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Transcription factors NRF2 and 
HSF1 have opposing functions in 
autophagy
Sharadha Dayalan Naidu1, Dina Dikovskaya1, Egle Gaurilcikaite1,6, Elena V. Knatko1, Zachary 
R. Healy2,7, Hema Mohan1, Glenn Koh1, Axel Laurell1, Graeme Ball3, David Olagnier4,8, 
Laureano de la Vega   1, Ian G. Ganley   5, Paul Talalay2 & Albena T. Dinkova-Kostova1,2

Autophagy plays a critical role in the maintenance of cellular homeostasis by degrading proteins, lipids 
and organelles. Autophagy is activated in response to stress, but its regulation in the context of other 
stress response pathways, such as those mediated by heat shock factor 1 (HSF1) and nuclear factor-
erythroid 2 p45-related factor 2 (NRF2), is not well understood. We found that the Michael acceptor 
bis(2-hydoxybenzylidene)acetone (HBB2), a dual activator of NRF2 and HSF1, protects against the 
development of UV irradiation-mediated cutaneous squamous cell carcinoma in mice. We further show 
that HBB2 is an inducer of autophagy. In cells, HBB2 increases the levels of the autophagy-cargo protein 
p62/sequestosome 1, and the lipidated form of microtubule-associated protein light chain 3 isoform B. 
Activation of autophagy by HBB2 is impaired in NRF2-deficient cells, which have reduced autophagic 
flux and low basal and induced levels of p62. Conversely, HSF1-deficient cells have increased autophagic 
flux under both basal as well as HBB2-induced conditions, accompanied by increased p62 levels. 
Our findings suggest that NRF2 and HSF1 have opposing roles during autophagy, and illustrate the 
existence of tight mechanistic links between the cellular stress responses.

The ability to respond to stress in a dynamic environment is essential for the adaptation and survival of all living 
organisms. The phase 2 response and the heat shock response represent two essential components of the mam-
malian stress response and are controlled by transcription factors nuclear factor-erythroid 2 p45-related factor 
2 (NRF2) and heat shock factor 1 (HSF1), respectively1–4. Although the phase 2 response and the heat shock 
response are not dependent on each other, mounting evidence suggests that they engage in crosstalk5.

Autophagy plays a critical role in the maintenance of cellular homeostasis by degrading proteins, lipids and 
organelles6, 7. Modulation of autophagy is regarded as means for the development of strategies for disease pre-
vention and treatment8. Several reports have described links between the heat shock response and autophagy, as 
well as between the phase 2 response and autophagy. The autophagy-cargo protein p62, also known as sequesto-
some 1 (SQSTM1) is regulated by oxidative stress and is a transcriptional target of NRF29–12. Furthermore, p62 
when phosphorylated, competes with NRF2 for binding to its main negative regulator, Kelch-like ECH-associated 
protein 1 (KEAP1)13, 14, thereby leading to enhanced transcription of NRF2-dependent genes, and creating a 
positive feedback regulatory loop for its own gene expression. In addition to p62, NRF2 regulates the expression 
of a number of genes encoding proteins with critical functions in autophagy, including ULK1 and ATG515. Very 
recently, it was shown that NRF2 activation stimulates viral replication in cancer cells and disrupts the type I 
interferon response via increased autophagy16. In contrast to NRF2, the levels of which are primarily regulated 
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by ubiquitination and proteasomal degradation, the protein turnover of KEAP1 is controlled by autophagy17. 
Heat shock, the classical activator of HSF1, induces mild activation of autophagy in cultured human A549 lung 
adenocarcinoma epithelial cells18. Notably, this occurs under conditions of persistent NRF2 activation due to 
loss-of-function mutations in KEAP119. It has also been reported that HSF1 is required for autophagy induced by 
chemotherapeutic agents20. Upon accumulation of protein aggregates, HSF1 facilitates casein kinase 1-mediated 
phosphorylation of p62, whereas inhibition of HSF1 impairs protein aggregate-induced autophagosome forma-
tion21. HSF1 is often constitutively active in cancer cells and established human tumors22, and the prototypic 
HSF1-downstream target, inducible heat shock protein 70 (Hsp70), has been shown to exhibit tumor-specific 
localization to lysosomes and promote autophagy23. Furthermore, autophagy-inducing stress caused by histone 
deacetylase inhibition leads to an increase in the intracellular levels of acetylated Hsp70, which is required for the 
formation of the autophagosome24.

We have previously reported that the ortho-hydroxylated double Michael acceptor bis(2-hydoxybenzylidene)
acetone (HBB2) is a potent dual inducer of the phase 2 response and the heat shock response25. In the present study, 
we found that HBB2 inhibits the development of cutaneous squamous cell carcinoma caused by chronic exposure 
to UV radiation in SKH-1 hairless mice. We further show that in addition to inducing the phase 2 response and the 
heat shock response, HBB2 is also an inducer of autophagy. This compound served as a chemical probe to eluci-
date mechanistically the role of transcription factors NRF2 and HSF1, the master regulators of these cytoprotective 
responses, in autophagy. We discovered that, in contrast to NRF2, which promotes autophagic flux, HSF1 suppresses 
autophagy. The effect of these two pathways on autophagy was closely mirrored by their opposing transcriptional 
regulation of p62. Understanding the regulation of autophagy in the context of enhanced HSF1 and NRF2 signaling 
is essential for the design of successful therapeutic strategies targeting this fundamental biological process.

