uvd

i + c1r1
(
pd

i − xd
i

)
+ c2r2

(
gd

i − xd
i

)
(17)  

vd
i = xd

i + vd
i (18)  

where m is the number of particles, D is the dimensionality of the search space, u is the inertia factor, and the learning factors c1 and c2 
denote the weights of the random acceleration terms. r1 and r2 are random numbers generated in the range of [0, 1]. 

2.3. Modeling process 

The modeling process of FSGM (1,1, α) is shown in Fig. 2. 

2.4. Error evaluation 

For numerical simulation results, accuracy verification should generally be performed [37–42]. Therefore, we evaluate the fore-
casting performance of FSGM(1,1, α) using the absolute percentage error (APE), mean absolute percentage error in the simulation 
stage (MAPES), average absolute percentage error in the prediction stage (MAPEP), mean absolute percentage error (MAPE) and root 
mean square error (RMSE). Table 1 presents the corresponding formulas. The evaluation standards for MAPE are shown in Table 2. 

Table 1 
Error metrics.  

Error type Formula 

APE 
APE =

⃒
⃒x̂(0)(k) − x(0)(k)

⃒
⃒

x(0)(k)
× 100% 

MAPES 
MAPES =

1
n
∑n

k=1
APE(k) =

1
n
∑n

k=1

⃒
⃒x̂(0)(k) − x(0)(k)

⃒
⃒

x(0)(k)
× 100% 

MAPEP 
MAPEP =

1
f
∑n+f

k=n+1
APE(k) =

1
n
∑n+f

k=n+1

⃒
⃒x̂(0)(k) − x(0)(k)

⃒
⃒

x(0)(k)
× 100% 

MAPE 
MAPE =

1
n + f

∑n+f
k=1

APE(k) =
1
n
∑n+f

k=1

⃒
⃒x̂(0)(k) − x(0)(k)

⃒
⃒

x(0)(k)
× 100% 

RMSE 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

k=1
(x(0)(k) − ̂x(0)(k))2

√

× 100%   
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Models with small MAPEs perform better in prediction tasks than those with large MAPEs. 

3. Validation of FSGM (1,1, α) 

In this section, we select three sets of seasonal time series data to test the model’s effectiveness. These data are sourced from the 
National Bureau of Statistics and include quarterly power generation in Beijing, China, from 2012 to 2022, quarterly power generation 
in Henan Province, China, from 2012 to 2022, and quarterly petroleum coke production in China from 2012 to 2022. Moreover, we 
select GM (1,1), SGM (1,1) [19], DGGM (1,1) [44], DGSM (1,1) [2], and DGSTM (1,1) [20] as competitive models to verify the 
effectiveness of FSGM (1,1, α). 

3.1. Case 1: power generation in Beijing 

Power generation reflects the energy supply and demand of a country or region and is closely related to production and con-
sumption in various industries. Therefore, analyzing the growth trend of power generation can help us understand the economic 
growth of a certain region. The quarterly power generation in Beijing, China, from 2012 to 2022 is used to obtain future generation 
predictions. The dataset includes a total of 44 time points. We select the first 36 data points (2012–2020) as the training set and the last 
8 data points (2021–2022) as the test set for modeling. Table 3 displays the parameter values for the six comparative models. The 
background value coefficients and fractional order parameter values of FSGM (1,1, α) are obtained using the PSO algorithm and are 
λ1 = 0, λ2 = 0, λ3 = 1, λ4 = 0 and α̂ = 0.7328. 

The prediction results of the six models based on the original sequence are shown in Fig. 3. The changes in the six predicted se-
quences generally increase, which is in accordance with the increasing trend of the original sequence. In the traditional GM (1,1), the 
curve of the entire prediction sequence displays an approximately straight upward trend, reflecting only the approximate trend of the 
sequence. The poor fitting and prediction results do not reflect the seasonal characteristics of the initial electricity generation, which is 
why many scholars continue to develop model improvements to adapt to the characteristics of different forecasting data. Notably, in 
the curves obtained with FSGM (1,1, α), SGM (1,1), DGGM (1,1), DGSM (1,1), and DGSTM (1,1), the electricity generation in each year 
and quarter displays similar volatility, reflecting why we introduce seasonal characteristics into the grey model. From the trend in the 
figures, compared with the other models, FSGM (1,1, α) is most suitable for obtaining predictions based on the original sequence. 
Notably, there are significant gaps between the predicted series and the actual series in the fourth quarter of 2015 and the first quarter 
of 2016. These gaps are due to the sharp increase in electricity consumption in Beijing at these times based on weather patterns and 
other natural factors. Moreover, at the single-point scale, the predictions of FSGM (1,1, α) display the smallest difference from the real 
sequence, so compared with other models, FSGM (1,1, α) is is most suitable for predicting the power generation in Beijing. 

