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Background: Tyrosine kinase inhibitors, such as crizotinib and erlotinib, are widely used to treat non-small-cell lung cancer,
but after initial response, relapse is common because of the emergence of resistance through multiple mechanisms. Here,
we investigated whether a frontline combination with an HSP90 inhibitor could delay the emergence of resistance to these
inhibitors in preclinical lung cancer models.

Methods: The HSP90 inhibitor, onalespib, was combined with either crizotinib or erlotinib in ALK- or EGFR-activated xenograft
models respectively (H2228, HCC827).

Results: In both models, after initial response to the monotherapy kinase inhibitors, tumour relapse was observed. In contrast,
tumour growth remained inhibited when treated with an onalespib/kinase inhibitor combination. Analysis of H2228 tumours,
which had relapsed on crizotinib monotherapy, identified a number of clinically relevant crizotinib resistance mechanisms,
suggesting that HSP90 inhibitor treatment was capable of suppressing multiple mechanisms of resistance. Resistant cell lines,
derived from these tumours, retained sensitivity to onalespib (proliferation and signalling pathways were inhibited), indicating that,
despite their resistance to crizotinib, they were still sensitive to HSP90 inhibition.

Conclusions: Together, these preclinical data suggest that frontline combination with an HSP90 inhibitor may be a method for
delaying the emergence of resistance to targeted therapies.

The molecular characterisation of cancers has highlighted the role
of genetic alterations such as mutations or chromosomal
rearrangements in the constitutive activation of tyrosine kinases,
while the development of targeted therapies to these kinases has
transformed the management of the disease. Two of the most well-
recognised genetic alterations are mutations in epidermal growth
factor receptor (EGFR) and fusions of the echinoderm micro-
tubule-associated protein-like-4 (EML4) to anaplastic lymphoma
kinase (ALK) in non-small-cell lung cancers (NSCLC) (Paez et al,
2004; Soda et al, 2007). The NSCLC patients with such alterations

benefit from treatment with FDA-approved tyrosine kinase
inhibitors (TKIs) such as erlotinib or crizotinib (Pao et al, 2005;
Kwak et al, 2010; Camidge et al, 2012), but invariably develop
acquired resistance to therapy (Lovly and Shaw, 2014; Katayama
et al, 2015). Investigation of relapse after treatment with TKIs has
identified multiple resistance mechanisms, including gene ampli-
fication of primary oncogenes, secondary mutations in the drug
targets and activation of circumventing signalling pathways.
In mutant EGFR NSCLC the predominant mechanism of
resistance is the EGFR T790M gatekeeper mutation with
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amplification of MET also reported (Pao et al, 2005; Bean et al,
2007; Kawakami et al, 2014). Diverse mechanisms of resistance to
crizotinib have been identified in ALK-rearranged NSCLC.
Secondary mutations of the drug target including mutation of
the gatekeeper (L1196M) and other residues of the kinase domain
(G1269A, L1152R, C1156Y and others) occur in about a third of
patients, but EML4-ALK amplification and activation of alternative
signalling pathways are also frequently observed (Choi et al, 2010;
Doebele et al, 2012; Katayama et al, 2012).

The discovery of secondary mutations in these drug targets
primed the development of next-generation TKIs, such as afatinib
and AZD9291 (EGFR inhibitors) (Yang et al, 2012; Janne et al,
2015) or ceritinib and alectinib (ALK inhibitors) (Seto et al, 2013;
Shaw et al, 2014). However, although these next-generation TKIs
demonstrate some clinical activity in resistant disease, patients still
eventually relapse because of intrinsic or newly acquired resistance
mechanisms (Seto et al, 2013; Shaw et al, 2014; Ignatius Ou et al,
2014; Ou et al, 2015). The multiple mechanisms observed suggest
that resistance is unlikely to be overcome by inhibiting a single
drug target and that novel combination treatments will be needed
to deal with this multifactorial process.