Results
HBB2 inhibits tumor incidence and multiplicity in a mouse model of high-risk UV radiation-me-
diated cutaneous squamous cell carcinoma.  The role of activation of NRF2 and HSF1 during the pro-
cess of carcinogenesis is context dependent, and both tumor prevention as well as tumor promotion effects have 
been described26–28. To determine the effect of HBB2, a potent dual inducer of NRF2 and HSF125, on tumor devel-
opment we used a mouse model of high-risk UV radiation-mediated cutaneous squamous cell carcinoma29, 30.  
Two groups of SKH-1 hairless mice were exposed chronically to low levels of UV radiation twice a week for 17 
weeks. Irradiation was then discontinued. During the subsequent 12 weeks, one of the groups received topical 
applications of 1 μmol HBB2 twice a week, and the other group, vehicle (80% acetone) with the same frequency 
and duration. Tumor incidence and multiplicity were profoundly decreased in the HBB2-treated group. Thus, 
at the end of the experiment, 81% of the animals in the vehicle control group had developed at least one tumor, 
whereas this number was reduced to 40% in the HBB2-treatment group (Fig. 1a). The difference in tumor inci-
dence between the two groups was statistically significant (p < 0.05, by ANOVA). Similarly, tumor multiplicity 
was reduced by ~70% (p < 0.05, by ANOVA), and at the end of the experiment, the number of tumors per mouse 
at risk was 2.3 and 0.66 for the vehicle- and the HBB2-treatment group, respectively (Fig. 1b). Overall, we con-
clude that in this mouse model of cutaneous squamous cell carcinoma, which is initiated by one of the most 
relevant human carcinogens and is characterized by an extraordinary high mutation burden31, 32, HBB2 inhibits 
the development of initiated tumors.

HBB2 induces HSE-dependent transcription.  HBB2 reacts readily with sulfhydryl groups, whereas its 
non-hydroxylated structural analog bis(benzylidene)acetone (DBA) (Fig. 2a) has a much weaker reactivity25, 33. 

Figure 1.  HBB2 inhibits tumor incidence and multiplicity in a mouse model of high-risk UV radiation-mediated 
cutaneous squamous cell carcinoma. Female SKH-1 hairless mice were exposed to UVB radiation (30 mJ/cm2/
session) twice a week for 17 weeks, and then distributed into two groups. The mice from each group were treated 
topically with either 100 μl of 80% acetone (vehicle control group, n = 21) or 1 μmol of HBB2 dissolved in 100 μl 
of 80% acetone (HBB2-treatment group, n = 18) twice a week, for 12 weeks. Tumor incidence (a) is represented as 
the percentage of tumor-bearing animals in each group. Tumor multiplicity (b) is expressed as the total number of 
tumors in each group divided by the number of animals at risk; the data represent mean values ± SEM.
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We tested the ability of HBB2 and DBA to activate HSF1-mediated transcription using the HeLa HSE-luciferase 
reporter cell line stably transfected with luciferase under the transcriptional control of the HSP70.1 promoter con-
taining heat shock elements, the upstream regulatory sequences to which HSF1 binds to initiate transcription34. 
At the highest concentration tested (5 µM), HBB2 produced a dramatic (~800-fold, p < 0.001) increase in lucif-
erase activity (Fig. 2b). This effect is concentration-dependent, with 1.25 µM HBB2 causing a 1.7-fold increase, 
and 2.5 µM HBB2 increasing the reporter activity by 12-fold. In sharp contrast, no induction was observed in cells 
exposed to the structural analog DBA. Notably, the magnitude of the effect of HBB2 on HSE-mediated transcrip-
tion exceeded that of the positive control, phenethyl isothiocyanate (PEITC)35.