Table 4 shows the maximum APE values in the simulation and prediction stages, indicating that FSGM(1,1) achieves good pre-
dictive performance. In the simulation phase, the maximum APE value of FSGM (1,1, α) is 20.07 %, with a relatively low simulation 
error and an absolute advantage. For the prediction stage, the maximum APE value of FSGM (1,1, α) is 10.69 %, which is slightly larger 
than the value of 9.43 % obtained with DGSTM (1,1), and the proposed model displays certain advantages compared to other models. 
In addition, GM (1,1) without seasonal features produces large prediction errors for seasonal data, and the error of SGM (1,1) when 
applying seasonal factors to process data is relatively low. 

Moreover, box plots of the APE values are shown in Fig. 4. We can see that FSGM (1,1, α) achieves good predictive performance for 
the original sequence compared to the other models. Specifically, the variation range of the APE values of FSGM (1,1, α) is [0, 20 %], 

Table 2 
Evaluation standards for the MAPE.  

MAPE (%) Forecasting performance 

<5 Excellent 
5–15 Good 
15–50 Reasonable 
>50 Incorrect  

Table 3 
Parameter estimates for case 1.  

Model Parameter value 

FSGM(1,1, α) α = 0.7328, λ1 = 0, λ2 = 0, λ3 = 1, λ4 = 0
â = 0.0276, b̂1 = 76.3046, b̂2 = 48.5634, b̂3 = 67.6595, b̂4 = 74.4036 

GM(1,1) â = − 0.0115, b̂ = 78.4766 
SGM(1,1) â = − 0.0124, b̂ = 78.2813 
DGGM(1,1) â1 = − 0.0338, â2 = − 0.0385, â3 = − 0.0348, â4 = − 0.0346

b̂1 = 102.6101, b̂2 = 63.2446, b̂3 = 88.0607, b̂4 = 99.3082 
DGSM(1,1) â = 1.0106, b̂1 = 99.5455, b̂2 = 53.2102, b̂3 = 78.8220, b̂4 = 92.5385 
DGSTM(1,1) â = 0.9051, b̂ = 10.5323

ĉ1 = 81.3362, ĉ2 = 38.5194, ĉ3 = 60.9410, ĉ4 = 74.2518  
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Fig. 3. Simulation and prediction curves for case 1. (a) FSGM (1,1, α); (b) GM(1,1); (c) SGM (1,1); (d) DGGM (1,1), (e) DGSM (1,1); (f) 
DGSTM (1,1). 

Table 4 
Maximum APE values for case 1.  

%  FSGM(1,1, α) GM(1,1) SGM(1,1) DGGM(1,1) DGSM(1,1) DGSTM(1,1) 

APE_Max Simulation 20.07 79.43 28.04 20.46 25.44 23.25 
Prediction 10.69 52.74 27.91 24.02 21.94 9.43  
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and the data are relatively concentrated in [0, 10 %], with a lower fluctuation amplitude than those of the other five models. In 
addition, SGM (1,1), GM (1,1), and DGSM (1,1) all produce some abnormal data, enhancing the prediction of volatile APE values in 
these three models. Table 5 lists the specific RMSE, MAPE, MAPES, and MAPEP values. Compared with the other models, FSGM (1,1, α) 
yields the smallest RMSE, MAPE, and MAPES values. Additionally, the MAPEP value is 4.98 %, which is slightly higher than the value 
of 4.45 % obtained for DGSTM (1,1). Furthermore, GM (1,1) displays poor predictive ability for seasonal data, indicating that it is not 
suitable for predicting data with periodic fluctuations. 