Heat shock protein 90 (HSP90) is a molecular chaperone that
plays an essential role in maintaining cellular protein homeostasis
and in intracellular trafficking of its protein clients (Pearl et al,
2008; Neckers and Workman, 2012). As EGFR, EML4-ALK and
other key components of oncogenic signalling pathways are HSP90
clients (Shimamura et al, 2005; Normant et al, 2011), the use of
HSP90 inhibitors has been investigated in NSCLC, both pre-
clinically (Graham et al, 2012; Shimamura et al, 2012; Sang et al,
2013; Garon et al, 2013) and clinically (Sequist et al, 2010; Socinski
et al, 2013; Johnson et al, 2015), and it has been suggested that this
may be a method for overcoming diverse mechanisms of resistance
(Sang et al, 2013; Lovly and Shaw, 2014). However, although
HSP90 inhibitors have demonstrated some efficacy in both TKI-
sensitive and -resistant NSCLC preclinical models, responses to
single-agent HSP90 inhibitor treatment in the clinic have been
disappointing, highlighting the need to find new strategies to
improve their therapeutic potential (Butler et al, 2015). In a
previous study, we reported that an upfront combination of the
potent second-generation HSP90 inhibitor, AT13387 (onalespib)
(Woodhead et al, 2010), delayed the emergence of acquired
resistance to vemurafenib in a BRAFV600E melanoma model
(Smyth et al, 2014). A ceritinib/MEK inhibitor combination has
also been reported to improve response and forestall resistance in
an ALK model (Hrustanovic et al, 2015). Here, we have expanded
on the concept of using HSP90 inhibitor combinations upfront,
demonstrating that they can be used more broadly to delay
development of resistance to other kinase inhibitors in further
disease models, specifically EGFR- and ALK-driven NSCLC.

MATERIALS AND METHODS

Materials. Onalespib (AT13387) was synthesised at Astex Phar-
maceuticals (Cambridge, UK) as described by Woodhead et al
(2010) and stored as a lyophilised powder. Crizotinib was
purchased from Sequoia Research Products Ltd (Pangbourne,
UK). Erlotinib and 17-AAG were purchased from LC Laboratories
(Woburn, MA, USA). Ganetespib was purchased from Charnwood
Molecular (Loughborough, UK). All other reagents were purchased
from Sigma (Gillingham, UK) unless stated otherwise.

Cell culture and reagents. The human cell lines H2228 and
HCC827 were purchased from the American Type Culture
Collection (ATCC, Teddington, UK). Cells were grown in RPMI-
1640 medium supplemented with 10% FBS and maintained at
37 1C in an atmosphere of 5% CO2. All cell culture reagents were

purchased from Invitrogen (Paisley, UK) unless stated otherwise.
These cells lines were not passaged for more than 6 months after
authentication by the cell bank (short tandem repeat PCR). The
crizotinib-resistant H2228 cell lines (H2228-CR) were generated
in-house and derived from EML4-ALK H2228 xenograft tumours
that acquired resistance to crizotinib in vivo after continuous
crizotinib monotherapy. Relapsing tumours were removed asepti-
cally from mice and were mechanically dissociated and digested
with collagenase IV (200 U ml� 1). The digested mixtures were
then filtered and centrifuged. Cell pellets were washed and
resuspended in RPMI medium supplemented with 20% FBS,
penicillin/streptomycin and bovine pituitary extract (30 mg ml� 1,
BD Biosciences, Oxford, UK). Crizotinib (1 mM) was added to
cultures 24 h later. The resulting cell lines were named H2228-CR1,
H2228-CR2, H2228-CR4, H2228-CR5, H2228-CR6 and H2228-
CR7. The crizotinib-sensitive control cell line (H2228-CS) was
derived from a treatment-naive H2228 xenograft according to the
same protocol without addition of crizotinib. After the first
passage, all cell lines were cultured in RPMI-1640 medium
supplemented with 10% FBS and 1mM crizotinib. Similar methods
were used to generate HCC827 erlotinib-resistant cell lines from
HCC827 xenograft tumours, with erlotinib (0.3 mM) being added to
cultures instead of crizotinib.

Exome sequencing. The 5� 106 H2228-CS and H2228-CR cells
were harvested in triplicate, pelleted by centrifugation, snap frozen
in liquid nitrogen and stored at � 80 1C. The DNA isolation and
exome sequencing were performed by GATC Biotech (https://
www.gatc-biotech.com/en/index.html) according to their guide-
lines. Genomic DNA was extracted and exome sequencing was
performed using Agilent SureSelect Human All Exon V5 kit
(Stockport, UK). The sequencing library was constructed and
analysed by the Illumina HiSeq 2500 (Little Chesterford, UK) using
the 101-bp paired-end mode of the TruSeq SBS technology. Mean
target coverage was 145.43±21.84-fold. Bioinformatics analysis was
carried out as described in Supplementary Data. Raw sequencing data
have been deposited and are available at ArrayExpress under
accession code E-MTAB-4851.