Figure 2.  HBB2 robustly induces the heat shock response. (a) Chemical structures of HBB2 and DBA. (b) 
Luciferase gene reporter assay was performed in HeLa-luc cells treated with up to 5 µM of either HBB2 or 
DBA for 24 h. PEITC was included as a positive control. Luminescence values were normalised to respective 
vehicle controls (0.1% DMSO for HBB2 and DBA; 0.1% ACN (not included in the graph) for PEITC). Data 
are means ± SD from two independent experiments (n = 6 for each treatment group). ***p < 0.001 (one-way 
ANOVA and Tukey’s post-test). (c) Western blot analysis demonstrating a concentration-dependent increase 
in total Hsp70 levels in U2OS whole-cell lysates caused by a 24-h treatment with HBB2 but not with DBA. 0.1% 
DMSO was used as a vehicle control and β-actin acted as a loading control.
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Figure 3.  HBB2 causes lipidation of LC3B and accumulation of p62, and enhances autophagic flux. (a) 
Immunofluorescence analysis for p62 and LC3B in U2OS cells that had been exposed to HBB2 (3 µM) (bottom) 
or treated with vehicle (top) for 16 h. The images were obtained by confocal microscopy. Scale bar = 20 µm. (b–
d) Western blot analysis of U2OS whole-cell lysates was conducted to detect the changes in the levels of LC3B-II 
(b), Hsp70 (c) and p62 (d) in response to a 4-, 8-, 16-, or 24 h treatments with HBB2 (3 µM) and/or bafilomycin 
A1 (Baf-A1; 10 nM), as indicated above the lanes. DMSO (0.1%, v/v) was used as a vehicle control (indicated as 
−/− above the blots), whereas β-actin levels served as a loading control.
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Western blot analysis in the human osteosarcoma cell line U2OS confirmed the relatively steep 
concentration-response relationship for the ability of HBB2 to induce the endogenous Hsp70, with 1-, 2- and 
3 µM HBB2 causing an increasingly greater upregulation in Hsp70 (Fig. 2c). Interestingly, a new, faster-migrating 
band was also observed upon treatment with increasing concentrations of HBB2. By use of in-gel tryptic digestion 
and mass spectrometry, we confirmed that this band was an isoform of Hsp70 (not shown). Together, these results 
demonstrate that HBB2 is a robust activator of the HSF1-mediated transcriptional responses.

HBB2 increases the levels of p62 and LC3B.  Because of the individual links between the cellular stress 
responses regulated by HSF1 and NRF2 with autophagy, we next examined the potential ability of HBB2 to affect 
autophagy. We began by evaluating two biomolecular markers of autophagy – p62 and the microtubule-associated 
protein light chain 3 isoform B (LC3B). LC3B-II is a membrane-associated form of LC3B that arises from the 
processing of the soluble LC3B-I by conjugation with phosphatidylethanolamine; this lipidation process in turn 
allows association with both the inner and the outer surfaces of the autophagosome. Immunofluorescence anal-
ysis showed that exposure to HBB2 (3 μM) for 16 h caused an increase in the levels of p62 and LC3B, and further 
revealed that the two proteins co-localize in the cytoplasm of HBB2-treated cells (Fig. 3a).

These results strongly suggest that HBB2 affects the autophagic process. However, it was not clear whether 
autophagy was induced or inhibited. This is because autophagy is a dynamic process with the amount of autopha-
gosomes (and their components, including LC3B-II and p62) present at any one time being dependent on their 
rate of formation as well as on their rate of degradation. To rule out a decrease in autophagosomal turnover as the 
reason for the increased levels of p62 and LC3B-II, experiments were carried out in the presence or absence of 
the autophagy inhibitor bafilomycin A1 (Baf-A1). When autophagy is induced, Baf-A1 causes accumulation of 
p62 and LC3B-II, whereas no further increase upon Baf-A1 addition is seen when autophagy is inhibited. Thus 
including Baf-A1 provides a measure of autophagic flux36. We therefore next evaluated the effect of HBB2 on 
autophagic flux in the presence or absence of Baf-A1.

HBB2 increases autophagic flux.  When HBB2 and/or Baf-A1 were applied to the cells for 4, 8, 16, or 24 h, 
a time-dependent increase in the levels of LC3B-II (Fig. 3b), Hsp70 (Fig. 3c), and p62 (Fig. 3d) was observed. In 
the case of LC3B-II, the upregulation by HBB2 was most pronounced at the 16-h time point (Fig. 3b). Moreover, 
when Baf-A1 was used in combination with HBB2, a cumulative effect of the two agents was seen, especially at the 
later time points (16 and 24 h). Since Baf-A1 is a specific inhibitor of the vacuolar-type H+-ATPase and prevents 
maturation of autophagic vacuoles by inhibiting the fusion between autophagosomes and lysosomes in the late 
phase of autophagy37, the cumulative effect on the increase in LC3B-II levels upon the combined treatment of the 
cells with HBB2 and Baf-A1 indicated an upregulation of autophagic flux by HBB2. This was further supported 
by changes in lysosomal distribution, from relatively uniform peripheral localization to predominantly asym-
metric perinuclear clustering, as revealed by immunostaining for the lysosome-associated membrane protein 1 
(LAMP1) (Fig. S1). Such lysosomal repositioning plays a critical role in the control of autophagic flux38.

Induction of Hsp70 by HBB2 was already clearly evident at the 4-h time point (Fig. 3c), with a gradual fur-
ther increase throughout the time course of the experiment. Baf-A1 alone had no effect on the levels of Hsp70. 
However, in combination with HBB2, Baf-A1 caused a further increase in the intensity of the faster-migrating 
band, which was detected with the anti-Hsp70 antibody at the 16- and 24-h time points, and its accumulation 
upon inhibition of autophagy by Baf-A1 suggests that it may be involved/processed during autophagy. This is con-
sistent with the previously reported localization of Hsp70 in lysosomes during autophagy23, and the requirement 
for this heat shock protein for the formation of the autophagosome24.