3.2. Case 2: power generation in Henan Province 

In this section, we use the quarterly power generation in Henan Province, China, from 2012 to 2022 for corresponding prediction 
research. This dataset includes a total of 44 data points. We select the first 36 data points (2012–2020) as the training set and the last 8 
data points (2021–2022) as the test set for modeling. The parameter values of the six compared models are presented in Table 6. PSO is 
applied to obtain the background value coefficients and fractional order parameter values of FSGM (1,1, α), which are λ1 = 0.6244,
λ2 = 0.7840, λ3 = 1, λ4 = 0.5265 and α̂ = 1.1420. 

The predicted sequences of the six models are shown in Fig. 5. The trends of the six predicted sequences increase, which is in 
accordance with the increasing trend of the original sequence. However, the increase is small, indicating that electricity consumption 
in Henan Province has been relatively stable over the past 10 years. For the results of the traditional GM (1,1), the curve of the entire 
prediction sequence approximates a straight line, reflecting the approximate trend; moreover, the fitting and prediction effects are 
poor and cannot reflect the seasonal characteristics of initial electricity generation. Notably, in the curves predicted by the FSGM (1,1), 
SGM (1,1), DGGM (1,1), DGSM (1,1), and DGSTM (1,1) models, electricity generation in each year and quarter displays similar 
volatility, highlighting the value of adding seasonal features to grey models. From the trends in the graphs, FSGM (1,1, α) fits the 
original sequence better than the other competing models. There is a significant gap between the predicted and actual series of 
electricity consumption in the third quarter since 2017. The possible reason is that with economic development, people’s living 
conditions have gradually improved. The hot weather in the third quarter led to a sharp increase in electricity consumption in Henan 
Province, as residents reduced their electricity consumption. At the same time, at the single-point scale, the predictions of FSGM (1,1, 
α) display the smallest difference from the real sequence; therefore, compared with other models, FSGM (1,1, α) is the most suitable for 
predicting the power generation in Henan Province. 

Table 7 shows the maximum APE values in the simulation and prediction stages, indicating that FSGM(1,1, α) achieves good 
predictive performance. In the simulation phase, the maximum APE value of FSGM (1,1, α) is 14.08 %, and the advantage over other 
models is not significant. However, in the prediction phase, the maximum APE value of FSGM (1,1, α) is 13.93 %, and the absolute 

Fig. 4. Box plots of the APE values for case 1.  

Table 5 
Errors metrics for case 1.  

Model RMSE MAPE(%) MAPES(%) MAPEP(%) 

FSGM(1,1, α) 8.10 5.78 5.81 4.98 
GM(1,1) 20.71 19.12 18.97 20.45 
SGM(1,1) 11.61 8.85 7.86 14.81 
DGGM(1,1) 10.34 8.04 7.53 11.81 
DGSM(1,1) 10.04 8.19 7.85 10.70 
DGSTM(1,1) 9.00 7.80 8.40 4.45  
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advantage of this model over the other models is evident. Overall, FSGM(1,1, α) outperforms the other competitive models. The 
prediction results also reveal that GM (1,1) yields a large prediction error for seasonal data, and in comparison, SGM (1,1) yields a 
relatively significant reduction in error. 

Moreover, box plots of the APE values are shown in Fig. 6. Specifically, the range of APE values for FSGM (1,1, α) is [0, 12 %], and 
the data are relatively concentrated in the range of [0, 3 %]. The fluctuation in amplitude for these results is lower than that for the 
results of the other five models, indicating that FSGM (1,1, α) provides more reliable predictive ability than the other models. Table 8 
shows the specific values of the RMSE, MAPE, MAPES, and MAPEP for the six models. The four indicators for FSGM (1,1, α) are all 
lower than those of the other models, indicating that FSGM (1,1, α) achieves better predictive performance based on the original 
sequence. Similarly, GM (1,1) displays poor predictive ability for seasonal data, indicating that it is not suitable for predicting data 
with periodic fluctuations. 