Determination of proliferation by live cell imaging. To measure
proliferation in real time, 5� 103 cells were seeded in 200 ml of
complete culture medium per well into flat-bottomed 96-well
plates and incubated overnight at 37 1C in a humidified atmo-
sphere of 5% CO2 in air. Cells were incubated with compound in
0.1% (v/v) dimethyl sulphoxide (DMSO) for 7 days and images
captured using an IncuCyte ZOOM live cell microscope (Essen
BioScience, Ann Arbor, MI, USA). Live images were taken every
3 h over 7 days using a 10� objective and IncuCyte software was
used to calculate mean percent confluency from four non-
overlapping phase-contrast images of each well. Relative prolifera-
tion was calculated from the area under the curve (AUC). The IC50

values were generated using a sigmoidal dose response
equation (Prism GraphPad software, La Jolla, CA, USA).

Protein analysis. For western blotting, cells were seeded into
6-well plates at 5� 105 cells per well in 2 ml of complete medium,
incubated overnight at 37 1C and then treated with HSP90
inhibitor or crizotinib for 24 h. Samples were harvested post
treatment and lysed in 150 ml of ice-cold Triton lysis buffer. After a
freeze–thaw cycle, lysates were cleared by centrifugation at
14 000 r.p.m. for 5 min at 4 1C. Protein concentrations were
determined by BCA protein assay (Pierce, Paisley, UK) and
normalised. Samples were resolved by SDS–PAGE, blotted onto
nitrocellulose filters, blocked with Odyssey Blocking Buffer (LI-
COR Biosciences, Lincoln, NE, USA) and incubated overnight with
the specific antibodies to: ALK, phospho-S6(Ser240/244), S6, phospho-
AKT(Ser473), AKT, phospho-ERK1/2(Thr202/Tyr204), ERK1/2, MET,
phospho-EGFR(Tyr1068), EGFR, STAT3, phospho-STAT3(Tyr705) (Cell
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Signaling Technology, Hitchin, UK), HSP70 (Stressgen, Ann Arbor,
MI, USA) and actin (Abcam, Cambridge, UK). After washing, blots
were incubated with infrared dye-labelled anti-rabbit and anti-mouse
antibodies (LI-COR Biosciences). Blots were scanned to detect infrared
fluorescence on the Odyssey infrared imaging system (LI-COR
Biosciences).

To measure levels of phospho-ALK, 1� 105 cells were seeded
in 200 ml of complete culture medium per well into flat-bottomed
96-well plates and incubated overnight at 37 1C. Samples were then
harvested, lysed in 50 ml of ice-cold lysis buffer and analysed using
the PathScan Phospho-ALK (Tyr1604) Chemiluminescent Sand-
wich ELISA Kit (Cell Signalling Technology, Danvers, MA, USA).

Xenograft studies. The H2228, H2228-CR6 and HCC827 xeno-
grafts were prepared by subcutaneously injecting 5� 106 cells
suspended in serum-free medium mixed 1 : 1 with Matrigel
(BD Biosciences) into the right flank of each male BALB/c SCID
mouse. Tumours were measured using caliper and tumour
volumes calculated by applying the formula for an ellipsoid. When
the tumours reached an average of 80–120 mm3, mice were
randomised into groups of 8–12. Onalespib was dissolved in
aqueous solution of 17.5% (w/v) (2-hydroxypropyl)-b-cyclodextrin
and intraperitoneally administered weekly at 55 mg kg� 1. Crizo-
tinib was suspended in water and given daily at 50 mg kg� 1 by oral
gavage. Erlotinib, suspended in 0.3% (w/v) carboxymethylcellulose
and 0.1% (v/v) Tween-80, was administered daily at 12.5 mg kg� 1

by oral gavage. All drugs were given at a dose volume of
10 ml kg� 1. Treated vs control (T/C) ratio was calculated as
100�mean treated volume divided by mean control volume.
Tolerability was estimated by monitoring body weight and general
health over the course of the study. To expand the crizotinib-
resistant and -sensitive tumours, mice bearing H2228 xenografts
were killed and tumours removed immediately under aseptic
condition. The tumours were washed and cut into pieces B3 mm3

in serum-free RPMI-1640 medium and subcutaneously implanted
into naive mice under general anaesthesia. Subsequently, mice were
treated with crizotinib daily. The care and the treatment of animals
were in accordance with the United Kingdom Coordinating
Committee for Cancer Research guidelines and with the United
Kingdom Animals (Scientific Procedures) Act 1986 (Hollands,
1986; Workman et al, 2010). All scientific procedures were
performed under the United Kingdom Home Office Project
License approved by the University of Cambridge Animal Welfare
and Ethical Review Committee.