In contrast to Hsp70, the increase in p62 levels was only detectable at the 16-h time point (Fig. 3d), with a very 
substantial cumulative induction by the combined (HBB2 and Baf-A1) treatment. This enhanced accumulation 
of the autophagy-cargo protein upon the combined HBB2 and Baf-A1 treatment, compared to either treatment 
alone strengthens the conclusion that HBB2 is an inducer of autophagy. Such synergistic upregulation in the levels 
of p62 by the combination of HBB2 and Baf-A1 is most likely due to the fact that p62 is degraded by autophagy39, 
which is blocked by Baf-A1, whereas the increase in p62 levels caused by HBB2 alone could represent transcrip-
tional upregulation of p62 caused by HBB2-dependent activation of NRF211 or HSF112, or both.

NRF2 promotes, whereas HSF1 inhibits autophagic flux.  Having established that, in addition to 
activating NRF2 and HSF1, HBB2 also induces autophagy, we next assessed the contribution of NRF2 and HSF1 
to the HBB2-mediated induction of autophagy. To this end, we depleted each transcription factor individually 
using siRNA. Immunoblotting (Fig. 4a) and quantitative real-time PCR (Fig. 4b) analyses showed that the levels 
of NRF2 were reduced by >90% in cells transfected with the NRF2 siRNA. Interestingly, for reasons that are 
currently unknown, the levels of HSF1 mRNA were reduced by the treatment with HBB2, although there was no 
significant difference between control siRNA (siCTL)- and siNRF2-transfected cells (Fig. 4c). In close agreement 
with the results in untransfected cells (Fig. 3a,b), the levels of LC3B-II were increased after treatment with HBB2 
in cells transfected with siCTL (Fig. 4a). Notably, the level of LC3B-II in HBB2-treated cells was much lower 
when NRF2 was knocked-down (siNRF2, Fig. 4a), indicating that NRF2 mediates, at least in part, the activation 
of autophagy by HBB2. Immunoblotting analysis also revealed that depletion of NRF2 notably reduced both 
basal and HBB2-induced levels of p62 protein (Fig. 4a). Immunofluorescence imaging of U2OS cells that were 
transfected with either control or NRF2 siRNA, and subsequently treated with vehicle or Baf-A1 confirmed the 
requirement for NRF2 for basal autophagic flux (Fig. 5a). Quantitative analysis of the image data further revealed 
that the co-localization of p62 and LC3B was significantly reduced under conditions of NRF2 deficiency, and this 
was especially pronounced when autophagy was blocked with Baf-A1 (Fig. 5b).

http://S1
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Figure 4.  Knockdown of NRF2 inhibits autophagy. (a) Immunoblotting analysis of NRF2, p62 and LC3B 
in lysates from U2OS cells, which had been transfected with either control siRNA (siCTL) or NRF2 siRNA 
(siNRF2) for 48 h, and subsequently treated with vehicle (0.1% DMSO) or HBB2 (3 µM) for 18 h, and 
supplemented with 10 nM bafilomycin A1 (Baf-A1) or vehicle (0.1% DMSO) for the last 2 h. The levels of 
β-actin served as a loading control. For detection of LC3B, proteins from cell lysates were resolved using 13% 
SDS-PAGE and transferred onto 0.45 µm PVDF membranes, whereas for detection of NRF2 and actin, proteins 
were blotted onto 0.45 µm NC membranes. (b–d) Real-time PCR analysis of NRF2 (b), HSF1 (c), and p62 (d) 
from a parallel experiment described in (a) except without Baf-A1 treatment. The mRNA levels of 18 S were 
used for normalization. The data are represented by mean + SD from three independent transfections. Student’s 
t-test was used to test for statistical significance, where *represents p < 0.05 when comparing siCTL and siNRF2 
for each treatment pair.
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We further asked whether NRF2 directly activates transcription of p62 in response to HBB2. Upon exposure 
to HBB2, the levels of NRF2 were increased (Fig. S2a), in agreement with the known NRF2 inducer activity of 
HBB2. The mRNA levels of the NRF2-target genes heme oxygenase 1 (HMOX1) (Fig. S2b), aldo-keto reduc-
tase 1C1 (AKR1C1) (Fig. S2c), and aldo-keto reductase 1B10 (AKR1B10) (Fig. S2d) were correspondingly and 
dose-dependently upregulated. In cells transfected with non-targeting siRNA (siCTL), HBB2 treatment induced 
a dose-dependent increase in p62 mRNA (Fig. 4d). Importantly, compared to cells transfected with the control 
siRNA (siCTL), the basal and the inducible mRNA levels of p62 were diminished in cells transfected with the 
NRF2 siRNA (Fig. 4d).