3.3. Case 3: petroleum coke production in China 

As an important fossil energy and chemical raw material, petroleum coke has a profound impact on various industries. Therefore, 
we use the quarterly production of Chinese petroleum coke from 2012 to 2022 for corresponding prediction research. This dataset 
includes a total of 44 data points. We select the first 36 data points (2012–2020) as the training set and the last 8 data points 
(2021–2022) as the test set for modeling. The parameter values are presented in Table 9. PSO is applied to obtain the background value 
coefficients and fractional order parameter values of FSGM (1,1, α), which are λ1 = 0.4625, λ2 = 1, λ3 = 0.3871, λ4 = 0 and α̂ =

0.9815. 
The predicted sequences of the six models are shown in Fig. 7. The changes in the six predicted sequences increase, consistent with 

the increasing trend of the original sequence. In the traditional GM (1,1), the curve of the entire prediction sequence approximates a 
straight line, reflecting the original trend only approximately, and the fitting and prediction effects are poor; therefore, the seasonal 
characteristics of the initial coke production are poorly modeled. Notably, in the curves predicted by the FSGM (1,1), SGM (1,1), 
DGGM (1,1), DGSM (1,1), and DGSTM (1,1) models, coke production in each year and quarter displays similar volatility, highlighting 
the value in adding seasonal features to the models. The trend in the graph shows that FSGM (1,1, α) yields a significantly better fit for 
the raw data than the other competing models. The difference between the actual sequences and that predicted by the FSGM (1,1, α) 
model is significantly smaller than that of the other models; therefore, compared with the other models, FSGM (1,1, α) is the most 
suitable for predicting the petroleum coke production in China. 

Moreover, box plots of the APE values are shown in Fig. 8. Specifically, the range of APE values for FSGM (1,1, α) is [0, 7 %], and the 
data are relatively concentrated in the range of [0, 2 %]. The fluctuation in amplitude for these results is lower than that for the results 
of the other five models, indicating that FSGM (1,1, α) provides more reliable predictive ability than the other models. Table 10 shows 
the maximum APE values in the simulation and prediction stages, indicating that FSGM (1,1, α) achieves good predictive performance. 
In the simulation and prediction stages, the maximum APE values of FSGM(1,1, α) are 11.46 % and 3.13 %, respectively, the smallest 
values observed, indicating that FSGM(1,1, α) has an absolute advantage over other competitive models. The prediction results also 
reveal that GM (1,1) yields a large prediction error for seasonal data, and in comparison, SGM (1,1) produces a relatively significant 
reduction in error. Table 11 shows the specific values of the RMSE, MAPE, MAPES, and MAPEP for the six models. These four for FSGM 
(1,1, α) are lower than those for the other models, indicating that FSGM (1,1, α) achieves better predictive performance for the raw 
sequence. Similarly, GM (1,1) exhibits poor predictive ability for seasonal data, indicating that it is not suitable for predicting data with 
periodic fluctuations. 

4. Prediction results 

Based on analyses of the above three cases, it is found that FSGM (1,1, α) can effectively capture the seasonal characteristics of the 
original sequences and yields the best simulation and prediction performance. Therefore, based on the results above, FSGM (1,1, α) is 
applied to predict quarterly electricity generation in Beijing and Henan Provinces and petroleum coke production in China from 2023 
to 2027. The prediction results are shown in Table 12 and Fig. 9. From 2023 to 2027, electricity generation in Beijing and Henan 
Provinces and petroleum coke production in China display obvious cyclical seasonal fluctuations. Notably, power generation in Beijing 

Table 6 
Parameter estimates for case 2.  

Model Parameter value 

FSGM(1,1, α) α = 1.1420, λ1 = 0.6244, λ2 = 0.7840, λ3 = 1, λ4 = 0.5265
â = − 0.0337, b̂1 = 752.1014, b̂2 = 718.8536, b̂3 = 818.9975, b̂4 = 752.9340 

GM(1,1) â = − 0.0013, b̂ = 666.5734 
SGM(1,1) â = − 0.0013, b̂ = 666.8008 
DGGM(1,1) â1 = 0.0068, â2 = − 0.0021, â3 = − 0.0130, â4 = − 0.0040

b̂1 = 692.1499, b̂2 = 643.8922, b̂3 = 710.2366, b̂4 = 684.2010 
DGSM(1,1) â = 1.0012, b̂1 = 659.3278, b̂2 = 634.1488, b̂3 = 723.0858, b̂4 = 655.0158 
DGSTM(1,1) â = 0.9240, b̂ = 52.5465