Statistical analysis. Statistical analyses were performed using
GraphPad Prism version 6.05. The effects of treatments were
compared using one-way ANOVA or t-test. Differences were
deemed statistically significant when Po0.05.

RESULTS

Onalespib delays the emergence of resistance to crizotinib and
erlotinib in in vivo models of NSCLC. We have previously
established that an upfront combined treatment of onalespib and
vemurafenib in BRAFV600E mutant melanoma delays the emer-
gence of resistance to vemurafenib (Smyth et al, 2014). In order to
expand these findings to other targeted therapies of clinical
relevance, we extended our studies to NSCLC using two xenograft
models, an erlotinib-sensitive EGFRdel746_750 model (HCC827) and
a crizotinib-sensitive EML4-ALK translocated model (H2228). In
these two models we compared the efficacy of the targeted therapy
as a single agent or in combination with onalespib over an
extended timescale in order to evaluate relative times of relapse and
emergence of resistance while on treatment, in line with clinical
timescales. In the HCC827 erlotinib-naive model, 12.5 mg kg� 1

erlotinib was given as monotherapy or in combination

with 55 mg kg� 1 onalespib to mice bearing xenograft tumours.
As expected, erlotinib alone caused regression of tumours, whereas
onalespib monotherapy caused moderate, but significant, tumour
growth inhibition. Used together, onalespib significantly
enhanced the antitumour activity of erlotinib (5.1% vs 16.4% T/C
respectively, Po0.0001 vs erlotinib monotherapy) over an initial
period of 50 days, after which all tumours treated with erlotinib
monotherapy and the combination achieved complete regression
(o3 mm diameter) with a median time of 58 and 79 days,
respectively (Figure 1A). Both erlotinib monotherapy and
combination treatments were continued over a total period of
53 weeks. During this time, 3 out of 12 tumours treated with
erlotinib relapsed, reaching 50% of their original volume by weeks
21, 26 and 46, whereas 5 other tumours showed sign of regrowth
by the end of the study period (Figure 1B–D). At the end of
the treatment period, the erlotinib-treated tumours from the
7 remaining mice ranged in volume from 0 to 89 mm3, whereas,
in contrast, the 9 tumours from the combination-treated
mice were still not palpable (Figure 1B and D). The combina-
tion-treated mice were monitored for several weeks after the
end of treatment and all tumours remained undetectable for a
further 6 weeks of observation, after which signs of tumour
regrowth were observed in three out of the eight remaining mice,
demonstrating the extended benefit of the combination treatment
(Figure 1E).

In a similar experiment, the activity of crizotinib as a
monotherapy or in combination with onalespib was compared in
H2228 (EML4-ALK) crizotinib-naive tumours (Figure 2). Over an
initial period of 35 days, onalespib monotherapy significantly
inhibited the growth of H2228 tumours compared with the control
(46% T/C, Po0.0001), whereas crizotinib monotherapy induced
significant tumour regression, as expected. The combination of
onalespib and crizotinib showed an improvement on tumour
regression over crizotinib monotherapy (3% vs 11% T/C, 87% vs
63% regression on day 35); however, the difference was not
statistically significant (Figure 2A). The crizotinib monotherapy
and combination treatments were extended for a period of 3
months during which three out of the eight crizotinib-treated
tumours relapsed, whereas no sign of regrowth was observed in the
combination-treated tumours (Figure 2B and C). The combina-
tions of onalespib with either erlotinib or crizotinib were well
tolerated with no significant increase in toxicity observed
(Supplementary Figure S1).

Taken together, these data demonstrate that onalespib can delay
the emergence of resistance to targeted therapies, including
erlotinib and crizotinib in EGFRdel746_750 and EML4-ALK NSCLC
tumour models, respectively.