Together, these results imply that NRF2 is a mediator of the activation of autophagy by HBB2.
We then examined the contribution of HSF1 to the HBB2-mediated activation of autophagy using cells trans-

fected with HSF1 siRNA. We depleted HSF1 using either an individual HSF1-targeting siRNA40, designated here 
as siHSF1s, or an siRNA SMARTpool of four individual siRNAs (Dharmacon) (siHSF1sp). In both cases, the 
depletion resulted in more than 90% reduction in HSF1 at the protein (Fig. 6a) and the mRNA (Fig. 6b) levels. As 
expected, the mRNA levels of NRF2 were not affected (Fig. 6c). We further determined how loss of HSF1 affects 
markers of autophagy, such as lipidation of LC3B and p62 in response to HBB2, in the absence or the presence 
of Baf-A1- mediated block of their degradation. Both approaches (Figs 6e and S3) showed that HSF1 depletion 
dramatically increased basal autophagic flux. Furthermore, siHSF1sp-mediated depletion of HSF1 also strongly 
promoted autophagy induced by HBB2. Also specific for siHSF1sp was an increase in p62 protein level in cells 
treated with HBB2 (Fig. 6a).

Figure 5.  NRF2 is required for basal and HBB2-induced autophagic flux. Immunofluorescence images (a) and 
quantitative analysis (b) of the colocalization of p62 and LC3B in U2OS cells, which had been transfected with 
either control siRNA (top two panels) or NRF2 siRNA (bottom two panels) for 48 h, and subsequently treated 
with bafilomycin A1 (Baf-A1; 10 nM) for 18 h. Note that in the case of detection of LC3B, an antibody exhibiting 
a stronger reactivity to the lipidated form (LC3B-II) was used (LC3B D11, CST #3868). Wide-field microscope 
(Deltavision Elite) was used to collect the images where in each field 25 images were taken with an optical 
section of 0.2 μm. The deconvolved images represent the summed intensity projection using SoftWorX (Version 
5.5). Scale bar = 20 µm.

http://S2a
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Figure 6.  HSF1 inhibits autophagic flux. (a) Immunoblotting analysis of HSF1, Hsp70, p62, mTOR, 
phosphorylated mTOR (pS2448), p70 S6K, phosphorylated p70 S6K (pT389) in lysates from U2OS cells, which 
had been transfected with either control siRNA (siCTL) or HSF1 siRNA (siHSF1s or siHSF1sp) for 48 h, and 
subsequently treated with vehicle (0.1% DMSO) or HBB2 (3 µM) for 18 h, and supplemented with bafilomycin A1 
(Baf-A1; 10 nM) or vehicle (0.1% DMSO) for a the last two hours of HBB2 treatment. The levels of β-actin served 
as a loading control. (b–d) Real-time PCR analysis of HSF1 (b), NRF2 (c), and p62 (d) from a parallel experiment 
described in (a) except without Baf-A1 treatment, in U2OS cells transfected with siCTL (10 nM) or siHSF1sp 
(10 nM). The mRNA levels of 18 S were used for normalization. The data are represented by means + SD from 
three independent transfections. Student’s t-test was used to test for statistical significance, where *represents 
p < 0.05 when comparing siCTL and siHSF1sp for each treatment pair. (e) Immunoblotting analysis of LC3B 
in lysates from U2OS cells, which had been transfected with either siCTL (10 nM) or siHSF1sp siRNA (10 nM) 
for 48 h, and subsequently treated with vehicle (0.1% DMSO) or HBB2 (3 µM) for 18 h, supplemented with 
bafilomycin A1 (Baf-A1; 10 nM) for the last 2 h. The levels of β-actin served as a loading control.
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We next considered the mechanism by which siHSF1 causes upregulation of autophagy. mTOR is a key regu-
lator of autophagy, and its inhibition is known to mediate autophagic response to nutrient/amino acid depriva-
tion41. In yeast, HSF1 activation inhibits mTOR signalling42. To determine whether the mTOR status was altered 
by HSF1 depletion in U2OS cells, we assessed mTOR phosphorylation at S2448, a marker for active mTOR, and 
its downstream effector, p70 S6K (phosphorylated at T389) in U2OS cells treated with HSF1-targeted siRNAs 
(Fig. 6a). No changes in the mTOR pathway were detected in cells treated with siRNA SMARTpool directed 
against HSF1, suggesting that HSF1 depletion promotes autophagy independently on mTOR. Surprisingly, the 
total protein level of both mTOR and p70S6K, as well as of their phosphorylated forms, were reduced in U2OS 
cells that were treated with siHSF1s siRNA. This was not mimicked by the reduction in the levels of Hsp90α 
and/or Hsp90β using siRNA that recapitulates some of the downstream effects of HSF1 depletion (Fig. S4). We 
hypothesized that an off-target reduction in protein translation by siHSF1s siRNA might be responsible for such 
changes, and therefore further focused on the results of HSF1 depletion obtained with the siRNA SMARTpool 
against HSF1.