ĉ1 = 655.4645, ĉ2 = 630.2572, ĉ3 = 716.6744, ĉ4 = 653.0115  
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Fig. 5. Simulation and prediction curves for case 2. (a) FSGM (1,1, α); (b) GM(1,1); (c) SGM (1,1); (d) DGGM (1,1), (e) DGSM (1,1); (f) 
DGSTM (1,1). 

Table 7 
Maximum APE values for case 2.    

FSGM(1,1, α) GM(1,1) SGM(1,1) DGGM(1,1) DGSM(1,1) DGSTM(1,1) 

APE_Max Simulation 14.08 18.70 11.75 9.46 12.28 15.93 
Prediction 13.93 23.51 16.89 17.94 17.71 18.78  
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fluctuates between 8 and 12.7 billion kilowatt hours, maintaining a relatively stable level and without significant growth. Power 
generation in Henan Province exhibits a continuous growth trend, increasing from 74.648 billion kilowatt hours in the fourth quarter 
of 2023 to 83.241 billion kilowatt hours in the fourth quarter of 2027, an increase of 11.50 %. Petroleum coke production in China also 
exhibits a continuous growth trend, increasing from 8.2 million tons in the fourth quarter of 2023 to 9.1 million tons in the fourth 
quarter of 2027, an increase of 10.93 %. 

5. Conclusion 

In response to the shortcomings of the existing grey season models and to accurately predict sequence data with seasonal char-
acteristics, we combine data restart technology and fractional order accumulation and propose a new grey season model: FSGM (1,1, 
α). On this basis, the PSO algorithm is used to solve for the fractional order and background value coefficients of FSGM (1,1, α), and the 
effectiveness of FSGM (1,1, α) is verified through three cases. Finally, we use FSGM (1,1) to predict quarterly electricity generation in 
Beijing and Henan Provinces and petroleum coke production in China from 2023 to 2027. The research results indicate that the 
modeling method and solution process of FSGM (1,1, α) are reasonable and effective and can effectively capture the dynamic trends of 
seasonal data. Second, compared with the traditional GM (1,1), SGM (1,1), DGGM (1,1), DGSM (1,1), and DGSTM (1,1) models with 
seasonal characteristics, FSGM (1,1, α) can better fit the original data, achieves higher prediction accuracy, and performs better. Third, 

Fig. 6. Box plots of the APE values for case 2.  

Table 8 
Error metrics for Case 2.  

Model RMSE MAPE(%) MAPES(%) MAPEP(%) 

FSGM(1,1, α) 39.63 3.62 3.21 6.02 
GM(1,1) 58.13 5.61 5.49 7.00 
SGM(1,1) 46.32 4.80 4.30 7.87 
DGGM(1,1) 47.67 5.01 3.86 10.59 
DGSM(1,1) 47.26 4.85 4.32 8.06 
DGSTM(1,1) 53.26 5.84 5.35 8.87  

Table 9 
Parameter estimates for case 3.  

Model Parameter value 

FSGM(1,1, α) α = 0.9815, λ1 = 0.4625, λ2 = 1, λ3 = 0.3871, λ4 = 0
â = − 0.0250, b̂1 = 5.4876 × 106, b̂2 = 5.4714 × 106, b̂3 = 5.5460 × 106, b̂4 = 5.8789 × 106 

GM(1,1) â = − 0.0091, b̂ = 5.3958× 106 

SGM(1,1) â = − 0.0091, b̂ = 5.4005× 106 

DGGM(1,1) â1 = − 0.0254, â2 = − 0.0329, â3 = − 0.0279, â4 = − 0.0292
b̂1 = 5.8408 × 106, b̂2 = 5.7365 × 106, b̂3 = 5.8452 × 106, b̂4 = 6.0804 × 106 

DGSM(1,1) â = 1.0091, b̂1 = 5.4518× 106 , b̂2 = 5.4030× 106, b̂3 = 5.3008× 106, b̂4 = 5.5604× 106 