Characterisation of crizotinib resistance in H2228 tumours. In
order to determine which resistance mechanisms HSP90 inhibitor
treatment might be preventing, we next investigated crizotinib
resistance in the H2228 xenograft model. Crizotinib-resistant
tumours were generated by continuous treatment of mice bearing
H2228 xenograft tumours with crizotinib (Supplementary Figure
S2). The relapsed tumours were excised and cultured ex vivo
(tumour #1) or implanted for a second passage in crizotinib-
treated mice before being cultured ex vivo (tumours #2, #4, #5, #6
and #7). The resistance to crizotinib of the resulting H2228 cell
lines (H2228-CR1, H2228-CR2, H2228-CR4, H2228-CR5, H2228-
CR6 and H2228-CR7, respectively) was established by measuring
proliferation rates by time-lapse microscopy in the presence of
crizotinib (Supplementary Figure S3). For comparison a cell
population was generated from a treatment-naive tumour (H2228-
CS). Exome sequencing was used to characterise the H2228 cell
lines. Details, including sequencing statistics (raw and mapped
reads) for each sample, are provided in Supplementary Data and
Supplementary Tables S1 and S2. A spectrum of genetic alterations
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was detected (Figure 3A and Supplementary Figure S4). Deletion of
EML4-ALK was predicted in the H2228-CR2 cell line, whereas
amplification of ALK was observed in the H2228-CR4 and -CR6
lines. The somatic mutation C1156Y was also identified in the
EML4-ALK gene of H2228-CR6 cells (Figure 3A). The ALK
deletion, amplification and mutation have all been previously
associated with crizotinib resistance in the clinic (Choi et al, 2010;
Doebele et al, 2012; Katayama et al, 2012). No EGFR, KRAS or
MET mutations were found in any of the resistant cell lines, but an
additional amplification of FGFR3 was identified in H2228-CR6
cells. Several predicted driver mutations were also detected in the
different H2228-CR cell lines that could represent potential
candidate genes for crizotinib resistance (Supplementary Table S3).

We further characterised the H2228-CR cell lines in more
biochemical detail by analysing levels of proteins involved in the
ALK signalling pathway by western blot (Figure 3B) and phospho-
ALK levels by ELISA (Figure 3C). Changes in protein levels were
observed in the resistant compared with the sensitive cell lines,
suggesting resistance was associated with changes in signalling.
There appeared to be an increased level of phospho-ERK,
accompanied by a decrease in phospho-ALK levels in H2228-
CR1 compared with H2228-CS, but no other clear differences were
observed between the two cell lines. The EML4-ALK protein was
not detected in the H2228-CR2 cell line, in line with the genetic
data, and the decrease in phospho-ALK levels reflected this.
The H2228-CR4 and H2228-CR6 cell lines exhibited increased
levels of total EML4-ALK protein in agreement with the exome
sequencing data. In H2228-CR4, the increased level of EML4-ALK
was not accompanied by an increase in phospho-ALK levels but a
concomitant increase in the levels of proteins including ERK, AKT
and their phospho-forms as well as MET and EGFR was observed.
In H2228-CR6 phospho-ALK AKT, MET and phospho-STAT3
levels appeared to be increased. This cell line was less sensitive to
inhibition of phospho-ALK by crizotinib compared with H2228-
CS (Supplementary Figure S5A), consistent with the presence of

the C1156Y mutation that reduces the affinity of crizotinib for this
mutant ALK protein. The H2228-CR5 exhibited a decrease in total
and phospho-ALK levels, but increases in phospho-ERK, phospho-
AKT and EGFR levels were observed. Finally, H2228-CR7 cells
appeared to have higher levels of ERK, phospho-AKT, MET and
EGFR than the H2228-CS cells (Figure 3B). Taken together, these
results suggest that the H2228 tumours acquired resistance to
crizotinib through different mechanisms such as the loss of EML4-
ALK (CR2), the overexpression of EML4-ALK (CR4 and CR6),
ALK mutation (CR6) and/or activation of alternative pathways
(CR1, CR5 and CR7).

A similar attempt to generate ex vivo cultures from erlotinib-
resistant HCC827 xenograft tumours was not successful; no
clinically relevant modifications were identified by the exome
sequencing analysis in the limited material obtained.