Another important mediator of both mTOR-dependent and mTOR-independent autophagy is p6243. To assess 
whether HSF1 could modulate HBB2-induced autophagy via transcriptional regulation of p62, we measured the 
mRNA levels of p62 in HSF1-depleted U2OS cells treated with HBB2 or DMSO vehicle (Fig. 6d). Surprisingly, 
the knockdown of HSF1 caused an increase (by ~2-fold) in the transcription of p62 under both basal as well as 
HBB2-induced conditions (Fig. 6d), consistent with the enhanced autophagy observed in HSF1-depleted cells.

Together, these results demonstrate that NRF2 promotes, whereas HSF1 inhibits autophagy, and identify 
NRF2 activation as the principal mediator of the activation of autophagy by HBB2.

Discussion
Our results suggest that autophagy is induced by HBB2 predominantly via NRF2-dependent transcriptional 
upregulation of p62, despite a strong co-activation of HSF1 that is inhibitory for p62 expression. How could this 
apparent paradox be explained? It is possible that while p62 transcription is inhibited by the presence of HSF1, 
the activation of this pathway by the drug may not result in further inhibition of p62, thus shifting the balance 
between NRF2-mediated upregulation and HSF1-mediated inhibition of p62 towards the former. This is sup-
ported by the fact that HBB2 does not cause a decrease in p62 expression in cells with >90% depletion of NRF2 
(Fig. 4d). The induction of p62 by HBB2 in these cells must be due to the residual NRF2 activity. An alternative 
explanation could be that HSF1 activation by HBB2 switches HSF1 from an inhibitor to an activator of p62; how-
ever, the ability of HSF1 depletion to increase in p62 mRNA level in HBB2 treated cells (Fig. 6d) argues against 
it - rather, HSF1 appears to act as a “brake” to p62 expression (and, consequently, to autophagy), regardless of the 
presence of HBB2.

In conclusion, the ortho-hydroxylated double Michael acceptor bis(2-hydoxybenzylidene)acetone (HBB2), 
a potent dual inducer of the phase 2 response and the heat shock response, is also an inducer of autophagy. This 
finding provided a chemical probe for investigating mechanistically how autophagy is activated in the context 
of enhanced HSF1- and NRF2-mediated signaling. Collectively, our results show that HBB2 induces autophagy 
by activation of NRF2. In contrast to NRF2, which promotes autophagic flux, HSF1 suppresses it. Although it 
is not clear at present whether the observed inhibition of the development of cutaneous tumors in the animal 
experiment is mediated by NRF2 and/or HSF1, or induction of autophagy, this experiment demonstrates that 
activation of the cellular stress responses is an effective strategy for protection against UV radiation-mediated 
skin carcinogenesis.

Methods
Compounds.  Phenethyl isothiocyanate (PEITC), bis(benzylidene)acetone (DBA) and bafilomycin A1 (Baf-
A1) were from Sigma Aldrich. Bis(2-hydroxybenzylidene)acetone (HBB2) was synthesized by Dr. Ronald Hicks 
(California State University East Bay, USA). PEITC was dissolved in acetonitrile (ACN), whereas HBB2, DBA and 
Baf-A1 were dissolved in dimethyl sulfoxide (DMSO). Prior to use, the compounds were diluted (1:1000) in the 
cell culture medium to achieve the appropriate final concentrations (indicated in the text). The final concentration 
of the solvent in the cell culture medium was maintained at 0.1% (v/v).

Antibodies.  Solutions of primary antibodies were prepared in 5% non-fat milk in PBST, unless indicated 
otherwise. The following antibodies were used: mouse monoclonal anti-β-actin, 1:10000–1:20000, Sigma; mouse 
monoclonal anti-Hsp70, (clone C92F3A-5) 1:1000, StressMarq; mouse monoclonal anti-Hsp90α/β, (H90–10) 
1:5000, Alexis Biochemicals; mouse anti-Hsp90, BD Transduction Laboratories, 1:5000; rabbit monoclonal 
anti-LC3B, 1:1000, Sigma; rabbit monoclonal anti-LC3B (D11), 1:1000, Cell Signaling Technology (CST); mouse 
monoclonal anti-SQSTM1/p62, 1:5000, Abcam; rabbit polyclonal anti-HSF1, 1:1000, Enzo Life Sciences; rabbit 
monoclonal anti-mTOR (7C10), 1:1000, CST; rabbit monoclonal anti-mTOR (pS2448), CST; rabbit monoclonal 
anti-p70 S6K, CST; rabbit monoclonal anti-p70 S6K (pT389), CST; rabbit polyclonal anti-4E-BP1, 1:1000, CST 
(#9452S), rabbit polyclonal anti-p4E-BP1 (pT36/47), 1:1000 in 5% BSA in PBST, CST (#9459); rabbit polyclonal 
anti-LAMP1, 1:200, Caltag Medsystems (PSI-3629); and rabbit monoclonal anti-NRF2 (D1Z9C), CST.