DGSTM(1,1) â = 0.9392, b̂ = 4.4986 × 105

ĉ1 = 4.8465 × 106, ĉ2 = 4.8517 × 106 , ĉ3 = 4.7419 × 106, ĉ4 = 4.9908 × 106  
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from 2023 to 2027, electricity generation in Beijing and Henan Provinces and petroleum coke production in China all exhibit sig-
nificant cyclical seasonal fluctuations. The trend of power generation in Beijing is relatively stable, while the trends of power gen-
eration in Henan Province and petroleum coke production in China exhibit certain steady upward growth. It is expected that power 
generation in Henan Province and petroleum coke production in China in the fourth quarter of 2027 will increase by 11.50 % and 
10.93 %, respectively, compared to the levels in the fourth quarter of 2023. 

When solving the model, we divide the data into four groups according to seasonal factors and solve the time response function for 

Fig. 7. Simulation and prediction curves for case 3. (a) FSGM (1,1, α); (b) GM(1,1); (c) SGM (1,1); (d) DGGM (1,1), (e) DGSM (1,1); (f) 
DGSTM (1,1). 
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Fig. 8. Box plots of the APE values for case 3.  

Table 10 
Maximum APE values for case 3.    

FSGM(1,1, α) GM(1,1) SGM(1,1) DGGM(1,1) DGSM(1,1) DGSTM(1,1) 

APE_Max Simulation 11.46 19.20 17.88 13.57 16.60 18.19 
Prediction 3.13 8.43 7.41 11.10 7.92 7.14  

Table 11 
Errors metrics for case 3.  

Model RMSE MAPE(%) MAPES(%) MAPEP(%) 

FSGM(1,1, α) 2.215 2.30 2.41 1.85 
GM(1,1) 3.300 4.14 4.30 3.65 
SGM(1,1) 3.244 3.90 4.07 3.50 
DGGM(1,1) 3.144 3.49 3.47 4.04 
DGSM(1,1) 3.129 3.85 4.00 3.28 
DGSTM(1,1) 3.554 4.48 4.54 4.40  

Table 12 
Projections from 2023 to 2027.  

Time Power generation in Beijing (100 million kWh) Power generation in Henan (100 million kWh) Petroleum coke production in China (106 t) 

2023Q1 126.93 747.58 7.66 
2023Q2 80.72 714.21 7.64 
2023Q3 112.46 812.22 7.75 
2023Q4 123.77 746.48 8.20 
2024Q1 127.00 767.37 7.86 
2024Q2 80.80 733.10 7.85 
2024Q3 112.58 833.64 7.96 
2024Q4 123.83 766.19 8.42 
2025Q1 126.87 788.35 8.07 
2025Q2 80.76 753.13 8.05 
2025Q3 112.51 856.37 8.17 
2025Q4 123.71 787.11 8.64 
2026Q1 126.57 810.49 8.28 
2026Q2 80.60 774.27 8.26 
2026Q3 112.29 880.36 8.38 
2026Q4 123.42 809.19 8.87 
2027Q1 126.13 833.76 8.49 
2027Q2 80.35 796.50 8.48 
2027Q3 111.93 905.59 8.60 
2027Q4 122.99 832.41 9.10  
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each group separately. Then, we establish the recovery equations used to solve for the five parameters. Although this approach im-
proves the prediction accuracy of the grey model, we may have overlooked the impact between quarters to some extent. For example, if 
the first-quarter growth does not reach the expected rate, the local government may take corresponding measures to adjust the 
production plan for the second quarter, which will affect the future development trend. This is a direction for the future improvement 
of the model. 

Nomenclature  

r- FOA r-order fractional accumulation 
r-IFOA r-order inverse accumulative generation operator 
GM(1,1) grey model 
SGM (1,1) seasonal grey model 
DGGM (1,1) data grouping grey model 
DGSM discrete grey seasonal model 
DGSTM (1,1) data grouping seasonal time model 
FSGM (1,1, α) α-order fractional seasonal grey model 
PSO particle swarm optimization 
APE absolute percentage error 
MAPE mean absolute percentage error 
RMSE root mean square error  
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