Onalespib maintains activity in models with acquired resistance
to crizotinib. The H2228-CR2 (ALKdel), H2228-CR4 (ALKamp)
and H2228-CR6 (ALKamp, ALKC1156Y) cell lines harbour changes
in ALK that have been described in patients with NSCLC who
relapsed under crizotinib treatment (Choi et al, 2010; Katayama
et al, 2012; Doebele et al, 2012). We therefore evaluated the activity
of onalespib and the HSP90 inhibitors ganetespib and 17-AAG in
these clinically relevant cell lines (Figure 4 and Supplementary
Figures S3 and S5). For this purpose, we treated the cells with a
dose range of HSP90 inhibitor or crizotinib and proliferation was
followed by time-lapse microscopy. Measurement of cell con-
fluence showed that proliferation is inhibited from 0.1 mM
onalespib in the three cell lines, whereas crizotinib had no effect
at concentrations below 3mM (Figure 4A and Supplementary
Figure S3). In some cases, crizotinib-treated cell growth was even
increased compared with vehicle-treated cell growth, suggesting a
stimulatory effect of crizotinib at certain concentrations in
crizotinib-resistant cell lines. The effects of onalespib and crizotinib
on cell signalling were then compared. As expected, HSP90
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inhibitor treatment induced HSP70 expression, confirming HSP90
inhibition, in the three cell lines (Figure 4B and Supplementary
Figure 5B). A concomitant depletion in the level of phospho-ERK,
phospho-AKT and phospho-S6 demonstrated that ALK signalling
was inhibited by HSP90 inhibitor treatment. In contrast, the levels
of these phosphorylated proteins were not decreased by treatment
of the resistant cells with crizotinib (apart from a slight decrease in
pS6 levels in H2228-CR6) and in some cases appeared increased
(Figure 4B). These data demonstrate that NSCLC cells with
acquired resistance to crizotinib remain sensitive to HSP90
inhibition in vitro.

Onalespib is active in a crizotinib-resistant (ALK C1156Y)
xenograft model. To further investigate the activity of onalespib
in crizotinib-resistant models in vivo, we generated crizotinib-
resistant xenograft tumours, harbouring the ALK C1156Y kinase
domain mutation, by implanting H2228-CR6 cells in BALB/c
SCID mice. Animals were then treated with 50 mg kg� 1 crizotinib
as a monotherapy or in combination with 55 mg kg� 1 onalespib.
As expected, crizotinib alone did not inhibit tumour growth.
However, the combination of crizotinib and onalespib induced a
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significant growth inhibition from day 3 of treatment (Figure 5).
On day 26 of the study, the combination-treated tumours were
32.5% the size of those treated with crizotinib monotherapy
(Po0.01) and 3 out of 12 tumours reached the criteria for partial
regression (450% reduction) during the study period. These data
suggest that onalespib can inhibit the growth of crizotinib-resistant
tumours bearing the ALK C1156Y mutation. However, in contrast
to the activity in the crizotinib-naive H2228 tumours (Figure 2A),
the addition of onalespib here induced tumour stasis rather than
tumour regression. This further suggests that using an upfront
combination of onalespib with a TKI to delay acquired resistance
could be more effective than treatment after resistance has
developed.

DISCUSSION

The HSP90 inhibition has been investigated as a means of
overcoming drug resistance in cancer because of its ability to affect
multiple signalling pathways simultaneously (Shimamura et al,
2008; Paraiso et al, 2012; Smyth et al, 2012; Sang et al, 2013).
However, despite promising preclinical data, response rates in
clinical trials have been disappointing. Previously, we demon-
strated preclinically that an upfront combination of the HSP90
inhibitor, onalespib, with the BRAF inhibitor, vemurafenib,
delayed the emergence of resistance in a melanoma model
(Smyth et al, 2014). Here we have expanded this concept,
demonstrating that it is broadly applicable to other indications
(ALK- and EGFR-driven NSCLC) and other kinase inhibitors
(crizotinib, erlotinib). We showed in two different NSCLC models
that an upfront combination of an HSP90 inhibitor and a kinase
inhibitor can maintain tumour growth inhibition over timescales
where relapse is seen to the monotherapy; timescales consistent
with those where relapse is observed in the clinic.

The mechanisms of resistance that arise in these in vivo NSCLC
models, on treatment with crizotinib, were investigated and
clinically relevant mechanisms of resistance were identified
(amplification or mutation (C1156Y) of EML4-ALK), although
exome sequencing may not identify all resistance mechanisms. The
H2228 xenograft model treated with crizotinib has been previously
used to detect multiple clinically relevant secondary ALK
mutations, including C1156Y (Friboulet et al, 2014). Moreover,
in vitro and in vivo EML4-ALK- and EGFR-driven NSCLC models
have been used to identify mechanisms of resistance involving
oncogene driver mutations, EMT or activation of bypassing
signalling pathways (Tanizaki et al, 2012; Katayama et al, 2012;
Kim et al, 2013; Yamaguchi et al, 2014; Wilson et al, 2015). Many
of these have also been observed in the clinical situation, suggesting
that these preclinical models are useful tools for studying resistance
development. The fact that we saw no relapse on TKI treatment in
combination with the HSP90 inhibition also suggests that HSP0
inhibitors may be able to suppress multiple clinically relevant
resistance mechanisms in these models, and hence their use may be
widely applicable to address the emergence of resistance to targeted
agents.