Cell culture.  Human osteosarcoma U2OS cells, a kind gift from Sonia Rocha (School of Life Sciences, 
University of Dundee, UK), were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Gibco, Life 
Technologies) that contains L-glutamine, sodium pyruvate, and high D-glucose content (4.5 g/L), supplemented 
with 10% (v/v) heat inactivated fetal bovine serum (FBS; Thermo Scientific). The stable HeLa-luc reporter cell line 
that expresses luciferase under the control of the HSP70.1 promoter, developed as described in ref. 44, was a kind 
gift from Richard Morimoto (Northwestern University, USA) and was cultured in the same DMEM basal medium 
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supplemented with 10% (v/v) heat-inactivated FBS and 600 µg/ml G418 (both from Gibco, Life Technologies). 
All cell lines were maintained in a humidified incubator (Heracell 150, Thermo Scientific) at 37 °C and 5% CO2. 
Unless stated otherwise, the cells were seeded into 6-well plates at a density of 2 × 105 per well the day before 
treatment with the specified compounds.

Whole-cell lysis and sample preparation for immunoblotting.  Cells were lysed in non-reducing sam-
ple buffer (50 mM Tris-HCl pH 6.8, 2% (w/v) sodium dodecyl sulfate (SDS), 10% (v/v) Glycerol, and 0.02% (w/v) 
Bromophenol blue) using 150 µl of the buffer for each well of a standard 6-well plate (Nunclon, Thermo Scientific). 
Whole-cell lysates were then collected in fresh Eppendorf tubes, optionally boiled at 100 °C for 5–10 minutes, and 
sonicated using Vibra-Cell ultrasonic processor (Sonic), prior supplementing the lysates with DTT up to 0.1 M 
final concentration. The samples were snap frozen and stored at −20 °C until analysis. Proteins in the lysates were 
resolved by SDS-polyacrylamide gel electrophoresis (PAGE) and then transferred onto either nitrocellulose (NC) 
or polyvinylfluoridine (PVDF) membranes. The membranes were blocked in 5% (w/v) non-fat milk (Marvel) dis-
solved in PBS containing 0.1% (v/v) Tween 20 (PBST) for 1 h, and subsequently incubated with the respective 
primary antibody solutions either at room temperature for 2 h or at 4 °C overnight, with continuous agitation. 
Following incubation with primary antibodies, the NC or PVDF membranes were washed three times with PBST 
for at least 30 min to 1 hour, and subsequently incubated with the corresponding secondary antibodies (horseradish 
peroxidase (HRP)-conjugated goat anti-rabbit (GAR) antibody, 1:5000, (Bio-Rad/CST), or HRP-conjugated goat 
anti-mouse (GAM) antibody, 1:5000, Bio-Rad, or IRDye fluorescent dyes conjugated GAM/GAR-680RD or GAM/
GAR-800CW, LI-COR). All blots shown are representative of at least three independent experiments.

Luciferase reporter assay.  HeLa-luc cells were seeded (1 × 104 cells/well) into white flat-bottomed 96-well 
plates (Thermo Scientific). The following day, the cells were treated in 8 replicates with HBB2 or DBA (1.25, 2.5 
or 5 µM), respective vehicles [0.1% (v/v) acetonitrile or 0.1% (v/v) DMSO], or 20 µM PEITC, which was used as 
a positive control. After 24 h, 50 µl of Bright-Glo luciferase assay reagent (Promega) was added directly into the 
medium in each well, followed by gentle shaking of the plates at room temperature for 5 minutes. The lumines-
cence was then measured (1-sec read per well) in half of the wells treated with each compound using Modulus II 
microplate reader (Turner Biosystems). The media was removed from the other half of the plates. The cells were 
then washed twice with PBS, followed by addition of 50 µl of the lysis buffer [50 mM Tris-HCl pH 7.5, 10 mM 
KCl, 5 mM MgCl2, 0.5% Nonidet P40 (Roche) and 1 mM dithiothreitol (DTT)] into each well. Twenty microliters 
of the resulting lysate were used to determine its protein concentration and normalize the luminescence values.

Generation of HSF1- and NRF2-knockdown U2OS cells.  The expression of HSF1 and NRF2 was 
reduced by RNA interference. U2OS cells (5 × 105) were reverse transfected and plated in 6-cm dishes with 
either Negative Control siRNA (siCTL) (AAUUCUCCGAACGUGUCACGU), human HSF1 single siRNA 
(CAGGUUGUUCAUAGUCAGAAU siRNA), human NRF2 siRNA (SMARTpool, ON-TARGETplus, #L-003755-
00-0005, Dharmacon) or human HSF1 siRNA (SMARTpool siGENOME, #M-012109-01-0005, Dharmacon) 
using Lipofectamine RNAiMAX (Thermo) according to the manufacturer’s protocol. The single HSF1 siRNAs 
and the Negative Control siRNA were synthesized by Eurofins Genomics, Ebersberg Germany. On the follow-
ing day, the transfected siCTL, siNRF2 and siHSF1 cells were replated in 6-well plates at a density of 3.5 × 105, 
4.5 × 105 and 5.5 × 105 cells per well, respectively, in complete medium, and incubated for a further 24 h. Forty 
eight hours after transfection, the cells were treated with DMSO (0.1%, v/v) or HBB2 for 16–18 h, and with Baf-A1 
during last two hours of HBB2 treatment.