In order to overcome acquired drug resistance in patients,
second-generation ALK and EGFR inhibitors have been developed.
Second-generation ALK inhibitors, such as ceritinib and alectinib,
are active against many ALK resistance mutations and have good
clinical activity in crizotinib-resistant patients (Katayama et al,
2015). Nevertheless, ultimately resistance rearises to these agents
through further ALK mutations or bypass pathways (Katayama
et al, 2014, 2015). Similarly, although progression-free survival can
be improved with EGFR inhibitors such as afatinib or AZD9291,
resistance is inevitable (Yu et al, 2014; Thress et al, 2015). Second-
and third-line inhibitors of the same target are highly likely to

suffer from similar resistance mechanisms, and therefore different
approaches are being investigated. It has been suggested that
HSP90 inhibition is a potential approach for tackling resistance in
the post-TKI treatment setting (Sang et al, 2013; Katayama et al,
2015), but despite some clinical activity in crizotinib-naive patients
(Sequist et al, 2010; Socinski et al, 2013), lower response rates have
been reported in patients with prior TKI treatment (Socinski et al,
2013; Johnson et al, 2015), suggesting that this may not be the
optimum use of an HSP90 inhibitor. Here, we observed that in an
in vivo model with acquired resistance to crizotinib, inhibition of
tumour growth could be achieved by combination with an HSP90
inhibitor. However, effects on tumour growth were not as
pronounced as treatment before the emergence of resistance. Our
data suggest that combining an HSP90 inhibitor upfront with a
TKI is a more effective approach to delay the emergence of
resistance and potentially to prolong PFS.

It has been suggested previously that the simultaneous
treatment of tumours with two drugs is more effective than
sequential therapy (Bozic et al, 2013) and, indeed, although the
combination of onalespib and crizotinib still inhibited tumour
growth of the tumours with acquired crizotinib resistance, the
inhibition was not as complete or sustained as observed in the
sensitive tumours. Tumours initially respond to kinase inhibitors
such as erlotinib and crizotinib, as we have observed here, but
responses are short lived as tumours evolve to become resistant.
This resistance can either be because of a small number of resistant
cells in the original tumour that expand as the sensitive cells are
treated or the emergence of de novo resistance mutations during
treatment (Bozic et al, 2013). Treating with two agents simulta-
neously, which target different pathways, can overcome the first of
these (Hrustanovic et al, 2015) using an HSP90 inhibitor as one of
these agents gives an added advantage in such a combination, as it
targets multiple pathways. However, HSP90 inhibition may have a
more fundamental effect on the development of resistance because
of its proposed role in the evolutionary process, stabilising mutated
proteins and therefore modulating genetic variation as described by
the capacitor hypothesis (Rohner et al, 2013). Inhibiting HSP90 could
prevent this evolution of new phenotypes and hence limit the
emergence of de novo mutations leading to drug resistance (Whitesell
et al, 2014). An upfront combination with an HSP90 inhibitor could
therefore address both these processes for development of resistance
in our models, whereas the capacitor role will not be affected by
inhibition of HSP90 after resistance has arisen. Multiple factors will
affect which of these processes predominate in the clinic compared
with preclinical models: tumour heterogeneity, types of pretreatment
and stage of progression. Selecting the patient population in which
this type of upfront combination will be most effective clinically may
still be a challenge.

Overall, we have now shown in three preclinical models with
different transforming oncogenes that combining HSP90 upfront
with a suitable kinase inhibitor can delay the emergence of
resistance (Smyth et al, 2014). A phase 2 trial (ClinicalTrials.gov
Identifier: NCT01712217) is currently testing the combination of
onalespib and crizotinib. Our preclinical data suggest that upfront
combinations of HSP90 inhibitors and targeted agents may be
applicable more generally for limiting the emergence of resistance
and hence testing in further patient populations could also be
warranted.
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