Immunofluorescence.  U2OS cells (2.5 × 105 cells/well) were seeded on 18 × 18 mm glass coverslips (VWR) 
with a 1.5-mm thickness. Twenty hours later, cells were treated with either vehicle (0.1% DMSO) or 3 μM HBB2 
for a further 16 h. Cells were then washed three times with PBS and fixed in ice-cold (−20°C) 100% methanol, 
and kept in the freezer for 15 min. The cells were washed three times with PBS and subsequently washed with 
0.3% (v/v) Triton X-100 in PBS (PBS-Tx) for a further 15 min. Next, the cells were placed in blocking solution (3% 
normal donkey serum in PBS-Tx) for 30 min at room temperature (RT) after which they were incubated for 1 h at 
RT with rabbit anti-LC3B (1:200) (CST) and mouse anti-p62 (1:200) (Abcam) antibodies diluted in the blocking 
solution. The cells were subjected to three washes every 5 min using PBS-Tx, and then incubated with either FITC 
or Alexa Fluor 594  conjugated donkey anti-rabbit (1:400) and Alexa Fluor 594  or Alexa Fluor 680  conjugated 
donkey anti-mouse (1:400) secondary antibodies (Jackson Immunoresearch) diluted in the blocking solution 
for 1 h. After washing three times every 5 min using PBS-Tx and another wash for a further 5 min with PBS, the 
cells were incubated with DAPI (dissolved in PBS at a final concentration of 2.5 μg/ml) for 5 min at room tem-
perature. The cells were quickly washed three times with PBS and were subsequently mounted onto glass slides 
(VWR) using 30 μl of ProLong gold antifade mounting medium (Invitrogen), and let to cure overnight at RT. On 
the following day, the samples were imaged using either a confocal microscope (LSM 710, Zeiss) or a wide-field 
microscope (Deltavision Elite, GE Healthcare). The imaging experiments were performed at least three times.

Colocalization Analysis.  Images were obtained using a Deltavision Elite wide-field microscope (GE 
Healthcare) with an Olympus 60x/1.42 Plan Apo lens and Coolsnap HQ camera. In each field, 25 optical sections 
were obtained with 0.2-µm thickness per section. The images were deconvolved using SoftWorX (version 5.5). 
The colocalisation analysis of LC3B and p62 was performed in Volocity (Perkin Elmer, version 6.3) using its colo-
calisation module. For each image, individual threshold values were determined for each of the channels (LC3B 
and p62) using 4 standard deviations above the mean intensity. The thresholded Pearson’s Correlation Coefficient 
(PCC) was used as a statistical parameter to measure colocalization. For each condition, images from 5 fields of 
view were obtained, where in each field there were at least 4 cells. This experiment was conducted twice.
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Skin carcinogenesis.  The skin carcinogenesis experiment was in compliance with the National Institutes 
of Health Guidelines, and was approved by the Johns Hopkins University Animal Care and Use Committee. For 
this experiment, female SKH-1 hairless mice (4 weeks old) from Charles River (Wilmington, MA) were acclima-
tized for 2 weeks in a 12-h light/12-h dark cycle, 35% humidity, and free access to water and pelleted AIN 76 A 
diet (Harlan TekLad). UV radiation (a mixture of UVB and UVA wavelengths, 65% and 35% of the total energy, 
respectively) was provided by UV lamps (FS72T12-UVB-HO, National Biological Corporation, Twinsburg, OH). 
Two groups of 21 animals were exposed to UV radiation (30 mJ/cm2/session) twice weekly, from 7 to 24 weeks of 
age, during which time 3 mice died for reasons that were unrelated to the irradiation protocol. After completion 
of the irradiation schedule, the animals were treated topically on their dorsal skin twice a week for 12 weeks. The 
mice from one of the groups (n = 21) received 100 μl of 80% acetone (v/v), the animals from the second group 
(n = 18) received 1 μmol of HBB2 dissolved in 100 μl of 80% acetone (v/v). Tumors (defined as lesions >1 mm in 
diameter) and body weights were recorded weekly. Tumor volumes were determined by measuring the height, 
length, and width of each lesion. The average of the three measurements was used as the diameter, and the volume 
was calculated (v = 4πr3/3).

Data analysis.  All quantitative data are represented graphically and in the text as mean values ± 1 standard 
deviation (SD), except for tumor incidence and multiplicity values that are represented as mean values ± 1 stand-
ard error of means (SEM). One-way ANOVA and Tukey’s Multiple Comparison post-test or two-way ANOVA 
and Bonferroni post-test were used when analyzing the data.
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